nodes.py 77.2 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
8
import math
9
import time
10
import random
11
import logging
comfyanonymous's avatar
comfyanonymous committed
12

13
from PIL import Image, ImageOps, ImageSequence, ImageFile
comfyanonymous's avatar
comfyanonymous committed
14
from PIL.PngImagePlugin import PngInfo
15

comfyanonymous's avatar
comfyanonymous committed
16
import numpy as np
17
import safetensors.torch
comfyanonymous's avatar
comfyanonymous committed
18

19
20
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))

21
import comfy.diffusers_load
comfyanonymous's avatar
comfyanonymous committed
22
import comfy.samplers
23
import comfy.sample
comfyanonymous's avatar
comfyanonymous committed
24
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
25
import comfy.utils
26
import comfy.controlnet
comfyanonymous's avatar
comfyanonymous committed
27

28
import comfy.clip_vision
29

30
import comfy.model_management
31
32
from comfy.cli_args import args

33
import importlib
comfyanonymous's avatar
comfyanonymous committed
34

35
import folder_paths
36
import latent_preview
37
import node_helpers
space-nuko's avatar
space-nuko committed
38

39
def before_node_execution():
40
    comfy.model_management.throw_exception_if_processing_interrupted()
41

42
def interrupt_processing(value=True):
43
    comfy.model_management.interrupt_current_processing(value)
44

comfyanonymous's avatar
comfyanonymous committed
45
MAX_RESOLUTION=16384
46

comfyanonymous's avatar
comfyanonymous committed
47
48
49
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
50
        return {"required": {"text": ("STRING", {"multiline": True, "dynamicPrompts": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
51
52
53
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

54
55
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
56
    def encode(self, clip, text):
57
        tokens = clip.tokenize(text)
58
59
60
        output = clip.encode_from_tokens(tokens, return_pooled=True, return_dict=True)
        cond = output.pop("cond")
        return ([[cond, output]], )
comfyanonymous's avatar
comfyanonymous committed
61
62
63
64
65
66
67
68

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

69
70
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
71
72
73
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

FizzleDorf's avatar
FizzleDorf committed
74
75
76
class ConditioningAverage :
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
77
78
        return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
                              "conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
FizzleDorf's avatar
FizzleDorf committed
79
80
81
82
83
84
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "addWeighted"

    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
85
    def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
FizzleDorf's avatar
FizzleDorf committed
86
        out = []
comfyanonymous's avatar
comfyanonymous committed
87
88

        if len(conditioning_from) > 1:
89
            logging.warning("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
comfyanonymous's avatar
comfyanonymous committed
90
91

        cond_from = conditioning_from[0][0]
92
        pooled_output_from = conditioning_from[0][1].get("pooled_output", None)
comfyanonymous's avatar
comfyanonymous committed
93
94
95

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
96
            pooled_output_to = conditioning_to[i][1].get("pooled_output", pooled_output_from)
comfyanonymous's avatar
comfyanonymous committed
97
98
99
100
101
            t0 = cond_from[:,:t1.shape[1]]
            if t0.shape[1] < t1.shape[1]:
                t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)

            tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
102
103
104
105
106
107
108
            t_to = conditioning_to[i][1].copy()
            if pooled_output_from is not None and pooled_output_to is not None:
                t_to["pooled_output"] = torch.mul(pooled_output_to, conditioning_to_strength) + torch.mul(pooled_output_from, (1.0 - conditioning_to_strength))
            elif pooled_output_from is not None:
                t_to["pooled_output"] = pooled_output_from

            n = [tw, t_to]
FizzleDorf's avatar
FizzleDorf committed
109
110
111
            out.append(n)
        return (out, )

112
113
114
115
116
117
118
119
120
121
class ConditioningConcat:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "conditioning_to": ("CONDITIONING",),
            "conditioning_from": ("CONDITIONING",),
            }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "concat"

122
    CATEGORY = "conditioning"
123
124
125
126
127

    def concat(self, conditioning_to, conditioning_from):
        out = []

        if len(conditioning_from) > 1:
128
            logging.warning("Warning: ConditioningConcat conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
129
130
131
132
133
134
135
136
137
138
139

        cond_from = conditioning_from[0][0]

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
            tw = torch.cat((t1, cond_from),1)
            n = [tw, conditioning_to[i][1].copy()]
            out.append(n)

        return (out, )

comfyanonymous's avatar
comfyanonymous committed
140
141
142
143
class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
144
145
146
147
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
148
149
150
151
152
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

153
154
    CATEGORY = "conditioning"

155
    def append(self, conditioning, width, height, x, y, strength):
156
157
158
        c = node_helpers.conditioning_set_values(conditioning, {"area": (height // 8, width // 8, y // 8, x // 8),
                                                                "strength": strength,
                                                                "set_area_to_bounds": False})
comfyanonymous's avatar
comfyanonymous committed
159
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
160

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
class ConditioningSetAreaPercentage:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "width": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
                              "height": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
                              "x": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
                              "y": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

    def append(self, conditioning, width, height, x, y, strength):
177
178
179
        c = node_helpers.conditioning_set_values(conditioning, {"area": ("percentage", height, width, y, x),
                                                                "strength": strength,
                                                                "set_area_to_bounds": False})
180
181
        return (c, )

182
183
184
185
186
187
188
189
190
191
192
193
class ConditioningSetAreaStrength:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

    def append(self, conditioning, strength):
194
        c = node_helpers.conditioning_set_values(conditioning, {"strength": strength})
195
196
197
        return (c, )


Jacob Segal's avatar
Jacob Segal committed
198
199
200
201
202
203
class ConditioningSetMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "mask": ("MASK", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
204
                              "set_cond_area": (["default", "mask bounds"],),
Jacob Segal's avatar
Jacob Segal committed
205
206
207
208
209
210
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

211
212
213
214
    def append(self, conditioning, mask, set_cond_area, strength):
        set_area_to_bounds = False
        if set_cond_area != "default":
            set_area_to_bounds = True
Jacob Segal's avatar
Jacob Segal committed
215
216
        if len(mask.shape) < 3:
            mask = mask.unsqueeze(0)
217
218
219
220

        c = node_helpers.conditioning_set_values(conditioning, {"mask": mask,
                                                                "set_area_to_bounds": set_area_to_bounds,
                                                                "mask_strength": strength})
Jacob Segal's avatar
Jacob Segal committed
221
222
        return (c, )

223
224
225
226
227
228
229
230
231
232
233
234
235
class ConditioningZeroOut:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "zero_out"

    CATEGORY = "advanced/conditioning"

    def zero_out(self, conditioning):
        c = []
        for t in conditioning:
            d = t[1].copy()
236
237
238
            pooled_output = d.get("pooled_output", None)
            if pooled_output is not None:
                d["pooled_output"] = torch.zeros_like(pooled_output)
239
240
241
242
            n = [torch.zeros_like(t[0]), d]
            c.append(n)
        return (c, )

243
244
245
246
class ConditioningSetTimestepRange:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
247
248
                             "start": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                             "end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
249
250
251
252
253
254
255
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "set_range"

    CATEGORY = "advanced/conditioning"

    def set_range(self, conditioning, start, end):
256
257
        c = node_helpers.conditioning_set_values(conditioning, {"start_percent": start,
                                                                "end_percent": end})
258
259
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
260
261
262
263
264
265
266
class VAEDecode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

267
268
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
269
    def decode(self, vae, samples):
270
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
271

272
273
274
class VAEDecodeTiled:
    @classmethod
    def INPUT_TYPES(s):
275
        return {"required": {"samples": ("LATENT", ), "vae": ("VAE", ),
comfyanonymous's avatar
comfyanonymous committed
276
                             "tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64})
277
                            }}
278
279
280
281
282
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

283
    def decode(self, vae, samples, tile_size):
284
        return (vae.decode_tiled(samples["samples"], tile_x=tile_size // 8, tile_y=tile_size // 8, ), )
285

comfyanonymous's avatar
comfyanonymous committed
286
287
288
289
290
291
292
class VAEEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

293
294
    CATEGORY = "latent"

295
296
    def encode(self, vae, pixels):
        t = vae.encode(pixels[:,:,:,:3])
297
        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
298

comfyanonymous's avatar
comfyanonymous committed
299
300
301
class VAEEncodeTiled:
    @classmethod
    def INPUT_TYPES(s):
302
        return {"required": {"pixels": ("IMAGE", ), "vae": ("VAE", ),
303
                             "tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64})
304
                            }}
comfyanonymous's avatar
comfyanonymous committed
305
306
307
308
309
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

310
311
    def encode(self, vae, pixels, tile_size):
        t = vae.encode_tiled(pixels[:,:,:,:3], tile_x=tile_size, tile_y=tile_size, )
comfyanonymous's avatar
comfyanonymous committed
312
        return ({"samples":t}, )
313

314
315
316
class VAEEncodeForInpaint:
    @classmethod
    def INPUT_TYPES(s):
317
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
318
319
320
321
322
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

323
    def encode(self, vae, pixels, mask, grow_mask_by=6):
324
325
        x = (pixels.shape[1] // vae.downscale_ratio) * vae.downscale_ratio
        y = (pixels.shape[2] // vae.downscale_ratio) * vae.downscale_ratio
326
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
327

328
        pixels = pixels.clone()
329
        if pixels.shape[1] != x or pixels.shape[2] != y:
330
331
            x_offset = (pixels.shape[1] % vae.downscale_ratio) // 2
            y_offset = (pixels.shape[2] % vae.downscale_ratio) // 2
332
333
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
334

335
        #grow mask by a few pixels to keep things seamless in latent space
336
337
338
339
340
341
342
343
        if grow_mask_by == 0:
            mask_erosion = mask
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)

344
        m = (1.0 - mask.round()).squeeze(1)
345
346
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
347
            pixels[:,:,:,i] *= m
348
349
350
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

351
        return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
352

353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

class InpaintModelConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"positive": ("CONDITIONING", ),
                             "negative": ("CONDITIONING", ),
                             "vae": ("VAE", ),
                             "pixels": ("IMAGE", ),
                             "mask": ("MASK", ),
                             }}

    RETURN_TYPES = ("CONDITIONING","CONDITIONING","LATENT")
    RETURN_NAMES = ("positive", "negative", "latent")
    FUNCTION = "encode"

    CATEGORY = "conditioning/inpaint"

    def encode(self, positive, negative, pixels, vae, mask):
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")

        orig_pixels = pixels
        pixels = orig_pixels.clone()
        if pixels.shape[1] != x or pixels.shape[2] != y:
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]

        m = (1.0 - mask.round()).squeeze(1)
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
            pixels[:,:,:,i] *= m
            pixels[:,:,:,i] += 0.5
        concat_latent = vae.encode(pixels)
        orig_latent = vae.encode(orig_pixels)

        out_latent = {}

        out_latent["samples"] = orig_latent
        out_latent["noise_mask"] = mask

        out = []
        for conditioning in [positive, negative]:
398
399
            c = node_helpers.conditioning_set_values(conditioning, {"concat_latent_image": concat_latent,
                                                                    "concat_mask": mask})
400
401
402
403
            out.append(c)
        return (out[0], out[1], out_latent)


Dr.Lt.Data's avatar
Dr.Lt.Data committed
404
405
class SaveLatent:
    def __init__(self):
406
        self.output_dir = folder_paths.get_output_directory()
Dr.Lt.Data's avatar
Dr.Lt.Data committed
407
408
409
410

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ),
411
                              "filename_prefix": ("STRING", {"default": "latents/ComfyUI"})},
Dr.Lt.Data's avatar
Dr.Lt.Data committed
412
413
414
415
416
417
418
419
420
421
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
    RETURN_TYPES = ()
    FUNCTION = "save"

    OUTPUT_NODE = True

    CATEGORY = "_for_testing"

    def save(self, samples, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
422
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
423
424
425
426
427
428

        # support save metadata for latent sharing
        prompt_info = ""
        if prompt is not None:
            prompt_info = json.dumps(prompt)

429
430
431
432
433
434
        metadata = None
        if not args.disable_metadata:
            metadata = {"prompt": prompt_info}
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata[x] = json.dumps(extra_pnginfo[x])
Dr.Lt.Data's avatar
Dr.Lt.Data committed
435
436

        file = f"{filename}_{counter:05}_.latent"
437
438
439
440
441
442
443
444

        results = list()
        results.append({
            "filename": file,
            "subfolder": subfolder,
            "type": "output"
        })

Dr.Lt.Data's avatar
Dr.Lt.Data committed
445
446
        file = os.path.join(full_output_folder, file)

447
448
        output = {}
        output["latent_tensor"] = samples["samples"]
449
        output["latent_format_version_0"] = torch.tensor([])
450

451
        comfy.utils.save_torch_file(output, file, metadata=metadata)
452
        return { "ui": { "latents": results } }
Dr.Lt.Data's avatar
Dr.Lt.Data committed
453
454
455
456
457


class LoadLatent:
    @classmethod
    def INPUT_TYPES(s):
458
459
        input_dir = folder_paths.get_input_directory()
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.endswith(".latent")]
Dr.Lt.Data's avatar
Dr.Lt.Data committed
460
461
462
463
464
465
466
467
        return {"required": {"latent": [sorted(files), ]}, }

    CATEGORY = "_for_testing"

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "load"

    def load(self, latent):
468
469
        latent_path = folder_paths.get_annotated_filepath(latent)
        latent = safetensors.torch.load_file(latent_path, device="cpu")
470
471
472
473
        multiplier = 1.0
        if "latent_format_version_0" not in latent:
            multiplier = 1.0 / 0.18215
        samples = {"samples": latent["latent_tensor"].float() * multiplier}
474
        return (samples, )
Dr.Lt.Data's avatar
Dr.Lt.Data committed
475

476
477
478
479
480
481
482
483
484
485
486
487
488
489
    @classmethod
    def IS_CHANGED(s, latent):
        image_path = folder_paths.get_annotated_filepath(latent)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

    @classmethod
    def VALIDATE_INPUTS(s, latent):
        if not folder_paths.exists_annotated_filepath(latent):
            return "Invalid latent file: {}".format(latent)
        return True

Dr.Lt.Data's avatar
Dr.Lt.Data committed
490

comfyanonymous's avatar
comfyanonymous committed
491
492
493
class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
494
495
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
496
497
498
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

499
    CATEGORY = "advanced/loaders"
500

501
    def load_checkpoint(self, config_name, ckpt_name):
502
503
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
504
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
505

506
507
508
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
509
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
510
511
512
513
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

514
    CATEGORY = "loaders"
515

516
    def load_checkpoint(self, ckpt_name):
517
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
518
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
519
        return out[:3]
520

sALTaccount's avatar
sALTaccount committed
521
522
523
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
524
        paths = []
sALTaccount's avatar
sALTaccount committed
525
        for search_path in folder_paths.get_folder_paths("diffusers"):
526
            if os.path.exists(search_path):
527
528
529
530
                for root, subdir, files in os.walk(search_path, followlinks=True):
                    if "model_index.json" in files:
                        paths.append(os.path.relpath(root, start=search_path))

531
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
532
533
534
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

535
    CATEGORY = "advanced/loaders/deprecated"
sALTaccount's avatar
sALTaccount committed
536
537

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
538
539
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
540
541
542
                path = os.path.join(search_path, model_path)
                if os.path.exists(path):
                    model_path = path
sALTaccount's avatar
sALTaccount committed
543
                    break
544

545
        return comfy.diffusers_load.load_diffusers(model_path, output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
546
547


548
549
550
551
552
553
554
555
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

556
    CATEGORY = "loaders"
557
558
559
560
561
562

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

579
class LoraLoader:
580
581
582
    def __init__(self):
        self.loaded_lora = None

583
584
585
586
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
587
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
588
589
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01}),
590
591
592
593
594
595
596
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
597
598
599
        if strength_model == 0 and strength_clip == 0:
            return (model, clip)

600
        lora_path = folder_paths.get_full_path("loras", lora_name)
601
602
603
604
605
        lora = None
        if self.loaded_lora is not None:
            if self.loaded_lora[0] == lora_path:
                lora = self.loaded_lora[1]
            else:
606
607
608
                temp = self.loaded_lora
                self.loaded_lora = None
                del temp
609
610
611
612
613
614

        if lora is None:
            lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
            self.loaded_lora = (lora_path, lora)

        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
615
616
        return (model_lora, clip_lora)

617
618
619
620
621
class LoraLoaderModelOnly(LoraLoader):
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
622
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01}),
623
624
625
626
627
628
629
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "load_lora_model_only"

    def load_lora_model_only(self, model, lora_name, strength_model):
        return (self.load_lora(model, None, lora_name, strength_model, 0)[0],)

comfyanonymous's avatar
comfyanonymous committed
630
class VAELoader:
631
632
633
634
635
636
637
638
    @staticmethod
    def vae_list():
        vaes = folder_paths.get_filename_list("vae")
        approx_vaes = folder_paths.get_filename_list("vae_approx")
        sdxl_taesd_enc = False
        sdxl_taesd_dec = False
        sd1_taesd_enc = False
        sd1_taesd_dec = False
Dr.Lt.Data's avatar
Dr.Lt.Data committed
639
640
        sd3_taesd_enc = False
        sd3_taesd_dec = False
641
642
643
644
645
646
647
648
649
650

        for v in approx_vaes:
            if v.startswith("taesd_decoder."):
                sd1_taesd_dec = True
            elif v.startswith("taesd_encoder."):
                sd1_taesd_enc = True
            elif v.startswith("taesdxl_decoder."):
                sdxl_taesd_dec = True
            elif v.startswith("taesdxl_encoder."):
                sdxl_taesd_enc = True
Dr.Lt.Data's avatar
Dr.Lt.Data committed
651
652
653
654
            elif v.startswith("taesd3_decoder."):
                sd3_taesd_dec = True
            elif v.startswith("taesd3_encoder."):
                sd3_taesd_enc = True
655
656
657
658
        if sd1_taesd_dec and sd1_taesd_enc:
            vaes.append("taesd")
        if sdxl_taesd_dec and sdxl_taesd_enc:
            vaes.append("taesdxl")
Dr.Lt.Data's avatar
Dr.Lt.Data committed
659
660
        if sd3_taesd_dec and sd3_taesd_enc:
            vaes.append("taesd3")
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
        return vaes

    @staticmethod
    def load_taesd(name):
        sd = {}
        approx_vaes = folder_paths.get_filename_list("vae_approx")

        encoder = next(filter(lambda a: a.startswith("{}_encoder.".format(name)), approx_vaes))
        decoder = next(filter(lambda a: a.startswith("{}_decoder.".format(name)), approx_vaes))

        enc = comfy.utils.load_torch_file(folder_paths.get_full_path("vae_approx", encoder))
        for k in enc:
            sd["taesd_encoder.{}".format(k)] = enc[k]

        dec = comfy.utils.load_torch_file(folder_paths.get_full_path("vae_approx", decoder))
        for k in dec:
            sd["taesd_decoder.{}".format(k)] = dec[k]

        if name == "taesd":
            sd["vae_scale"] = torch.tensor(0.18215)
681
            sd["vae_shift"] = torch.tensor(0.0)
682
683
        elif name == "taesdxl":
            sd["vae_scale"] = torch.tensor(0.13025)
684
            sd["vae_shift"] = torch.tensor(0.0)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
685
686
        elif name == "taesd3":
            sd["vae_scale"] = torch.tensor(1.5305)
687
            sd["vae_shift"] = torch.tensor(0.0609)
688
689
        return sd

comfyanonymous's avatar
comfyanonymous committed
690
691
    @classmethod
    def INPUT_TYPES(s):
692
        return {"required": { "vae_name": (s.vae_list(), )}}
comfyanonymous's avatar
comfyanonymous committed
693
694
695
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

696
697
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
698
699
    #TODO: scale factor?
    def load_vae(self, vae_name):
Dr.Lt.Data's avatar
Dr.Lt.Data committed
700
        if vae_name in ["taesd", "taesdxl", "taesd3"]:
701
702
703
704
            sd = self.load_taesd(vae_name)
        else:
            vae_path = folder_paths.get_full_path("vae", vae_name)
            sd = comfy.utils.load_torch_file(vae_path)
705
        vae = comfy.sd.VAE(sd=sd)
comfyanonymous's avatar
comfyanonymous committed
706
707
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
708
709
710
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
711
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
712
713
714
715
716
717
718

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
719
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
720
        controlnet = comfy.controlnet.load_controlnet(controlnet_path)
comfyanonymous's avatar
comfyanonymous committed
721
722
        return (controlnet,)

723
724
725
726
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
727
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
728
729
730
731
732
733
734

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
735
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
736
        controlnet = comfy.controlnet.load_controlnet(controlnet_path, model)
737
738
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
739
740
741
742

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
743
744
745
746
747
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
748
749
750
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

751
    CATEGORY = "conditioning/controlnet"
comfyanonymous's avatar
comfyanonymous committed
752

753
    def apply_controlnet(self, conditioning, control_net, image, strength):
754
755
756
        if strength == 0:
            return (conditioning, )

comfyanonymous's avatar
comfyanonymous committed
757
758
759
760
        c = []
        control_hint = image.movedim(-1,1)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
761
762
763
764
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
765
            n[1]['control_apply_to_uncond'] = True
comfyanonymous's avatar
comfyanonymous committed
766
767
768
            c.append(n)
        return (c, )

769
770
771
772
773
774
775
776
777

class ControlNetApplyAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"positive": ("CONDITIONING", ),
                             "negative": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
778
779
                             "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                             "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
780
781
782
783
784
785
                             }}

    RETURN_TYPES = ("CONDITIONING","CONDITIONING")
    RETURN_NAMES = ("positive", "negative")
    FUNCTION = "apply_controlnet"

786
    CATEGORY = "conditioning/controlnet"
787

788
    def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent, vae=None):
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
        if strength == 0:
            return (positive, negative)

        control_hint = image.movedim(-1,1)
        cnets = {}

        out = []
        for conditioning in [positive, negative]:
            c = []
            for t in conditioning:
                d = t[1].copy()

                prev_cnet = d.get('control', None)
                if prev_cnet in cnets:
                    c_net = cnets[prev_cnet]
                else:
805
                    c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_percent, end_percent), vae)
806
807
808
809
810
811
812
813
814
815
816
                    c_net.set_previous_controlnet(prev_cnet)
                    cnets[prev_cnet] = c_net

                d['control'] = c_net
                d['control_apply_to_uncond'] = False
                n = [t[0], d]
                c.append(n)
            out.append(c)
        return (out[0], out[1])


817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
class UNETLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "unet_name": (folder_paths.get_filename_list("unet"), ),
                             }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "load_unet"

    CATEGORY = "advanced/loaders"

    def load_unet(self, unet_name):
        unet_path = folder_paths.get_full_path("unet", unet_name)
        model = comfy.sd.load_unet(unet_path)
        return (model,)

832
833
834
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
835
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
836
                              "type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio"], ),
837
838
839
840
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

841
    CATEGORY = "advanced/loaders"
842

843
844
845
    def load_clip(self, clip_name, type="stable_diffusion"):
        if type == "stable_cascade":
            clip_type = comfy.sd.CLIPType.STABLE_CASCADE
846
847
        elif type == "sd3":
            clip_type = comfy.sd.CLIPType.SD3
848
849
850
851
        elif type == "stable_audio":
            clip_type = comfy.sd.CLIPType.STABLE_AUDIO
        else:
            clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION
852

853
        clip_path = folder_paths.get_full_path("clip", clip_name)
854
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type)
855
856
857
858
859
        return (clip,)

class DualCLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
860
861
862
        return {"required": { "clip_name1": (folder_paths.get_filename_list("clip"), ),
                              "clip_name2": (folder_paths.get_filename_list("clip"), ),
                              "type": (["sdxl", "sd3"], ),
863
864
865
866
867
868
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "advanced/loaders"

869
    def load_clip(self, clip_name1, clip_name2, type):
870
871
        clip_path1 = folder_paths.get_full_path("clip", clip_name1)
        clip_path2 = folder_paths.get_full_path("clip", clip_name2)
872
873
874
875
876
877
        if type == "sdxl":
            clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION
        elif type == "sd3":
            clip_type = comfy.sd.CLIPType.SD3

        clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type)
878
879
        return (clip,)

880
881
882
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
883
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
884
885
886
887
888
889
890
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
891
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
892
        clip_vision = comfy.clip_vision.load(clip_path)
893
894
895
896
897
898
899
900
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
901
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
902
903
    FUNCTION = "encode"

904
    CATEGORY = "conditioning"
905
906
907
908
909
910
911
912

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
913
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
914
915
916
917
918
919
920

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
921
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
922
923
924
925
926
927
928
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
929
930
931
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
932
933
934
935
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
936
    CATEGORY = "conditioning/style_model"
937

938
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
939
        cond = style_model.get_cond(clip_vision_output).flatten(start_dim=0, end_dim=1).unsqueeze(dim=0)
940
        c = []
941
942
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
943
944
945
            c.append(n)
        return (c, )

946
947
948
949
950
951
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
952
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
953
954
955
956
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

957
    CATEGORY = "conditioning"
958

959
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
960
961
962
        if strength == 0:
            return (conditioning, )

963
964
965
        c = []
        for t in conditioning:
            o = t[1].copy()
966
967
968
            x = {"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation}
            if "unclip_conditioning" in o:
                o["unclip_conditioning"] = o["unclip_conditioning"][:] + [x]
969
            else:
970
                o["unclip_conditioning"] = [x]
971
972
973
974
            n = [t[0], o]
            c.append(n)
        return (c, )

975
976
977
978
979
980
981
982
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
983
    CATEGORY = "loaders"
984
985
986
987
988
989
990
991
992
993
994
995

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
996
                              "text": ("STRING", {"multiline": True, "dynamicPrompts": True}),
997
998
999
1000
1001
1002
1003
1004
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
1005
    CATEGORY = "conditioning/gligen"
1006
1007
1008

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
1009
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled="unprojected")
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
1020

comfyanonymous's avatar
comfyanonymous committed
1021
class EmptyLatentImage:
1022
1023
    def __init__(self):
        self.device = comfy.model_management.intermediate_device()
comfyanonymous's avatar
comfyanonymous committed
1024
1025
1026

    @classmethod
    def INPUT_TYPES(s):
1027
1028
        return {"required": { "width": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
1029
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}}
comfyanonymous's avatar
comfyanonymous committed
1030
1031
1032
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

1033
1034
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
1035
    def generate(self, width, height, batch_size=1):
1036
        latent = torch.zeros([batch_size, 4, height // 8, width // 8], device=self.device)
1037
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
1038

comfyanonymous's avatar
comfyanonymous committed
1039

1040
1041
1042
1043
1044
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
1045
                              "length": ("INT", {"default": 1, "min": 1, "max": 64}),
1046
1047
                              }}
    RETURN_TYPES = ("LATENT",)
1048
    FUNCTION = "frombatch"
1049

1050
    CATEGORY = "latent/batch"
1051

1052
    def frombatch(self, samples, batch_index, length):
1053
1054
1055
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
        length = min(s_in.shape[0] - batch_index, length)
        s["samples"] = s_in[batch_index:batch_index + length].clone()
        if "noise_mask" in samples:
            masks = samples["noise_mask"]
            if masks.shape[0] == 1:
                s["noise_mask"] = masks.clone()
            else:
                if masks.shape[0] < s_in.shape[0]:
                    masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
                s["noise_mask"] = masks[batch_index:batch_index + length].clone()
        if "batch_index" not in s:
            s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
        else:
            s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
        return (s,)
    
class RepeatLatentBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "amount": ("INT", {"default": 1, "min": 1, "max": 64}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "repeat"

    CATEGORY = "latent/batch"

    def repeat(self, samples, amount):
        s = samples.copy()
        s_in = samples["samples"]
        
        s["samples"] = s_in.repeat((amount, 1,1,1))
        if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
            masks = samples["noise_mask"]
            if masks.shape[0] < s_in.shape[0]:
                masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
            s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
        if "batch_index" in s:
            offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
            s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
1096
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1097

comfyanonymous's avatar
comfyanonymous committed
1098
class LatentUpscale:
comfyanonymous's avatar
comfyanonymous committed
1099
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
1100
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
1101
1102
1103
1104

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
1105
1106
                              "width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1107
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
1108
1109
1110
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

1111
1112
    CATEGORY = "latent"

1113
    def upscale(self, samples, upscale_method, width, height, crop):
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
        if width == 0 and height == 0:
            s = samples
        else:
            s = samples.copy()

            if width == 0:
                height = max(64, height)
                width = max(64, round(samples["samples"].shape[3] * height / samples["samples"].shape[2]))
            elif height == 0:
                width = max(64, width)
                height = max(64, round(samples["samples"].shape[2] * width / samples["samples"].shape[3]))
            else:
                width = max(64, width)
                height = max(64, height)

            s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1130
1131
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
1132
class LatentUpscaleBy:
comfyanonymous's avatar
comfyanonymous committed
1133
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
comfyanonymous's avatar
comfyanonymous committed
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.5, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

    CATEGORY = "latent"

    def upscale(self, samples, upscale_method, scale_by):
        s = samples.copy()
        width = round(samples["samples"].shape[3] * scale_by)
        height = round(samples["samples"].shape[2] * scale_by)
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled")
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
1151
1152
1153
1154
1155
1156
1157
1158
1159
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
1160
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
1161
1162

    def rotate(self, samples, rotation):
1163
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
1164
1165
1166
1167
1168
1169
1170
1171
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

1172
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
1173
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
1184
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
1185
1186

    def flip(self, samples, flip_method):
1187
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
1188
        if flip_method.startswith("x"):
1189
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
1190
        elif flip_method.startswith("y"):
1191
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
1192
1193

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1194
1195
1196
1197

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
1198
1199
1200
1201
1202
1203
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
1204
1205
1206
1207
1208
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
1209
1210
1211
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
1212
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
1236

1237
1238
1239
1240
class LatentBlend:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
1241
1242
            "samples1": ("LATENT",),
            "samples2": ("LATENT",),
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
            "blend_factor": ("FLOAT", {
                "default": 0.5,
                "min": 0,
                "max": 1,
                "step": 0.01
            }),
        }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "blend"

    CATEGORY = "_for_testing"

1256
    def blend(self, samples1, samples2, blend_factor:float, blend_mode: str="normal"):
1257

1258
1259
1260
        samples_out = samples1.copy()
        samples1 = samples1["samples"]
        samples2 = samples2["samples"]
1261

1262
1263
1264
1265
        if samples1.shape != samples2.shape:
            samples2.permute(0, 3, 1, 2)
            samples2 = comfy.utils.common_upscale(samples2, samples1.shape[3], samples1.shape[2], 'bicubic', crop='center')
            samples2.permute(0, 2, 3, 1)
1266

1267
1268
        samples_blended = self.blend_mode(samples1, samples2, blend_mode)
        samples_blended = samples1 * blend_factor + samples_blended * (1 - blend_factor)
1269
1270
1271
1272
1273
1274
1275
1276
1277
        samples_out["samples"] = samples_blended
        return (samples_out,)

    def blend_mode(self, img1, img2, mode):
        if mode == "normal":
            return img2
        else:
            raise ValueError(f"Unsupported blend mode: {mode}")

comfyanonymous's avatar
comfyanonymous committed
1278
1279
1280
1281
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
1282
1283
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
1284
1285
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
1286
1287
1288
1289
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
1290
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
1291
1292

    def crop(self, samples, width, height, x, y):
1293
1294
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
1308
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
1309
1310
        return (s,)

1311
1312
1313
1314
1315
1316
1317
1318
1319
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

1320
    CATEGORY = "latent/inpaint"
1321
1322
1323

    def set_mask(self, samples, mask):
        s = samples.copy()
1324
        s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
1325
1326
        return (s,)

space-nuko's avatar
space-nuko committed
1327
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
1328
    latent_image = latent["samples"]
1329
1330
    latent_image = comfy.sample.fix_empty_latent_channels(model, latent_image)

comfyanonymous's avatar
comfyanonymous committed
1331
1332
1333
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
1334
1335
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
comfyanonymous's avatar
comfyanonymous committed
1336

1337
    noise_mask = None
1338
    if "noise_mask" in latent:
1339
        noise_mask = latent["noise_mask"]
comfyanonymous's avatar
comfyanonymous committed
1340

1341
    callback = latent_preview.prepare_callback(model, steps)
1342
    disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
1343
1344
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
comfyanonymous's avatar
comfyanonymous committed
1345
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
1346
1347
1348
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
1349

comfyanonymous's avatar
comfyanonymous committed
1350
1351
1352
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
1353
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1354
1355
1356
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
1357
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
comfyanonymous's avatar
comfyanonymous committed
1358
1359
1360
1361
1362
1363
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
space-nuko's avatar
space-nuko committed
1364
1365
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1366
1367
1368
1369

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

1370
1371
    CATEGORY = "sampling"

space-nuko's avatar
space-nuko committed
1372
1373
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
1374

comfyanonymous's avatar
comfyanonymous committed
1375
1376
1377
1378
1379
1380
1381
1382
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
1383
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
comfyanonymous's avatar
comfyanonymous committed
1384
1385
1386
1387
1388
1389
1390
1391
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
space-nuko's avatar
space-nuko committed
1392
1393
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1394
1395
1396
1397
1398

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
1399

space-nuko's avatar
space-nuko committed
1400
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
comfyanonymous's avatar
comfyanonymous committed
1401
1402
1403
1404
1405
1406
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
space-nuko's avatar
space-nuko committed
1407
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
1408
1409
1410

class SaveImage:
    def __init__(self):
1411
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1412
        self.type = "output"
1413
        self.prefix_append = ""
1414
        self.compress_level = 4
comfyanonymous's avatar
comfyanonymous committed
1415
1416
1417
1418

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
1419
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
1420
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
1421
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
1422
1423
1424
1425
1426
1427
1428
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

1429
1430
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
1431
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
1432
        filename_prefix += self.prefix_append
1433
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
m957ymj75urz's avatar
m957ymj75urz committed
1434
        results = list()
1435
        for (batch_number, image) in enumerate(images):
comfyanonymous's avatar
comfyanonymous committed
1436
            i = 255. * image.cpu().numpy()
1437
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
1438
1439
1440
1441
1442
1443
1444
1445
            metadata = None
            if not args.disable_metadata:
                metadata = PngInfo()
                if prompt is not None:
                    metadata.add_text("prompt", json.dumps(prompt))
                if extra_pnginfo is not None:
                    for x in extra_pnginfo:
                        metadata.add_text(x, json.dumps(extra_pnginfo[x]))
1446

1447
1448
            filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
            file = f"{filename_with_batch_num}_{counter:05}_.png"
1449
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=self.compress_level)
m957ymj75urz's avatar
m957ymj75urz committed
1450
1451
1452
1453
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
1454
            })
1455
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
1456

m957ymj75urz's avatar
m957ymj75urz committed
1457
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
1458

pythongosssss's avatar
pythongosssss committed
1459
1460
class PreviewImage(SaveImage):
    def __init__(self):
1461
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1462
        self.type = "temp"
1463
        self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
1464
        self.compress_level = 1
pythongosssss's avatar
pythongosssss committed
1465
1466
1467

    @classmethod
    def INPUT_TYPES(s):
1468
        return {"required":
pythongosssss's avatar
pythongosssss committed
1469
1470
1471
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
1472

1473
1474
1475
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
1476
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1477
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1478
        return {"required":
1479
                    {"image": (sorted(files), {"image_upload": True})},
1480
                }
1481
1482

    CATEGORY = "image"
1483

1484
    RETURN_TYPES = ("IMAGE", "MASK")
1485
1486
    FUNCTION = "load_image"
    def load_image(self, image):
1487
        image_path = folder_paths.get_annotated_filepath(image)
1488
        
1489
        img = node_helpers.pillow(Image.open, image_path)
1490
        
1491
1492
        output_images = []
        output_masks = []
1493
1494
1495
1496
        w, h = None, None

        excluded_formats = ['MPO']
        
1497
        for i in ImageSequence.Iterator(img):
1498
            i = node_helpers.pillow(ImageOps.exif_transpose, i)
1499

1500
1501
            if i.mode == 'I':
                i = i.point(lambda i: i * (1 / 255))
1502
            image = i.convert("RGB")
1503
1504
1505
1506
1507
1508
1509
1510

            if len(output_images) == 0:
                w = image.size[0]
                h = image.size[1]
            
            if image.size[0] != w or image.size[1] != h:
                continue
            
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
            image = np.array(image).astype(np.float32) / 255.0
            image = torch.from_numpy(image)[None,]
            if 'A' in i.getbands():
                mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
                mask = 1. - torch.from_numpy(mask)
            else:
                mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
            output_images.append(image)
            output_masks.append(mask.unsqueeze(0))

1521
        if len(output_images) > 1 and img.format not in excluded_formats:
1522
1523
            output_image = torch.cat(output_images, dim=0)
            output_mask = torch.cat(output_masks, dim=0)
1524
        else:
1525
1526
1527
1528
            output_image = output_images[0]
            output_mask = output_masks[0]

        return (output_image, output_mask)
1529

1530
1531
    @classmethod
    def IS_CHANGED(s, image):
1532
        image_path = folder_paths.get_annotated_filepath(image)
1533
1534
1535
1536
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1537

1538
1539
1540
1541
1542
1543
1544
    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

1545
class LoadImageMask:
1546
    _color_channels = ["alpha", "red", "green", "blue"]
1547
1548
    @classmethod
    def INPUT_TYPES(s):
1549
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1550
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1551
        return {"required":
1552
                    {"image": (sorted(files), {"image_upload": True}),
1553
                     "channel": (s._color_channels, ), }
1554
1555
                }

1556
    CATEGORY = "mask"
1557
1558
1559
1560

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
1561
        image_path = folder_paths.get_annotated_filepath(image)
1562
1563
        i = node_helpers.pillow(Image.open, image_path)
        i = node_helpers.pillow(ImageOps.exif_transpose, i)
1564
        if i.getbands() != ("R", "G", "B", "A"):
1565
1566
            if i.mode == 'I':
                i = i.point(lambda i: i * (1 / 255))
1567
            i = i.convert("RGBA")
1568
1569
1570
1571
1572
1573
1574
1575
1576
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
1577
        return (mask.unsqueeze(0),)
1578
1579
1580

    @classmethod
    def IS_CHANGED(s, image, channel):
1581
        image_path = folder_paths.get_annotated_filepath(image)
1582
1583
1584
1585
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1586

1587
    @classmethod
1588
    def VALIDATE_INPUTS(s, image):
1589
1590
1591
1592
1593
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

comfyanonymous's avatar
comfyanonymous committed
1594
class ImageScale:
1595
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
comfyanonymous's avatar
comfyanonymous committed
1596
1597
1598
1599
1600
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1601
1602
                              "width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1603
1604
1605
1606
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1607
    CATEGORY = "image/upscaling"
1608

comfyanonymous's avatar
comfyanonymous committed
1609
    def upscale(self, image, upscale_method, width, height, crop):
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
        if width == 0 and height == 0:
            s = image
        else:
            samples = image.movedim(-1,1)

            if width == 0:
                width = max(1, round(samples.shape[3] * height / samples.shape[2]))
            elif height == 0:
                height = max(1, round(samples.shape[2] * width / samples.shape[3]))

            s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
            s = s.movedim(1,-1)
comfyanonymous's avatar
comfyanonymous committed
1622
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1623

comfyanonymous's avatar
comfyanonymous committed
1624
class ImageScaleBy:
1625
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
comfyanonymous's avatar
comfyanonymous committed
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

    CATEGORY = "image/upscaling"

    def upscale(self, image, upscale_method, scale_by):
        samples = image.movedim(-1,1)
        width = round(samples.shape[3] * scale_by)
        height = round(samples.shape[2] * scale_by)
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
        s = s.movedim(1,-1)
        return (s,)

1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)

1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
class ImageBatch:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image1": ("IMAGE",), "image2": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "batch"

    CATEGORY = "image"

    def batch(self, image1, image2):
        if image1.shape[1:] != image2.shape[1:]:
            image2 = comfy.utils.common_upscale(image2.movedim(-1,1), image1.shape[2], image1.shape[1], "bilinear", "center").movedim(1,-1)
        s = torch.cat((image1, image2), dim=0)
        return (s,)
1675

comfyanonymous's avatar
comfyanonymous committed
1676
1677
1678
1679
1680
1681
1682
1683
class EmptyImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1684
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
comfyanonymous's avatar
comfyanonymous committed
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
                              "color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}),
                              }}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "generate"

    CATEGORY = "image"

    def generate(self, width, height, batch_size=1, color=0):
        r = torch.full([batch_size, height, width, 1], ((color >> 16) & 0xFF) / 0xFF)
        g = torch.full([batch_size, height, width, 1], ((color >> 8) & 0xFF) / 0xFF)
        b = torch.full([batch_size, height, width, 1], ((color) & 0xFF) / 0xFF)
        return (torch.cat((r, g, b), dim=-1), )

Guo Y.K's avatar
Guo Y.K committed
1698
1699
1700
1701
1702
1703
1704
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1705
1706
1707
1708
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1709
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1710
1711
1712
1713
1714
1715
1716
1717
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1718
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1719
1720
        d1, d2, d3, d4 = image.size()

1721
        new_image = torch.ones(
Guo Y.K's avatar
Guo Y.K committed
1722
1723
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
1724
1725
        ) * 0.5

Guo Y.K's avatar
Guo Y.K committed
1726
1727
1728
1729
1730
1731
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1732

1733
1734
1735
1736
1737
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1738
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1758

Guo Y.K's avatar
Guo Y.K committed
1759
1760
1761
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1762
1763
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1764
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1765
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1766
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1767
1768
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1769
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1770
1771
1772
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
comfyanonymous's avatar
comfyanonymous committed
1773
    "LatentUpscaleBy": LatentUpscaleBy,
1774
    "LatentFromBatch": LatentFromBatch,
1775
    "RepeatLatentBatch": RepeatLatentBatch,
comfyanonymous's avatar
comfyanonymous committed
1776
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1777
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1778
    "LoadImage": LoadImage,
1779
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1780
    "ImageScale": ImageScale,
comfyanonymous's avatar
comfyanonymous committed
1781
    "ImageScaleBy": ImageScaleBy,
1782
    "ImageInvert": ImageInvert,
1783
    "ImageBatch": ImageBatch,
Guo Y.K's avatar
Guo Y.K committed
1784
    "ImagePadForOutpaint": ImagePadForOutpaint,
comfyanonymous's avatar
comfyanonymous committed
1785
    "EmptyImage": EmptyImage,
comfyanonymous's avatar
comfyanonymous committed
1786
    "ConditioningAverage": ConditioningAverage ,
comfyanonymous's avatar
comfyanonymous committed
1787
    "ConditioningCombine": ConditioningCombine,
1788
    "ConditioningConcat": ConditioningConcat,
comfyanonymous's avatar
comfyanonymous committed
1789
    "ConditioningSetArea": ConditioningSetArea,
1790
    "ConditioningSetAreaPercentage": ConditioningSetAreaPercentage,
1791
    "ConditioningSetAreaStrength": ConditioningSetAreaStrength,
Jacob Segal's avatar
Jacob Segal committed
1792
    "ConditioningSetMask": ConditioningSetMask,
comfyanonymous's avatar
comfyanonymous committed
1793
    "KSamplerAdvanced": KSamplerAdvanced,
1794
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1795
    "LatentComposite": LatentComposite,
1796
    "LatentBlend": LatentBlend,
comfyanonymous's avatar
comfyanonymous committed
1797
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1798
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1799
    "LatentCrop": LatentCrop,
1800
    "LoraLoader": LoraLoader,
1801
    "CLIPLoader": CLIPLoader,
1802
    "UNETLoader": UNETLoader,
1803
    "DualCLIPLoader": DualCLIPLoader,
1804
    "CLIPVisionEncode": CLIPVisionEncode,
1805
    "StyleModelApply": StyleModelApply,
1806
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1807
    "ControlNetApply": ControlNetApply,
1808
    "ControlNetApplyAdvanced": ControlNetApplyAdvanced,
comfyanonymous's avatar
comfyanonymous committed
1809
    "ControlNetLoader": ControlNetLoader,
1810
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1811
1812
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1813
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1814
    "VAEEncodeTiled": VAEEncodeTiled,
1815
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1816
1817
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,
1818
    "InpaintModelConditioning": InpaintModelConditioning,
1819

1820
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1821
    "DiffusersLoader": DiffusersLoader,
Dr.Lt.Data's avatar
Dr.Lt.Data committed
1822
1823

    "LoadLatent": LoadLatent,
1824
    "SaveLatent": SaveLatent,
1825
1826

    "ConditioningZeroOut": ConditioningZeroOut,
1827
    "ConditioningSetTimestepRange": ConditioningSetTimestepRange,
1828
    "LoraLoaderModelOnly": LoraLoaderModelOnly,
comfyanonymous's avatar
comfyanonymous committed
1829
1830
}

City's avatar
City committed
1831
1832
1833
1834
1835
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
1836
    "CheckpointLoader": "Load Checkpoint With Config (DEPRECATED)",
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1837
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
FizzleDorf's avatar
FizzleDorf committed
1852
    "ConditioningAverage ": "Conditioning (Average)",
1853
    "ConditioningConcat": "Conditioning (Concat)",
City's avatar
City committed
1854
    "ConditioningSetArea": "Conditioning (Set Area)",
1855
    "ConditioningSetAreaPercentage": "Conditioning (Set Area with Percentage)",
Jacob Segal's avatar
Jacob Segal committed
1856
    "ConditioningSetMask": "Conditioning (Set Mask)",
City's avatar
City committed
1857
    "ControlNetApply": "Apply ControlNet",
1858
    "ControlNetApplyAdvanced": "Apply ControlNet (Advanced)",
City's avatar
City committed
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
comfyanonymous's avatar
comfyanonymous committed
1869
    "LatentUpscaleBy": "Upscale Latent By",
City's avatar
City committed
1870
    "LatentComposite": "Latent Composite",
1871
    "LatentBlend": "Latent Blend",
1872
1873
    "LatentFromBatch" : "Latent From Batch",
    "RepeatLatentBatch": "Repeat Latent Batch",
City's avatar
City committed
1874
1875
1876
1877
1878
1879
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
comfyanonymous's avatar
comfyanonymous committed
1880
    "ImageScaleBy": "Upscale Image By",
City's avatar
City committed
1881
1882
1883
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
1884
    "ImageBatch": "Batch Images",
City's avatar
City committed
1885
1886
1887
1888
1889
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1890
1891
EXTENSION_WEB_DIRS = {}

1892

1893
def get_module_name(module_path: str) -> str:
1894
1895
1896
    """
    Returns the module name based on the given module path.
    Examples:
1897
1898
1899
1900
1901
1902
1903
        get_module_name("C:/Users/username/ComfyUI/custom_nodes/my_custom_node.py") -> "my_custom_node"
        get_module_name("C:/Users/username/ComfyUI/custom_nodes/my_custom_node") -> "my_custom_node"
        get_module_name("C:/Users/username/ComfyUI/custom_nodes/my_custom_node/") -> "my_custom_node"
        get_module_name("C:/Users/username/ComfyUI/custom_nodes/my_custom_node/__init__.py") -> "my_custom_node"
        get_module_name("C:/Users/username/ComfyUI/custom_nodes/my_custom_node/__init__") -> "my_custom_node"
        get_module_name("C:/Users/username/ComfyUI/custom_nodes/my_custom_node/__init__/") -> "my_custom_node"
        get_module_name("C:/Users/username/ComfyUI/custom_nodes/my_custom_node.disabled") -> "custom_nodes
1904
1905
1906
1907
1908
    Args:
        module_path (str): The path of the module.
    Returns:
        str: The module name.
    """
1909
    base_path = os.path.basename(module_path)
1910
    if os.path.isfile(module_path):
1911
1912
        base_path = os.path.splitext(base_path)[0]
    return base_path
1913
1914


1915
def load_custom_node(module_path: str, ignore=set(), module_parent="custom_nodes") -> bool:
comfyanonymous's avatar
comfyanonymous committed
1916
    module_name = os.path.basename(module_path)
comfyanonymous's avatar
comfyanonymous committed
1917
1918
1919
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
1920
    try:
1921
        logging.debug("Trying to load custom node {}".format(module_path))
1922
1923
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
1924
            module_dir = os.path.split(module_path)[0]
1925
1926
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
1927
1928
            module_dir = module_path

1929
1930
1931
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
1932
1933
1934
1935
1936
1937

        if hasattr(module, "WEB_DIRECTORY") and getattr(module, "WEB_DIRECTORY") is not None:
            web_dir = os.path.abspath(os.path.join(module_dir, getattr(module, "WEB_DIRECTORY")))
            if os.path.isdir(web_dir):
                EXTENSION_WEB_DIRS[module_name] = web_dir

1938
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
1939
            for name, node_cls in module.NODE_CLASS_MAPPINGS.items():
1940
                if name not in ignore:
1941
                    NODE_CLASS_MAPPINGS[name] = node_cls
1942
                    node_cls.RELATIVE_PYTHON_MODULE = "{}.{}".format(module_parent, get_module_name(module_path))
1943
1944
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1945
            return True
1946
        else:
1947
            logging.warning(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
1948
            return False
1949
    except Exception as e:
1950
        logging.warning(traceback.format_exc())
1951
        logging.warning(f"Cannot import {module_path} module for custom nodes: {e}")
1952
        return False
1953

1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
def init_external_custom_nodes():
    """
    Initializes the external custom nodes.

    This function loads custom nodes from the specified folder paths and imports them into the application.
    It measures the import times for each custom node and logs the results.

    Returns:
        None
    """
1964
    base_node_names = set(NODE_CLASS_MAPPINGS.keys())
1965
    node_paths = folder_paths.get_folder_paths("custom_nodes")
1966
    node_import_times = []
1967
    for custom_node_path in node_paths:
Enrico Fasoli's avatar
Enrico Fasoli committed
1968
        possible_modules = os.listdir(os.path.realpath(custom_node_path))
1969
1970
1971
1972
1973
1974
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1975
            if module_path.endswith(".disabled"): continue
1976
            time_before = time.perf_counter()
1977
            success = load_custom_node(module_path, base_node_names, module_parent="custom_nodes")
1978
            node_import_times.append((time.perf_counter() - time_before, module_path, success))
1979

1980
    if len(node_import_times) > 0:
comfyanonymous's avatar
comfyanonymous committed
1981
        logging.info("\nImport times for custom nodes:")
1982
        for n in sorted(node_import_times):
1983
1984
1985
1986
            if n[2]:
                import_message = ""
            else:
                import_message = " (IMPORT FAILED)"
comfyanonymous's avatar
comfyanonymous committed
1987
1988
            logging.info("{:6.1f} seconds{}: {}".format(n[0], import_message, n[1]))
        logging.info("")
1989

1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
def init_builtin_extra_nodes():
    """
    Initializes the built-in extra nodes in ComfyUI.

    This function loads the extra node files located in the "comfy_extras" directory and imports them into ComfyUI.
    If any of the extra node files fail to import, a warning message is logged.

    Returns:
        None
    """
2000
2001
2002
2003
2004
2005
2006
    extras_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras")
    extras_files = [
        "nodes_latent.py",
        "nodes_hypernetwork.py",
        "nodes_upscale_model.py",
        "nodes_post_processing.py",
        "nodes_mask.py",
2007
        "nodes_compositing.py",
2008
2009
2010
2011
2012
2013
        "nodes_rebatch.py",
        "nodes_model_merging.py",
        "nodes_tomesd.py",
        "nodes_clip_sdxl.py",
        "nodes_canny.py",
        "nodes_freelunch.py",
2014
2015
        "nodes_custom_sampler.py",
        "nodes_hypertile.py",
2016
        "nodes_model_advanced.py",
2017
        "nodes_model_downscale.py",
comfyanonymous's avatar
comfyanonymous committed
2018
        "nodes_images.py",
2019
        "nodes_video_model.py",
2020
        "nodes_sag.py",
Hari's avatar
Hari committed
2021
        "nodes_perpneg.py",
2022
        "nodes_stable3d.py",
2023
        "nodes_sdupscale.py",
2024
        "nodes_photomaker.py",
2025
        "nodes_cond.py",
2026
        "nodes_morphology.py",
comfyanonymous's avatar
comfyanonymous committed
2027
        "nodes_stable_cascade.py",
2028
        "nodes_differential_diffusion.py",
2029
        "nodes_ip2p.py",
2030
        "nodes_model_merging_model_specific.py",
comfyanonymous's avatar
comfyanonymous committed
2031
        "nodes_pag.py",
2032
        "nodes_align_your_steps.py",
2033
        "nodes_attention_multiply.py",
comfyanonymous's avatar
comfyanonymous committed
2034
        "nodes_advanced_samplers.py",
pythongosssss's avatar
pythongosssss committed
2035
        "nodes_webcam.py",
2036
        "nodes_audio.py",
comfyanonymous's avatar
comfyanonymous committed
2037
        "nodes_sd3.py",
Zhenyu Zhou's avatar
Zhenyu Zhou committed
2038
        "nodes_gits.py",
2039
        "nodes_controlnet.py",
2040
2041
    ]

2042
    import_failed = []
2043
    for node_file in extras_files:
2044
        if not load_custom_node(os.path.join(extras_dir, node_file), module_parent="comfy_extras"):
2045
            import_failed.append(node_file)
2046

2047
2048
2049
2050
    return import_failed


def init_extra_nodes(init_custom_nodes=True):
comfyanonymous's avatar
comfyanonymous committed
2051
    import_failed = init_builtin_extra_nodes()
2052
2053
2054
2055
2056
2057

    if init_custom_nodes:
        init_external_custom_nodes()
    else:
        logging.info("Skipping loading of custom nodes")

2058
    if len(import_failed) > 0:
2059
        logging.warning("WARNING: some comfy_extras/ nodes did not import correctly. This may be because they are missing some dependencies.\n")
2060
        for node in import_failed:
2061
2062
            logging.warning("IMPORT FAILED: {}".format(node))
        logging.warning("\nThis issue might be caused by new missing dependencies added the last time you updated ComfyUI.")
2063
        if args.windows_standalone_build:
2064
            logging.warning("Please run the update script: update/update_comfyui.bat")
2065
        else:
2066
2067
            logging.warning("Please do a: pip install -r requirements.txt")
        logging.warning("")