"flash_blocksparse_attn_interface.py" did not exist on "1fcbe6f0d088d807ba585ddb850eb3497cd7b65b"
nodes.py 55 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
8
import math
9
import time
comfyanonymous's avatar
comfyanonymous committed
10

11
from PIL import Image, ImageOps
comfyanonymous's avatar
comfyanonymous committed
12
13
from PIL.PngImagePlugin import PngInfo
import numpy as np
14
import safetensors.torch
comfyanonymous's avatar
comfyanonymous committed
15

comfyanonymous's avatar
comfyanonymous committed
16
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
17
18


19
import comfy.diffusers_load
comfyanonymous's avatar
comfyanonymous committed
20
import comfy.samplers
21
import comfy.sample
comfyanonymous's avatar
comfyanonymous committed
22
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
23
24
import comfy.utils

25
import comfy.clip_vision
26

27
import comfy.model_management
28
import importlib
comfyanonymous's avatar
comfyanonymous committed
29

30
import folder_paths
31
import latent_preview
space-nuko's avatar
space-nuko committed
32

33
def before_node_execution():
34
    comfy.model_management.throw_exception_if_processing_interrupted()
35

36
def interrupt_processing(value=True):
37
    comfy.model_management.interrupt_current_processing(value)
38

39
40
MAX_RESOLUTION=8192

comfyanonymous's avatar
comfyanonymous committed
41
42
43
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
44
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
45
46
47
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

48
49
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
50
    def encode(self, clip, text):
51
52
53
        tokens = clip.tokenize(text)
        cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
        return ([[cond, {"pooled_output": pooled}]], )
comfyanonymous's avatar
comfyanonymous committed
54
55
56
57
58
59
60
61

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

62
63
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
64
65
66
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

FizzleDorf's avatar
FizzleDorf committed
67
68
69
class ConditioningAverage :
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
70
71
        return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
                              "conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
FizzleDorf's avatar
FizzleDorf committed
72
73
74
75
76
77
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "addWeighted"

    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
78
    def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
FizzleDorf's avatar
FizzleDorf committed
79
        out = []
comfyanonymous's avatar
comfyanonymous committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93

        if len(conditioning_from) > 1:
            print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

        cond_from = conditioning_from[0][0]

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
            t0 = cond_from[:,:t1.shape[1]]
            if t0.shape[1] < t1.shape[1]:
                t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)

            tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
            n = [tw, conditioning_to[i][1].copy()]
FizzleDorf's avatar
FizzleDorf committed
94
95
96
            out.append(n)
        return (out, )

comfyanonymous's avatar
comfyanonymous committed
97
98
99
100
class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
101
102
103
104
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
105
106
107
108
109
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

110
111
    CATEGORY = "conditioning"

112
    def append(self, conditioning, width, height, x, y, strength):
comfyanonymous's avatar
comfyanonymous committed
113
114
115
116
117
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
118
            n[1]['set_area_to_bounds'] = False
comfyanonymous's avatar
comfyanonymous committed
119
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
120
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
121

Jacob Segal's avatar
Jacob Segal committed
122
123
124
125
126
127
class ConditioningSetMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "mask": ("MASK", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
128
                              "set_cond_area": (["default", "mask bounds"],),
Jacob Segal's avatar
Jacob Segal committed
129
130
131
132
133
134
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

135
    def append(self, conditioning, mask, set_cond_area, strength):
Jacob Segal's avatar
Jacob Segal committed
136
        c = []
137
138
139
        set_area_to_bounds = False
        if set_cond_area != "default":
            set_area_to_bounds = True
Jacob Segal's avatar
Jacob Segal committed
140
141
142
143
144
145
        if len(mask.shape) < 3:
            mask = mask.unsqueeze(0)
        for t in conditioning:
            n = [t[0], t[1].copy()]
            _, h, w = mask.shape
            n[1]['mask'] = mask
Jacob Segal's avatar
Jacob Segal committed
146
            n[1]['set_area_to_bounds'] = set_area_to_bounds
147
            n[1]['mask_strength'] = strength
Jacob Segal's avatar
Jacob Segal committed
148
149
150
            c.append(n)
        return (c, )

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
class ConditioningZeroOut:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "zero_out"

    CATEGORY = "advanced/conditioning"

    def zero_out(self, conditioning):
        c = []
        for t in conditioning:
            d = t[1].copy()
            if "pooled_output" in d:
                d["pooled_output"] = torch.zeros_like(d["pooled_output"])
            n = [torch.zeros_like(t[0]), d]
            c.append(n)
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
170
171
172
173
174
175
176
class VAEDecode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

177
178
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
179
    def decode(self, vae, samples):
180
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
181

182
183
184
185
186
187
188
189
190
191
192
193
class VAEDecodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
194
195
196
197
198
199
200
class VAEEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

201
202
    CATEGORY = "latent"

203
204
205
206
    @staticmethod
    def vae_encode_crop_pixels(pixels):
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
207
        if pixels.shape[1] != x or pixels.shape[2] != y:
208
209
210
211
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
        return pixels
212

213
214
215
    def encode(self, vae, pixels):
        pixels = self.vae_encode_crop_pixels(pixels)
        t = vae.encode(pixels[:,:,:,:3])
216
        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
217

comfyanonymous's avatar
comfyanonymous committed
218
219
220
221
222
223
224
225
226
227
class VAEEncodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

    def encode(self, vae, pixels):
228
        pixels = VAEEncode.vae_encode_crop_pixels(pixels)
comfyanonymous's avatar
comfyanonymous committed
229
230
        t = vae.encode_tiled(pixels[:,:,:,:3])
        return ({"samples":t}, )
231

232
233
234
class VAEEncodeForInpaint:
    @classmethod
    def INPUT_TYPES(s):
235
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
236
237
238
239
240
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

241
    def encode(self, vae, pixels, mask, grow_mask_by=6):
242
243
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
244
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
245

246
        pixels = pixels.clone()
247
        if pixels.shape[1] != x or pixels.shape[2] != y:
248
249
250
251
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
252

253
        #grow mask by a few pixels to keep things seamless in latent space
254
255
256
257
258
259
260
261
        if grow_mask_by == 0:
            mask_erosion = mask
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)

262
        m = (1.0 - mask.round()).squeeze(1)
263
264
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
265
            pixels[:,:,:,i] *= m
266
267
268
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

269
        return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
270

Dr.Lt.Data's avatar
Dr.Lt.Data committed
271
272
class SaveLatent:
    def __init__(self):
273
        self.output_dir = folder_paths.get_output_directory()
Dr.Lt.Data's avatar
Dr.Lt.Data committed
274
275
276
277

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ),
278
                              "filename_prefix": ("STRING", {"default": "latents/ComfyUI"})},
Dr.Lt.Data's avatar
Dr.Lt.Data committed
279
280
281
282
283
284
285
286
287
288
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
    RETURN_TYPES = ()
    FUNCTION = "save"

    OUTPUT_NODE = True

    CATEGORY = "_for_testing"

    def save(self, samples, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
289
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
290
291
292
293
294
295

        # support save metadata for latent sharing
        prompt_info = ""
        if prompt is not None:
            prompt_info = json.dumps(prompt)

296
        metadata = {"prompt": prompt_info}
Dr.Lt.Data's avatar
Dr.Lt.Data committed
297
298
299
300
301
302
303
        if extra_pnginfo is not None:
            for x in extra_pnginfo:
                metadata[x] = json.dumps(extra_pnginfo[x])

        file = f"{filename}_{counter:05}_.latent"
        file = os.path.join(full_output_folder, file)

304
305
        output = {}
        output["latent_tensor"] = samples["samples"]
306
        output["latent_format_version_0"] = torch.tensor([])
307

308
        comfy.utils.save_torch_file(output, file, metadata=metadata)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
309
310
311
312
313
314
        return {}


class LoadLatent:
    @classmethod
    def INPUT_TYPES(s):
315
316
        input_dir = folder_paths.get_input_directory()
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.endswith(".latent")]
Dr.Lt.Data's avatar
Dr.Lt.Data committed
317
318
319
320
321
322
323
324
        return {"required": {"latent": [sorted(files), ]}, }

    CATEGORY = "_for_testing"

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "load"

    def load(self, latent):
325
326
        latent_path = folder_paths.get_annotated_filepath(latent)
        latent = safetensors.torch.load_file(latent_path, device="cpu")
327
328
329
330
        multiplier = 1.0
        if "latent_format_version_0" not in latent:
            multiplier = 1.0 / 0.18215
        samples = {"samples": latent["latent_tensor"].float() * multiplier}
331
        return (samples, )
Dr.Lt.Data's avatar
Dr.Lt.Data committed
332

333
334
335
336
337
338
339
340
341
342
343
344
345
346
    @classmethod
    def IS_CHANGED(s, latent):
        image_path = folder_paths.get_annotated_filepath(latent)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

    @classmethod
    def VALIDATE_INPUTS(s, latent):
        if not folder_paths.exists_annotated_filepath(latent):
            return "Invalid latent file: {}".format(latent)
        return True

Dr.Lt.Data's avatar
Dr.Lt.Data committed
347

comfyanonymous's avatar
comfyanonymous committed
348
349
350
class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
351
352
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
353
354
355
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

356
    CATEGORY = "advanced/loaders"
357

comfyanonymous's avatar
comfyanonymous committed
358
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
359
360
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
361
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
362

363
364
365
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
366
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
367
368
369
370
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

371
    CATEGORY = "loaders"
372

373
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
374
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
375
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
376
377
        return out

sALTaccount's avatar
sALTaccount committed
378
379
380
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
381
        paths = []
sALTaccount's avatar
sALTaccount committed
382
        for search_path in folder_paths.get_folder_paths("diffusers"):
383
            if os.path.exists(search_path):
384
385
386
387
                for root, subdir, files in os.walk(search_path, followlinks=True):
                    if "model_index.json" in files:
                        paths.append(os.path.relpath(root, start=search_path))

388
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
389
390
391
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

392
    CATEGORY = "advanced/loaders"
sALTaccount's avatar
sALTaccount committed
393
394

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
395
396
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
397
398
399
                path = os.path.join(search_path, model_path)
                if os.path.exists(path):
                    model_path = path
sALTaccount's avatar
sALTaccount committed
400
                    break
401

402
        return comfy.diffusers_load.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
403
404


405
406
407
408
409
410
411
412
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

413
    CATEGORY = "loaders"
414
415
416
417
418
419

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

436
437
438
439
440
class LoraLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
441
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
442
443
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
444
445
446
447
448
449
450
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
451
452
453
        if strength_model == 0 and strength_clip == 0:
            return (model, clip)

454
        lora_path = folder_paths.get_full_path("loras", lora_name)
455
456
457
        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
        return (model_lora, clip_lora)

comfyanonymous's avatar
comfyanonymous committed
458
459
460
class VAELoader:
    @classmethod
    def INPUT_TYPES(s):
461
        return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
comfyanonymous's avatar
comfyanonymous committed
462
463
464
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

465
466
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
467
468
    #TODO: scale factor?
    def load_vae(self, vae_name):
469
        vae_path = folder_paths.get_full_path("vae", vae_name)
comfyanonymous's avatar
comfyanonymous committed
470
471
472
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
473
474
475
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
476
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
477
478
479
480
481
482
483

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
484
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
comfyanonymous's avatar
comfyanonymous committed
485
486
487
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

488
489
490
491
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
492
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
493
494
495
496
497
498
499

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
500
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
501
502
503
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
504
505
506
507

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
508
509
510
511
512
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
513
514
515
516
517
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

518
    def apply_controlnet(self, conditioning, control_net, image, strength):
519
520
521
        if strength == 0:
            return (conditioning, )

comfyanonymous's avatar
comfyanonymous committed
522
523
524
525
        c = []
        control_hint = image.movedim(-1,1)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
526
527
528
529
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
comfyanonymous's avatar
comfyanonymous committed
530
531
532
            c.append(n)
        return (c, )

533
534
535
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
536
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
537
538
539
540
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

541
    CATEGORY = "advanced/loaders"
542

543
    def load_clip(self, clip_name):
544
        clip_path = folder_paths.get_full_path("clip", clip_name)
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return (clip,)

class DualCLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_name1": (folder_paths.get_filename_list("clip"), ), "clip_name2": (folder_paths.get_filename_list("clip"), ),
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "advanced/loaders"

    def load_clip(self, clip_name1, clip_name2):
        clip_path1 = folder_paths.get_full_path("clip", clip_name1)
        clip_path2 = folder_paths.get_full_path("clip", clip_name2)
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"))
562
563
        return (clip,)

564
565
566
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
567
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
568
569
570
571
572
573
574
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
575
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
576
        clip_vision = comfy.clip_vision.load(clip_path)
577
578
579
580
581
582
583
584
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
585
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
586
587
    FUNCTION = "encode"

588
    CATEGORY = "conditioning"
589
590
591
592
593
594
595
596

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
597
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
598
599
600
601
602
603
604

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
605
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
606
607
608
609
610
611
612
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
613
614
615
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
616
617
618
619
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
620
    CATEGORY = "conditioning/style_model"
621

622
623
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
        cond = style_model.get_cond(clip_vision_output)
624
        c = []
625
626
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
627
628
629
            c.append(n)
        return (c, )

630
631
632
633
634
635
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
636
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
637
638
639
640
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

641
    CATEGORY = "conditioning"
642

643
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
644
645
646
        if strength == 0:
            return (conditioning, )

647
648
649
        c = []
        for t in conditioning:
            o = t[1].copy()
650
651
652
            x = {"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation}
            if "unclip_conditioning" in o:
                o["unclip_conditioning"] = o["unclip_conditioning"][:] + [x]
653
            else:
654
                o["unclip_conditioning"] = [x]
655
656
657
658
            n = [t[0], o]
            c.append(n)
        return (c, )

659
660
661
662
663
664
665
666
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
667
    CATEGORY = "loaders"
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
                              "text": ("STRING", {"multiline": True}),
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
689
    CATEGORY = "conditioning/gligen"
690
691
692
693
694
695
696
697
698
699
700
701
702
703

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
704

comfyanonymous's avatar
comfyanonymous committed
705
706
707
708
709
710
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
711
712
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
713
714
715
716
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

717
718
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
719
720
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
721
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
722

comfyanonymous's avatar
comfyanonymous committed
723

724
725
726
727
728
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
729
                              "length": ("INT", {"default": 1, "min": 1, "max": 64}),
730
731
                              }}
    RETURN_TYPES = ("LATENT",)
732
    FUNCTION = "frombatch"
733

734
    CATEGORY = "latent/batch"
735

736
    def frombatch(self, samples, batch_index, length):
737
738
739
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
        length = min(s_in.shape[0] - batch_index, length)
        s["samples"] = s_in[batch_index:batch_index + length].clone()
        if "noise_mask" in samples:
            masks = samples["noise_mask"]
            if masks.shape[0] == 1:
                s["noise_mask"] = masks.clone()
            else:
                if masks.shape[0] < s_in.shape[0]:
                    masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
                s["noise_mask"] = masks[batch_index:batch_index + length].clone()
        if "batch_index" not in s:
            s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
        else:
            s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
        return (s,)
    
class RepeatLatentBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "amount": ("INT", {"default": 1, "min": 1, "max": 64}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "repeat"

    CATEGORY = "latent/batch"

    def repeat(self, samples, amount):
        s = samples.copy()
        s_in = samples["samples"]
        
        s["samples"] = s_in.repeat((amount, 1,1,1))
        if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
            masks = samples["noise_mask"]
            if masks.shape[0] < s_in.shape[0]:
                masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
            s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
        if "batch_index" in s:
            offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
            s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
780
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
781

comfyanonymous's avatar
comfyanonymous committed
782
class LatentUpscale:
comfyanonymous's avatar
comfyanonymous committed
783
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
784
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
785
786
787
788

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
789
790
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
791
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
792
793
794
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

795
796
    CATEGORY = "latent"

797
    def upscale(self, samples, upscale_method, width, height, crop):
798
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
799
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
800
801
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
802
class LatentUpscaleBy:
comfyanonymous's avatar
comfyanonymous committed
803
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
comfyanonymous's avatar
comfyanonymous committed
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.5, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

    CATEGORY = "latent"

    def upscale(self, samples, upscale_method, scale_by):
        s = samples.copy()
        width = round(samples["samples"].shape[3] * scale_by)
        height = round(samples["samples"].shape[2] * scale_by)
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled")
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
821
822
823
824
825
826
827
828
829
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
830
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
831
832

    def rotate(self, samples, rotation):
833
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
834
835
836
837
838
839
840
841
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

842
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
843
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
844
845
846
847
848
849
850
851
852
853

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
854
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
855
856

    def flip(self, samples, flip_method):
857
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
858
        if flip_method.startswith("x"):
859
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
860
        elif flip_method.startswith("y"):
861
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
862
863

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
864
865
866
867

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
868
869
870
871
872
873
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
874
875
876
877
878
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
879
880
881
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
882
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
906

comfyanonymous's avatar
comfyanonymous committed
907
908
909
910
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
911
912
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
913
914
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
915
916
917
918
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
919
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
920
921

    def crop(self, samples, width, height, x, y):
922
923
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
924
925
926
927
928
929
930
931
932
933
934
935
936
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
937
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
938
939
        return (s,)

940
941
942
943
944
945
946
947
948
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

949
    CATEGORY = "latent/inpaint"
950
951
952

    def set_mask(self, samples, mask):
        s = samples.copy()
953
        s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
954
955
        return (s,)

space-nuko's avatar
space-nuko committed
956

space-nuko's avatar
space-nuko committed
957
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
958
    device = comfy.model_management.get_torch_device()
959
    latent_image = latent["samples"]
960

comfyanonymous's avatar
comfyanonymous committed
961
962
963
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
964
965
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
comfyanonymous's avatar
comfyanonymous committed
966

967
    noise_mask = None
968
    if "noise_mask" in latent:
969
        noise_mask = latent["noise_mask"]
comfyanonymous's avatar
comfyanonymous committed
970

space-nuko's avatar
space-nuko committed
971
972
973
974
    preview_format = "JPEG"
    if preview_format not in ["JPEG", "PNG"]:
        preview_format = "JPEG"

975
    previewer = latent_preview.get_previewer(device, model.model.latent_format)
space-nuko's avatar
space-nuko committed
976

977
    pbar = comfy.utils.ProgressBar(steps)
978
    def callback(step, x0, x, total_steps):
space-nuko's avatar
space-nuko committed
979
        preview_bytes = None
980
        if previewer:
981
            preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
space-nuko's avatar
space-nuko committed
982
        pbar.update_absolute(step + 1, total_steps, preview_bytes)
983

984
985
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
986
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, seed=seed)
987
988
989
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
990

comfyanonymous's avatar
comfyanonymous committed
991
992
993
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
994
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
995
996
997
998
999
1000
1001
1002
1003
1004
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
space-nuko's avatar
space-nuko committed
1005
1006
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1007
1008
1009
1010

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

1011
1012
    CATEGORY = "sampling"

space-nuko's avatar
space-nuko committed
1013
1014
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
1015

comfyanonymous's avatar
comfyanonymous committed
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
space-nuko's avatar
space-nuko committed
1033
1034
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1035
1036
1037
1038
1039

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
1040

space-nuko's avatar
space-nuko committed
1041
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
comfyanonymous's avatar
comfyanonymous committed
1042
1043
1044
1045
1046
1047
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
space-nuko's avatar
space-nuko committed
1048
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
1049
1050
1051

class SaveImage:
    def __init__(self):
1052
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1053
        self.type = "output"
comfyanonymous's avatar
comfyanonymous committed
1054
1055
1056
1057

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
1058
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
1059
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
1060
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
1061
1062
1063
1064
1065
1066
1067
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

1068
1069
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
1070
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
1071
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
m957ymj75urz's avatar
m957ymj75urz committed
1072
        results = list()
comfyanonymous's avatar
comfyanonymous committed
1073
1074
        for image in images:
            i = 255. * image.cpu().numpy()
1075
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
comfyanonymous's avatar
comfyanonymous committed
1076
1077
1078
1079
1080
1081
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
1082

1083
            file = f"{filename}_{counter:05}_.png"
1084
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
1085
1086
1087
1088
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
1089
            })
1090
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
1091

m957ymj75urz's avatar
m957ymj75urz committed
1092
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
1093

pythongosssss's avatar
pythongosssss committed
1094
1095
class PreviewImage(SaveImage):
    def __init__(self):
1096
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1097
        self.type = "temp"
pythongosssss's avatar
pythongosssss committed
1098
1099
1100

    @classmethod
    def INPUT_TYPES(s):
1101
        return {"required":
pythongosssss's avatar
pythongosssss committed
1102
1103
1104
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
1105

1106
1107
1108
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
1109
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1110
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1111
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1112
                    {"image": (sorted(files), )},
1113
                }
1114
1115

    CATEGORY = "image"
1116

1117
    RETURN_TYPES = ("IMAGE", "MASK")
1118
1119
    FUNCTION = "load_image"
    def load_image(self, image):
1120
        image_path = folder_paths.get_annotated_filepath(image)
1121
        i = Image.open(image_path)
1122
        i = ImageOps.exif_transpose(i)
1123
        image = i.convert("RGB")
1124
        image = np.array(image).astype(np.float32) / 255.0
1125
        image = torch.from_numpy(image)[None,]
1126
1127
1128
1129
1130
1131
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)
1132

1133
1134
    @classmethod
    def IS_CHANGED(s, image):
1135
        image_path = folder_paths.get_annotated_filepath(image)
1136
1137
1138
1139
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1140

1141
1142
1143
1144
1145
1146
1147
    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

1148
class LoadImageMask:
1149
    _color_channels = ["alpha", "red", "green", "blue"]
1150
1151
    @classmethod
    def INPUT_TYPES(s):
1152
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1153
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1154
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1155
                    {"image": (sorted(files), ),
1156
                     "channel": (s._color_channels, ), }
1157
1158
                }

1159
    CATEGORY = "mask"
1160
1161
1162
1163

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
1164
        image_path = folder_paths.get_annotated_filepath(image)
1165
        i = Image.open(image_path)
1166
        i = ImageOps.exif_transpose(i)
1167
1168
        if i.getbands() != ("R", "G", "B", "A"):
            i = i.convert("RGBA")
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
1182
        image_path = folder_paths.get_annotated_filepath(image)
1183
1184
1185
1186
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1187

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
    @classmethod
    def VALIDATE_INPUTS(s, image, channel):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        if channel not in s._color_channels:
            return "Invalid color channel: {}".format(channel)

        return True

comfyanonymous's avatar
comfyanonymous committed
1198
class ImageScale:
comfyanonymous's avatar
comfyanonymous committed
1199
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic"]
comfyanonymous's avatar
comfyanonymous committed
1200
1201
1202
1203
1204
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1205
1206
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1207
1208
1209
1210
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1211
    CATEGORY = "image/upscaling"
1212

comfyanonymous's avatar
comfyanonymous committed
1213
1214
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
1215
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1216
1217
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1218

comfyanonymous's avatar
comfyanonymous committed
1219
class ImageScaleBy:
comfyanonymous's avatar
comfyanonymous committed
1220
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic"]
comfyanonymous's avatar
comfyanonymous committed
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

    CATEGORY = "image/upscaling"

    def upscale(self, image, upscale_method, scale_by):
        samples = image.movedim(-1,1)
        width = round(samples.shape[3] * scale_by)
        height = round(samples.shape[2] * scale_by)
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
        s = s.movedim(1,-1)
        return (s,)

1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


Guo Y.K's avatar
Guo Y.K committed
1255
1256
1257
1258
1259
1260
1261
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1262
1263
1264
1265
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1266
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1267
1268
1269
1270
1271
1272
1273
1274
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1275
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1288

1289
1290
1291
1292
1293
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1294
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1314

Guo Y.K's avatar
Guo Y.K committed
1315
1316
1317
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1318
1319
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1320
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1321
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1322
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1323
1324
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1325
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1326
1327
1328
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
comfyanonymous's avatar
comfyanonymous committed
1329
    "LatentUpscaleBy": LatentUpscaleBy,
1330
    "LatentFromBatch": LatentFromBatch,
1331
    "RepeatLatentBatch": RepeatLatentBatch,
comfyanonymous's avatar
comfyanonymous committed
1332
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1333
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1334
    "LoadImage": LoadImage,
1335
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1336
    "ImageScale": ImageScale,
comfyanonymous's avatar
comfyanonymous committed
1337
    "ImageScaleBy": ImageScaleBy,
1338
    "ImageInvert": ImageInvert,
Guo Y.K's avatar
Guo Y.K committed
1339
    "ImagePadForOutpaint": ImagePadForOutpaint,
FizzleDorf's avatar
FizzleDorf committed
1340
    "ConditioningAverage ": ConditioningAverage ,
comfyanonymous's avatar
comfyanonymous committed
1341
1342
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
Jacob Segal's avatar
Jacob Segal committed
1343
    "ConditioningSetMask": ConditioningSetMask,
comfyanonymous's avatar
comfyanonymous committed
1344
    "KSamplerAdvanced": KSamplerAdvanced,
1345
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1346
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
1347
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1348
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1349
    "LatentCrop": LatentCrop,
1350
    "LoraLoader": LoraLoader,
1351
    "CLIPLoader": CLIPLoader,
1352
    "DualCLIPLoader": DualCLIPLoader,
1353
    "CLIPVisionEncode": CLIPVisionEncode,
1354
    "StyleModelApply": StyleModelApply,
1355
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1356
1357
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
1358
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1359
1360
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1361
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1362
    "VAEEncodeTiled": VAEEncodeTiled,
1363
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1364
1365
1366
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,

1367
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1368
    "DiffusersLoader": DiffusersLoader,
Dr.Lt.Data's avatar
Dr.Lt.Data committed
1369
1370

    "LoadLatent": LoadLatent,
1371
    "SaveLatent": SaveLatent,
1372
1373

    "ConditioningZeroOut": ConditioningZeroOut,
comfyanonymous's avatar
comfyanonymous committed
1374
1375
}

City's avatar
City committed
1376
1377
1378
1379
1380
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1381
1382
    "CheckpointLoader": "Load Checkpoint (With Config)",
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
FizzleDorf's avatar
FizzleDorf committed
1397
    "ConditioningAverage ": "Conditioning (Average)",
City's avatar
City committed
1398
    "ConditioningSetArea": "Conditioning (Set Area)",
Jacob Segal's avatar
Jacob Segal committed
1399
    "ConditioningSetMask": "Conditioning (Set Mask)",
City's avatar
City committed
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
    "ControlNetApply": "Apply ControlNet",
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
comfyanonymous's avatar
comfyanonymous committed
1411
    "LatentUpscaleBy": "Upscale Latent By",
City's avatar
City committed
1412
    "LatentComposite": "Latent Composite",
1413
1414
    "LatentFromBatch" : "Latent From Batch",
    "RepeatLatentBatch": "Repeat Latent Batch",
City's avatar
City committed
1415
1416
1417
1418
1419
1420
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
comfyanonymous's avatar
comfyanonymous committed
1421
    "ImageScaleBy": "Upscale Image By",
City's avatar
City committed
1422
1423
1424
1425
1426
1427
1428
1429
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
def load_custom_node(module_path):
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
            NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
1445
1446
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1447
            return True
1448
1449
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
1450
            return False
1451
1452
1453
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)
1454
        return False
1455

Hacker 17082006's avatar
Hacker 17082006 committed
1456
def load_custom_nodes():
1457
    node_paths = folder_paths.get_folder_paths("custom_nodes")
1458
    node_import_times = []
1459
1460
1461
1462
1463
1464
1465
1466
    for custom_node_path in node_paths:
        possible_modules = os.listdir(custom_node_path)
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1467
            if module_path.endswith(".disabled"): continue
1468
            time_before = time.perf_counter()
1469
            success = load_custom_node(module_path)
1470
            node_import_times.append((time.perf_counter() - time_before, module_path, success))
1471

1472
    if len(node_import_times) > 0:
comfyanonymous's avatar
comfyanonymous committed
1473
        print("\nImport times for custom nodes:")
1474
        for n in sorted(node_import_times):
1475
1476
1477
1478
1479
            if n[2]:
                import_message = ""
            else:
                import_message = " (IMPORT FAILED)"
            print("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
1480
        print()
1481

1482
def init_custom_nodes():
1483
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_hypernetwork.py"))
1484
1485
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
1486
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))
1487
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_rebatch.py"))
1488
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_model_merging.py"))
1489
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_tomesd.py"))
1490
    load_custom_nodes()