nodes.py 44.3 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
comfyanonymous's avatar
comfyanonymous committed
8
9
10
11
12

from PIL import Image
from PIL.PngImagePlugin import PngInfo
import numpy as np

sALTaccount's avatar
sALTaccount committed
13

comfyanonymous's avatar
comfyanonymous committed
14
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
15
16


comfyanonymous's avatar
comfyanonymous committed
17
import comfy.diffusers_convert
comfyanonymous's avatar
comfyanonymous committed
18
import comfy.samplers
19
import comfy.sample
comfyanonymous's avatar
comfyanonymous committed
20
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
21
22
import comfy.utils

23
import comfy.clip_vision
24

25
import comfy.model_management
26
import importlib
comfyanonymous's avatar
comfyanonymous committed
27

28
import folder_paths
29
30

def before_node_execution():
31
    comfy.model_management.throw_exception_if_processing_interrupted()
32

33
def interrupt_processing(value=True):
34
    comfy.model_management.interrupt_current_processing(value)
35

36
37
MAX_RESOLUTION=8192

comfyanonymous's avatar
comfyanonymous committed
38
39
40
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
41
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
42
43
44
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

45
46
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
47
    def encode(self, clip, text):
comfyanonymous's avatar
comfyanonymous committed
48
49
50
51
52
53
54
55
56
        return ([[clip.encode(text), {}]], )

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

57
58
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
59
60
61
62
63
64
65
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
66
67
68
69
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
comfyanonymous's avatar
comfyanonymous committed
70
71
72
73
74
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

75
76
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
77
    def append(self, conditioning, width, height, x, y, strength, min_sigma=0.0, max_sigma=99.0):
comfyanonymous's avatar
comfyanonymous committed
78
79
80
81
82
83
84
85
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
            n[1]['min_sigma'] = min_sigma
            n[1]['max_sigma'] = max_sigma
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
86
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
87
88
89
90
91
92
93
94
95
96
97

class VAEDecode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

98
99
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
100
    def decode(self, vae, samples):
101
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
102

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
class VAEDecodeTiled:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
118
119
120
121
122
123
124
125
126
127
class VAEEncode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

128
129
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
130
    def encode(self, vae, pixels):
131
132
133
134
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
135
136
137
        t = vae.encode(pixels[:,:,:,:3])

        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
138

comfyanonymous's avatar
comfyanonymous committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

class VAEEncodeTiled:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

    def encode(self, vae, pixels):
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
        t = vae.encode_tiled(pixels[:,:,:,:3])

        return ({"samples":t}, )
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
class VAEEncodeForInpaint:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

    def encode(self, vae, pixels, mask):
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
175
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
176

177
        pixels = pixels.clone()
178
179
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
180
            mask = mask[:,:,:x,:y]
181

182
        #grow mask by a few pixels to keep things seamless in latent space
183
        kernel_tensor = torch.ones((1, 1, 6, 6))
184
185
        mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=3), 0, 1)
        m = (1.0 - mask.round()).squeeze(1)
186
187
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
188
            pixels[:,:,:,i] *= m
189
190
191
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

192
        return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
193
194
195
196

class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
197
198
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
199
200
201
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

202
    CATEGORY = "advanced/loaders"
203

comfyanonymous's avatar
comfyanonymous committed
204
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
205
206
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
207
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
208

209
210
211
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
212
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
213
214
215
216
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

217
    CATEGORY = "loaders"
218

219
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
220
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
221
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
222
223
        return out

sALTaccount's avatar
sALTaccount committed
224
225
226
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
227
        paths = []
sALTaccount's avatar
sALTaccount committed
228
        for search_path in folder_paths.get_folder_paths("diffusers"):
229
            if os.path.exists(search_path):
sALTaccount's avatar
sALTaccount committed
230
                paths += next(os.walk(search_path))[1]
231
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
232
233
234
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

235
    CATEGORY = "advanced/loaders"
sALTaccount's avatar
sALTaccount committed
236
237

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
238
239
240
241
242
243
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
                paths = next(os.walk(search_path))[1]
                if model_path in paths:
                    model_path = os.path.join(search_path, model_path)
                    break
244

245
        return comfy.diffusers_convert.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
246
247


248
249
250
251
252
253
254
255
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

256
    CATEGORY = "loaders"
257
258
259
260
261
262

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

279
280
281
282
283
class LoraLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
284
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
285
286
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
287
288
289
290
291
292
293
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
294
        lora_path = folder_paths.get_full_path("loras", lora_name)
295
296
297
        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
        return (model_lora, clip_lora)

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
class TomePatchModel:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "_for_testing"

    def patch(self, model, ratio):
        m = model.clone()
        m.set_model_tomesd(ratio)
        return (m, )

comfyanonymous's avatar
comfyanonymous committed
314
315
316
class VAELoader:
    @classmethod
    def INPUT_TYPES(s):
317
        return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
comfyanonymous's avatar
comfyanonymous committed
318
319
320
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

321
322
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
323
324
    #TODO: scale factor?
    def load_vae(self, vae_name):
325
        vae_path = folder_paths.get_full_path("vae", vae_name)
comfyanonymous's avatar
comfyanonymous committed
326
327
328
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
329
330
331
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
332
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
333
334
335
336
337
338
339

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
340
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
comfyanonymous's avatar
comfyanonymous committed
341
342
343
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

344
345
346
347
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
348
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
349
350
351
352
353
354
355

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
356
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
357
358
359
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
360
361
362
363

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
364
365
366
367
368
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
369
370
371
372
373
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

374
    def apply_controlnet(self, conditioning, control_net, image, strength):
comfyanonymous's avatar
comfyanonymous committed
375
376
377
378
379
        c = []
        control_hint = image.movedim(-1,1)
        print(control_hint.shape)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
380
381
382
383
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
comfyanonymous's avatar
comfyanonymous committed
384
385
386
            c.append(n)
        return (c, )

387
388
389
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
390
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
391
392
393
394
395
396
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

397
    def load_clip(self, clip_name):
398
        clip_path = folder_paths.get_full_path("clip", clip_name)
comfyanonymous's avatar
comfyanonymous committed
399
        clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=folder_paths.get_folder_paths("embeddings"))
400
401
        return (clip,)

402
403
404
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
405
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
406
407
408
409
410
411
412
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
413
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
414
        clip_vision = comfy.clip_vision.load(clip_path)
415
416
417
418
419
420
421
422
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
423
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
424
425
    FUNCTION = "encode"

426
    CATEGORY = "conditioning"
427
428
429
430
431
432
433
434

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
435
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
436
437
438
439
440
441
442

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
443
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
444
445
446
447
448
449
450
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
451
452
453
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
454
455
456
457
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
458
    CATEGORY = "conditioning/style_model"
459

460
461
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
        cond = style_model.get_cond(clip_vision_output)
462
        c = []
463
464
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
465
466
467
            c.append(n)
        return (c, )

468
469
470
471
472
473
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
474
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
475
476
477
478
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

479
    CATEGORY = "conditioning"
480

481
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
482
483
484
        c = []
        for t in conditioning:
            o = t[1].copy()
485
            x = (clip_vision_output, strength, noise_augmentation)
486
487
488
489
490
491
492
493
            if "adm" in o:
                o["adm"] = o["adm"][:] + [x]
            else:
                o["adm"] = [x]
            n = [t[0], o]
            c.append(n)
        return (c, )

494
495
496
497
498
499
500
501
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
502
    CATEGORY = "loaders"
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
                              "text": ("STRING", {"multiline": True}),
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
524
    CATEGORY = "conditioning/gligen"
525
526
527
528
529
530
531
532
533
534
535
536
537
538

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
539

comfyanonymous's avatar
comfyanonymous committed
540
541
542
543
544
545
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
546
547
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
comfyanonymous's avatar
comfyanonymous committed
548
549
550
551
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

552
553
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
554
555
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
556
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
557

comfyanonymous's avatar
comfyanonymous committed
558

559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

    CATEGORY = "latent"

    def rotate(self, samples, batch_index):
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
        s["samples"] = s_in[batch_index:batch_index + 1].clone()
        s["batch_index"] = batch_index
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
577

comfyanonymous's avatar
comfyanonymous committed
578
579
class LatentUpscale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
580
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
581
582
583
584

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
585
586
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
587
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
588
589
590
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

591
592
    CATEGORY = "latent"

593
    def upscale(self, samples, upscale_method, width, height, crop):
594
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
595
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
596
597
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
598
599
600
601
602
603
604
605
606
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
607
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
608
609

    def rotate(self, samples, rotation):
610
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
611
612
613
614
615
616
617
618
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

619
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
620
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
621
622
623
624
625
626
627
628
629
630

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
631
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
632
633

    def flip(self, samples, flip_method):
634
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
635
        if flip_method.startswith("x"):
636
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
637
        elif flip_method.startswith("y"):
638
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
639
640

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
641
642
643
644

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
645
646
647
648
649
650
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
651
652
653
654
655
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
656
657
658
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
659
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
683

comfyanonymous's avatar
comfyanonymous committed
684
685
686
687
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
688
689
690
691
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
692
693
694
695
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
696
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
697
698

    def crop(self, samples, width, height, x, y):
699
700
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
        def enforce_image_dim(d, to_d, max_d):
            if to_d > max_d:
                leftover = (to_d - max_d) % 8
                to_d = max_d
                d -= leftover
            return (d, to_d)

        #make sure size is always multiple of 64
        x, to_x = enforce_image_dim(x, to_x, samples.shape[3])
        y, to_y = enforce_image_dim(y, to_y, samples.shape[2])
724
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
725
726
        return (s,)

727
728
729
730
731
732
733
734
735
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

736
    CATEGORY = "latent/inpaint"
737
738
739
740
741
742

    def set_mask(self, samples, mask):
        s = samples.copy()
        s["noise_mask"] = mask
        return (s,)

743
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
744
    device = comfy.model_management.get_torch_device()
745
    latent_image = latent["samples"]
746

comfyanonymous's avatar
comfyanonymous committed
747
748
749
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
750
751
        skip = latent["batch_index"] if "batch_index" in latent else 0
        noise = comfy.sample.prepare_noise(latent_image, seed, skip)
comfyanonymous's avatar
comfyanonymous committed
752

753
    noise_mask = None
754
    if "noise_mask" in latent:
755
        noise_mask = latent["noise_mask"]
comfyanonymous's avatar
comfyanonymous committed
756

757
758
759
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask)
760
761
762
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
763

comfyanonymous's avatar
comfyanonymous committed
764
765
766
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
767
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

783
784
    CATEGORY = "sampling"

comfyanonymous's avatar
comfyanonymous committed
785
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
786
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
787

comfyanonymous's avatar
comfyanonymous committed
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
811

comfyanonymous's avatar
comfyanonymous committed
812
813
814
815
816
817
818
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
819
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
820
821
822

class SaveImage:
    def __init__(self):
823
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
824
        self.type = "output"
comfyanonymous's avatar
comfyanonymous committed
825
826
827
828

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
829
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
830
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
831
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
832
833
834
835
836
837
838
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

839
840
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
841
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
842
        def map_filename(filename):
843
            prefix_len = len(os.path.basename(filename_prefix))
844
845
846
847
848
849
            prefix = filename[:prefix_len + 1]
            try:
                digits = int(filename[prefix_len + 1:].split('_')[0])
            except:
                digits = 0
            return (digits, prefix)
comfyanonymous's avatar
Style.  
comfyanonymous committed
850

851
852
853
854
        def compute_vars(input):
            input = input.replace("%width%", str(images[0].shape[1]))
            input = input.replace("%height%", str(images[0].shape[0]))
            return input
comfyanonymous's avatar
Style.  
comfyanonymous committed
855

856
        filename_prefix = compute_vars(filename_prefix)
comfyanonymous's avatar
comfyanonymous committed
857

m957ymj75urz's avatar
m957ymj75urz committed
858
859
860
        subfolder = os.path.dirname(os.path.normpath(filename_prefix))
        filename = os.path.basename(os.path.normpath(filename_prefix))

comfyanonymous's avatar
comfyanonymous committed
861
        full_output_folder = os.path.join(self.output_dir, subfolder)
862

863
        if os.path.commonpath((self.output_dir, os.path.abspath(full_output_folder))) != self.output_dir:
864
            print("Saving image outside the output folder is not allowed.")
comfyanonymous's avatar
comfyanonymous committed
865
866
            return {}

867
        try:
868
            counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1
869
870
        except ValueError:
            counter = 1
871
        except FileNotFoundError:
872
            os.makedirs(full_output_folder, exist_ok=True)
873
            counter = 1
pythongosssss's avatar
pythongosssss committed
874

m957ymj75urz's avatar
m957ymj75urz committed
875
        results = list()
comfyanonymous's avatar
comfyanonymous committed
876
877
        for image in images:
            i = 255. * image.cpu().numpy()
878
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
comfyanonymous's avatar
comfyanonymous committed
879
880
881
882
883
884
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
885

886
            file = f"{filename}_{counter:05}_.png"
887
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
888
889
890
891
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
892
            })
893
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
894

m957ymj75urz's avatar
m957ymj75urz committed
895
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
896

pythongosssss's avatar
pythongosssss committed
897
898
class PreviewImage(SaveImage):
    def __init__(self):
899
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
900
        self.type = "temp"
pythongosssss's avatar
pythongosssss committed
901
902
903

    @classmethod
    def INPUT_TYPES(s):
904
        return {"required":
pythongosssss's avatar
pythongosssss committed
905
906
907
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
908

909
910
911
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
912
        input_dir = folder_paths.get_input_directory()
913
        return {"required":
914
                    {"image": (sorted(os.listdir(input_dir)), )},
915
                }
916
917

    CATEGORY = "image"
918

919
    RETURN_TYPES = ("IMAGE", "MASK")
920
921
    FUNCTION = "load_image"
    def load_image(self, image):
922
        image_path = folder_paths.get_annotated_filepath(image)
923
924
        i = Image.open(image_path)
        image = i.convert("RGB")
925
        image = np.array(image).astype(np.float32) / 255.0
926
        image = torch.from_numpy(image)[None,]
927
928
929
930
931
932
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)
933

934
935
    @classmethod
    def IS_CHANGED(s, image):
936
        image_path = folder_paths.get_annotated_filepath(image)
937
938
939
940
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
941

942
943
944
945
946
947
948
    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

949
class LoadImageMask:
950
    _color_channels = ["alpha", "red", "green", "blue"]
951
952
    @classmethod
    def INPUT_TYPES(s):
953
        input_dir = folder_paths.get_input_directory()
954
        return {"required":
955
                    {"image": (sorted(os.listdir(input_dir)), ),
956
                    "channel": (s._color_channels, ),}
957
958
                }

959
    CATEGORY = "mask"
960
961
962
963

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
964
        image_path = folder_paths.get_annotated_filepath(image)
965
        i = Image.open(image_path)
966
967
        if i.getbands() != ("R", "G", "B", "A"):
            i = i.convert("RGBA")
968
969
970
971
972
973
974
975
976
977
978
979
980
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
981
        image_path = folder_paths.get_annotated_filepath(image)
982
983
984
985
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
986

987
988
989
990
991
992
993
994
995
996
    @classmethod
    def VALIDATE_INPUTS(s, image, channel):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        if channel not in s._color_channels:
            return "Invalid color channel: {}".format(channel)

        return True

comfyanonymous's avatar
comfyanonymous committed
997
998
999
1000
1001
1002
1003
class ImageScale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1004
1005
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1006
1007
1008
1009
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1010
    CATEGORY = "image/upscaling"
1011

comfyanonymous's avatar
comfyanonymous committed
1012
1013
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
1014
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1015
1016
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1017

1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


Guo Y.K's avatar
Guo Y.K committed
1034
1035
1036
1037
1038
1039
1040
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1041
1042
1043
1044
1045
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1046
1047
1048
1049
1050
1051
1052
1053
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1054
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1067

1068
1069
1070
1071
1072
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1073
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1093

Guo Y.K's avatar
Guo Y.K committed
1094
1095
1096
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1097
1098
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1099
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1100
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1101
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1102
1103
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1104
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1105
1106
1107
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
1108
    "LatentFromBatch": LatentFromBatch,
comfyanonymous's avatar
comfyanonymous committed
1109
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1110
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1111
    "LoadImage": LoadImage,
1112
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1113
    "ImageScale": ImageScale,
1114
    "ImageInvert": ImageInvert,
Guo Y.K's avatar
Guo Y.K committed
1115
    "ImagePadForOutpaint": ImagePadForOutpaint,
comfyanonymous's avatar
comfyanonymous committed
1116
1117
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
comfyanonymous's avatar
comfyanonymous committed
1118
    "KSamplerAdvanced": KSamplerAdvanced,
1119
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1120
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
1121
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1122
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1123
    "LatentCrop": LatentCrop,
1124
    "LoraLoader": LoraLoader,
1125
    "CLIPLoader": CLIPLoader,
1126
    "CLIPVisionEncode": CLIPVisionEncode,
1127
    "StyleModelApply": StyleModelApply,
1128
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1129
1130
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
1131
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1132
1133
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1134
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1135
    "VAEEncodeTiled": VAEEncodeTiled,
1136
    "TomePatchModel": TomePatchModel,
1137
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1138
1139
1140
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,

1141
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1142
    "DiffusersLoader": DiffusersLoader,
comfyanonymous's avatar
comfyanonymous committed
1143
1144
}

City's avatar
City committed
1145
1146
1147
1148
1149
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1150
1151
    "CheckpointLoader": "Load Checkpoint (With Config)",
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
    "ConditioningSetArea": "Conditioning (Set Area)",
    "ControlNetApply": "Apply ControlNet",
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
    "LatentComposite": "Latent Composite",
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
def load_custom_node(module_path):
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
            NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
1208
1209
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1210
1211
1212
1213
1214
1215
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)

Hacker 17082006's avatar
Hacker 17082006 committed
1216
def load_custom_nodes():
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
    node_paths = folder_paths.get_folder_paths("custom_nodes")
    for custom_node_path in node_paths:
        possible_modules = os.listdir(custom_node_path)
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
            load_custom_node(module_path)
1227

1228
1229
def init_custom_nodes():
    load_custom_nodes()
1230
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_hypernetwork.py"))
1231
1232
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
1233
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))