nodes.py 61 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
8
import math
9
import time
10
import random
comfyanonymous's avatar
comfyanonymous committed
11

12
from PIL import Image, ImageOps
comfyanonymous's avatar
comfyanonymous committed
13
14
from PIL.PngImagePlugin import PngInfo
import numpy as np
15
import safetensors.torch
comfyanonymous's avatar
comfyanonymous committed
16

comfyanonymous's avatar
comfyanonymous committed
17
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
18
19


20
import comfy.diffusers_load
comfyanonymous's avatar
comfyanonymous committed
21
import comfy.samplers
22
import comfy.sample
comfyanonymous's avatar
comfyanonymous committed
23
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
24
25
import comfy.utils

26
import comfy.clip_vision
27

28
import comfy.model_management
29
30
from comfy.cli_args import args

31
import importlib
comfyanonymous's avatar
comfyanonymous committed
32

33
import folder_paths
34
import latent_preview
space-nuko's avatar
space-nuko committed
35

36
def before_node_execution():
37
    comfy.model_management.throw_exception_if_processing_interrupted()
38

39
def interrupt_processing(value=True):
40
    comfy.model_management.interrupt_current_processing(value)
41

42
43
MAX_RESOLUTION=8192

comfyanonymous's avatar
comfyanonymous committed
44
45
46
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
47
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
48
49
50
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

51
52
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
53
    def encode(self, clip, text):
54
55
56
        tokens = clip.tokenize(text)
        cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
        return ([[cond, {"pooled_output": pooled}]], )
comfyanonymous's avatar
comfyanonymous committed
57
58
59
60
61
62
63
64

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

65
66
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
67
68
69
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

FizzleDorf's avatar
FizzleDorf committed
70
71
72
class ConditioningAverage :
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
73
74
        return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
                              "conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
FizzleDorf's avatar
FizzleDorf committed
75
76
77
78
79
80
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "addWeighted"

    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
81
    def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
FizzleDorf's avatar
FizzleDorf committed
82
        out = []
comfyanonymous's avatar
comfyanonymous committed
83
84
85
86
87

        if len(conditioning_from) > 1:
            print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

        cond_from = conditioning_from[0][0]
88
        pooled_output_from = conditioning_from[0][1].get("pooled_output", None)
comfyanonymous's avatar
comfyanonymous committed
89
90
91

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
92
            pooled_output_to = conditioning_to[i][1].get("pooled_output", pooled_output_from)
comfyanonymous's avatar
comfyanonymous committed
93
94
95
96
97
            t0 = cond_from[:,:t1.shape[1]]
            if t0.shape[1] < t1.shape[1]:
                t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)

            tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
98
99
100
101
102
103
104
            t_to = conditioning_to[i][1].copy()
            if pooled_output_from is not None and pooled_output_to is not None:
                t_to["pooled_output"] = torch.mul(pooled_output_to, conditioning_to_strength) + torch.mul(pooled_output_from, (1.0 - conditioning_to_strength))
            elif pooled_output_from is not None:
                t_to["pooled_output"] = pooled_output_from

            n = [tw, t_to]
FizzleDorf's avatar
FizzleDorf committed
105
106
107
            out.append(n)
        return (out, )

108
109
110
111
112
113
114
115
116
117
class ConditioningConcat:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "conditioning_to": ("CONDITIONING",),
            "conditioning_from": ("CONDITIONING",),
            }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "concat"

118
    CATEGORY = "conditioning"
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

    def concat(self, conditioning_to, conditioning_from):
        out = []

        if len(conditioning_from) > 1:
            print("Warning: ConditioningConcat conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

        cond_from = conditioning_from[0][0]

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
            tw = torch.cat((t1, cond_from),1)
            n = [tw, conditioning_to[i][1].copy()]
            out.append(n)

        return (out, )

comfyanonymous's avatar
comfyanonymous committed
136
137
138
139
class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
140
141
142
143
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
144
145
146
147
148
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

149
150
    CATEGORY = "conditioning"

151
    def append(self, conditioning, width, height, x, y, strength):
comfyanonymous's avatar
comfyanonymous committed
152
153
154
155
156
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
157
            n[1]['set_area_to_bounds'] = False
comfyanonymous's avatar
comfyanonymous committed
158
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
159
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
160

Jacob Segal's avatar
Jacob Segal committed
161
162
163
164
165
166
class ConditioningSetMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "mask": ("MASK", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
167
                              "set_cond_area": (["default", "mask bounds"],),
Jacob Segal's avatar
Jacob Segal committed
168
169
170
171
172
173
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

174
    def append(self, conditioning, mask, set_cond_area, strength):
Jacob Segal's avatar
Jacob Segal committed
175
        c = []
176
177
178
        set_area_to_bounds = False
        if set_cond_area != "default":
            set_area_to_bounds = True
Jacob Segal's avatar
Jacob Segal committed
179
180
181
182
183
184
        if len(mask.shape) < 3:
            mask = mask.unsqueeze(0)
        for t in conditioning:
            n = [t[0], t[1].copy()]
            _, h, w = mask.shape
            n[1]['mask'] = mask
Jacob Segal's avatar
Jacob Segal committed
185
            n[1]['set_area_to_bounds'] = set_area_to_bounds
186
            n[1]['mask_strength'] = strength
Jacob Segal's avatar
Jacob Segal committed
187
188
189
            c.append(n)
        return (c, )

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
class ConditioningZeroOut:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "zero_out"

    CATEGORY = "advanced/conditioning"

    def zero_out(self, conditioning):
        c = []
        for t in conditioning:
            d = t[1].copy()
            if "pooled_output" in d:
                d["pooled_output"] = torch.zeros_like(d["pooled_output"])
            n = [torch.zeros_like(t[0]), d]
            c.append(n)
        return (c, )

209
210
211
212
class ConditioningSetTimestepRange:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
213
214
                             "start": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                             "end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
215
216
217
218
219
220
221
222
223
224
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "set_range"

    CATEGORY = "advanced/conditioning"

    def set_range(self, conditioning, start, end):
        c = []
        for t in conditioning:
            d = t[1].copy()
225
226
            d['start_percent'] = 1.0 - start
            d['end_percent'] = 1.0 - end
227
228
229
230
            n = [t[0], d]
            c.append(n)
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
231
232
233
234
235
236
237
class VAEDecode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

238
239
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
240
    def decode(self, vae, samples):
241
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
242

243
244
245
246
247
248
249
250
251
252
253
254
class VAEDecodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
255
256
257
258
259
260
261
class VAEEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

262
263
    CATEGORY = "latent"

264
265
266
267
    @staticmethod
    def vae_encode_crop_pixels(pixels):
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
268
        if pixels.shape[1] != x or pixels.shape[2] != y:
269
270
271
272
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
        return pixels
273

274
275
276
    def encode(self, vae, pixels):
        pixels = self.vae_encode_crop_pixels(pixels)
        t = vae.encode(pixels[:,:,:,:3])
277
        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
278

comfyanonymous's avatar
comfyanonymous committed
279
280
281
282
283
284
285
286
287
288
class VAEEncodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

    def encode(self, vae, pixels):
289
        pixels = VAEEncode.vae_encode_crop_pixels(pixels)
comfyanonymous's avatar
comfyanonymous committed
290
291
        t = vae.encode_tiled(pixels[:,:,:,:3])
        return ({"samples":t}, )
292

293
294
295
class VAEEncodeForInpaint:
    @classmethod
    def INPUT_TYPES(s):
296
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
297
298
299
300
301
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

302
    def encode(self, vae, pixels, mask, grow_mask_by=6):
303
304
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
305
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
306

307
        pixels = pixels.clone()
308
        if pixels.shape[1] != x or pixels.shape[2] != y:
309
310
311
312
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
313

314
        #grow mask by a few pixels to keep things seamless in latent space
315
316
317
318
319
320
321
322
        if grow_mask_by == 0:
            mask_erosion = mask
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)

323
        m = (1.0 - mask.round()).squeeze(1)
324
325
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
326
            pixels[:,:,:,i] *= m
327
328
329
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

330
        return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
331

Dr.Lt.Data's avatar
Dr.Lt.Data committed
332
333
class SaveLatent:
    def __init__(self):
334
        self.output_dir = folder_paths.get_output_directory()
Dr.Lt.Data's avatar
Dr.Lt.Data committed
335
336
337
338

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ),
339
                              "filename_prefix": ("STRING", {"default": "latents/ComfyUI"})},
Dr.Lt.Data's avatar
Dr.Lt.Data committed
340
341
342
343
344
345
346
347
348
349
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
    RETURN_TYPES = ()
    FUNCTION = "save"

    OUTPUT_NODE = True

    CATEGORY = "_for_testing"

    def save(self, samples, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
350
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
351
352
353
354
355
356

        # support save metadata for latent sharing
        prompt_info = ""
        if prompt is not None:
            prompt_info = json.dumps(prompt)

357
358
359
360
361
362
        metadata = None
        if not args.disable_metadata:
            metadata = {"prompt": prompt_info}
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata[x] = json.dumps(extra_pnginfo[x])
Dr.Lt.Data's avatar
Dr.Lt.Data committed
363
364
365
366

        file = f"{filename}_{counter:05}_.latent"
        file = os.path.join(full_output_folder, file)

367
368
        output = {}
        output["latent_tensor"] = samples["samples"]
369
        output["latent_format_version_0"] = torch.tensor([])
370

371
        comfy.utils.save_torch_file(output, file, metadata=metadata)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
372
373
374
375
376
377
        return {}


class LoadLatent:
    @classmethod
    def INPUT_TYPES(s):
378
379
        input_dir = folder_paths.get_input_directory()
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.endswith(".latent")]
Dr.Lt.Data's avatar
Dr.Lt.Data committed
380
381
382
383
384
385
386
387
        return {"required": {"latent": [sorted(files), ]}, }

    CATEGORY = "_for_testing"

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "load"

    def load(self, latent):
388
389
        latent_path = folder_paths.get_annotated_filepath(latent)
        latent = safetensors.torch.load_file(latent_path, device="cpu")
390
391
392
393
        multiplier = 1.0
        if "latent_format_version_0" not in latent:
            multiplier = 1.0 / 0.18215
        samples = {"samples": latent["latent_tensor"].float() * multiplier}
394
        return (samples, )
Dr.Lt.Data's avatar
Dr.Lt.Data committed
395

396
397
398
399
400
401
402
403
404
405
406
407
408
409
    @classmethod
    def IS_CHANGED(s, latent):
        image_path = folder_paths.get_annotated_filepath(latent)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

    @classmethod
    def VALIDATE_INPUTS(s, latent):
        if not folder_paths.exists_annotated_filepath(latent):
            return "Invalid latent file: {}".format(latent)
        return True

Dr.Lt.Data's avatar
Dr.Lt.Data committed
410

comfyanonymous's avatar
comfyanonymous committed
411
412
413
class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
414
415
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
416
417
418
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

419
    CATEGORY = "advanced/loaders"
420

comfyanonymous's avatar
comfyanonymous committed
421
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
422
423
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
424
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
425

426
427
428
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
429
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
430
431
432
433
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

434
    CATEGORY = "loaders"
435

436
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
437
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
438
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
439
440
        return out

sALTaccount's avatar
sALTaccount committed
441
442
443
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
444
        paths = []
sALTaccount's avatar
sALTaccount committed
445
        for search_path in folder_paths.get_folder_paths("diffusers"):
446
            if os.path.exists(search_path):
447
448
449
450
                for root, subdir, files in os.walk(search_path, followlinks=True):
                    if "model_index.json" in files:
                        paths.append(os.path.relpath(root, start=search_path))

451
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
452
453
454
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

455
    CATEGORY = "advanced/loaders/deprecated"
sALTaccount's avatar
sALTaccount committed
456
457

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
458
459
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
460
461
462
                path = os.path.join(search_path, model_path)
                if os.path.exists(path):
                    model_path = path
sALTaccount's avatar
sALTaccount committed
463
                    break
464

465
        return comfy.diffusers_load.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
466
467


468
469
470
471
472
473
474
475
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

476
    CATEGORY = "loaders"
477
478
479
480
481
482

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

499
class LoraLoader:
500
501
502
    def __init__(self):
        self.loaded_lora = None

503
504
505
506
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
507
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
508
509
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
510
511
512
513
514
515
516
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
517
518
519
        if strength_model == 0 and strength_clip == 0:
            return (model, clip)

520
        lora_path = folder_paths.get_full_path("loras", lora_name)
521
522
523
524
525
        lora = None
        if self.loaded_lora is not None:
            if self.loaded_lora[0] == lora_path:
                lora = self.loaded_lora[1]
            else:
526
527
528
                temp = self.loaded_lora
                self.loaded_lora = None
                del temp
529
530
531
532
533
534

        if lora is None:
            lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
            self.loaded_lora = (lora_path, lora)

        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
535
536
        return (model_lora, clip_lora)

comfyanonymous's avatar
comfyanonymous committed
537
538
539
class VAELoader:
    @classmethod
    def INPUT_TYPES(s):
540
        return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
comfyanonymous's avatar
comfyanonymous committed
541
542
543
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

544
545
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
546
547
    #TODO: scale factor?
    def load_vae(self, vae_name):
548
        vae_path = folder_paths.get_full_path("vae", vae_name)
comfyanonymous's avatar
comfyanonymous committed
549
550
551
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
552
553
554
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
555
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
556
557
558
559
560
561
562

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
563
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
comfyanonymous's avatar
comfyanonymous committed
564
565
566
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

567
568
569
570
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
571
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
572
573
574
575
576
577
578

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
579
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
580
581
582
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
583
584
585
586

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
587
588
589
590
591
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
592
593
594
595
596
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

597
    def apply_controlnet(self, conditioning, control_net, image, strength):
598
599
600
        if strength == 0:
            return (conditioning, )

comfyanonymous's avatar
comfyanonymous committed
601
602
603
604
        c = []
        control_hint = image.movedim(-1,1)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
605
606
607
608
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
609
            n[1]['control_apply_to_uncond'] = True
comfyanonymous's avatar
comfyanonymous committed
610
611
612
            c.append(n)
        return (c, )

613
614
615
616
617
618
619
620
621

class ControlNetApplyAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"positive": ("CONDITIONING", ),
                             "negative": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
622
623
                             "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                             "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
624
625
626
627
628
629
630
631
                             }}

    RETURN_TYPES = ("CONDITIONING","CONDITIONING")
    RETURN_NAMES = ("positive", "negative")
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

632
    def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent):
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
        if strength == 0:
            return (positive, negative)

        control_hint = image.movedim(-1,1)
        cnets = {}

        out = []
        for conditioning in [positive, negative]:
            c = []
            for t in conditioning:
                d = t[1].copy()

                prev_cnet = d.get('control', None)
                if prev_cnet in cnets:
                    c_net = cnets[prev_cnet]
                else:
649
                    c_net = control_net.copy().set_cond_hint(control_hint, strength, (1.0 - start_percent, 1.0 - end_percent))
650
651
652
653
654
655
656
657
658
659
660
                    c_net.set_previous_controlnet(prev_cnet)
                    cnets[prev_cnet] = c_net

                d['control'] = c_net
                d['control_apply_to_uncond'] = False
                n = [t[0], d]
                c.append(n)
            out.append(c)
        return (out[0], out[1])


661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
class UNETLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "unet_name": (folder_paths.get_filename_list("unet"), ),
                             }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "load_unet"

    CATEGORY = "advanced/loaders"

    def load_unet(self, unet_name):
        unet_path = folder_paths.get_full_path("unet", unet_name)
        model = comfy.sd.load_unet(unet_path)
        return (model,)

676
677
678
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
679
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
680
681
682
683
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

684
    CATEGORY = "advanced/loaders"
685

686
    def load_clip(self, clip_name):
687
        clip_path = folder_paths.get_full_path("clip", clip_name)
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return (clip,)

class DualCLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_name1": (folder_paths.get_filename_list("clip"), ), "clip_name2": (folder_paths.get_filename_list("clip"), ),
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "advanced/loaders"

    def load_clip(self, clip_name1, clip_name2):
        clip_path1 = folder_paths.get_full_path("clip", clip_name1)
        clip_path2 = folder_paths.get_full_path("clip", clip_name2)
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"))
705
706
        return (clip,)

707
708
709
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
710
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
711
712
713
714
715
716
717
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
718
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
719
        clip_vision = comfy.clip_vision.load(clip_path)
720
721
722
723
724
725
726
727
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
728
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
729
730
    FUNCTION = "encode"

731
    CATEGORY = "conditioning"
732
733
734
735
736
737
738
739

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
740
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
741
742
743
744
745
746
747

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
748
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
749
750
751
752
753
754
755
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
756
757
758
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
759
760
761
762
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
763
    CATEGORY = "conditioning/style_model"
764

765
766
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
        cond = style_model.get_cond(clip_vision_output)
767
        c = []
768
769
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
770
771
772
            c.append(n)
        return (c, )

773
774
775
776
777
778
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
779
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
780
781
782
783
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

784
    CATEGORY = "conditioning"
785

786
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
787
788
789
        if strength == 0:
            return (conditioning, )

790
791
792
        c = []
        for t in conditioning:
            o = t[1].copy()
793
794
795
            x = {"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation}
            if "unclip_conditioning" in o:
                o["unclip_conditioning"] = o["unclip_conditioning"][:] + [x]
796
            else:
797
                o["unclip_conditioning"] = [x]
798
799
800
801
            n = [t[0], o]
            c.append(n)
        return (c, )

802
803
804
805
806
807
808
809
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
810
    CATEGORY = "loaders"
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
                              "text": ("STRING", {"multiline": True}),
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
832
    CATEGORY = "conditioning/gligen"
833
834
835
836
837
838
839
840
841
842
843
844
845
846

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
847

comfyanonymous's avatar
comfyanonymous committed
848
849
850
851
852
853
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
854
855
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
856
857
858
859
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

860
861
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
862
863
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
864
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
865

comfyanonymous's avatar
comfyanonymous committed
866

867
868
869
870
871
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
872
                              "length": ("INT", {"default": 1, "min": 1, "max": 64}),
873
874
                              }}
    RETURN_TYPES = ("LATENT",)
875
    FUNCTION = "frombatch"
876

877
    CATEGORY = "latent/batch"
878

879
    def frombatch(self, samples, batch_index, length):
880
881
882
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
        length = min(s_in.shape[0] - batch_index, length)
        s["samples"] = s_in[batch_index:batch_index + length].clone()
        if "noise_mask" in samples:
            masks = samples["noise_mask"]
            if masks.shape[0] == 1:
                s["noise_mask"] = masks.clone()
            else:
                if masks.shape[0] < s_in.shape[0]:
                    masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
                s["noise_mask"] = masks[batch_index:batch_index + length].clone()
        if "batch_index" not in s:
            s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
        else:
            s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
        return (s,)
    
class RepeatLatentBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "amount": ("INT", {"default": 1, "min": 1, "max": 64}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "repeat"

    CATEGORY = "latent/batch"

    def repeat(self, samples, amount):
        s = samples.copy()
        s_in = samples["samples"]
        
        s["samples"] = s_in.repeat((amount, 1,1,1))
        if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
            masks = samples["noise_mask"]
            if masks.shape[0] < s_in.shape[0]:
                masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
            s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
        if "batch_index" in s:
            offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
            s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
923
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
924

comfyanonymous's avatar
comfyanonymous committed
925
class LatentUpscale:
comfyanonymous's avatar
comfyanonymous committed
926
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
927
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
928
929
930
931

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
932
933
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
934
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
935
936
937
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

938
939
    CATEGORY = "latent"

940
    def upscale(self, samples, upscale_method, width, height, crop):
941
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
942
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
943
944
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
945
class LatentUpscaleBy:
comfyanonymous's avatar
comfyanonymous committed
946
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
comfyanonymous's avatar
comfyanonymous committed
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.5, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

    CATEGORY = "latent"

    def upscale(self, samples, upscale_method, scale_by):
        s = samples.copy()
        width = round(samples["samples"].shape[3] * scale_by)
        height = round(samples["samples"].shape[2] * scale_by)
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled")
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
964
965
966
967
968
969
970
971
972
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
973
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
974
975

    def rotate(self, samples, rotation):
976
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
977
978
979
980
981
982
983
984
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

985
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
986
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
987
988
989
990
991
992
993
994
995
996

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
997
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
998
999

    def flip(self, samples, flip_method):
1000
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
1001
        if flip_method.startswith("x"):
1002
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
1003
        elif flip_method.startswith("y"):
1004
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
1005
1006

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1007
1008
1009
1010

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
1011
1012
1013
1014
1015
1016
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
1017
1018
1019
1020
1021
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
1022
1023
1024
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
1025
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
1049

comfyanonymous's avatar
comfyanonymous committed
1050
1051
1052
1053
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
1054
1055
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
1056
1057
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
1058
1059
1060
1061
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
1062
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
1063
1064

    def crop(self, samples, width, height, x, y):
1065
1066
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
1080
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
1081
1082
        return (s,)

1083
1084
1085
1086
1087
1088
1089
1090
1091
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

1092
    CATEGORY = "latent/inpaint"
1093
1094
1095

    def set_mask(self, samples, mask):
        s = samples.copy()
1096
        s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
1097
1098
        return (s,)

space-nuko's avatar
space-nuko committed
1099

space-nuko's avatar
space-nuko committed
1100
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
1101
    device = comfy.model_management.get_torch_device()
1102
    latent_image = latent["samples"]
1103

comfyanonymous's avatar
comfyanonymous committed
1104
1105
1106
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
1107
1108
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
comfyanonymous's avatar
comfyanonymous committed
1109

1110
    noise_mask = None
1111
    if "noise_mask" in latent:
1112
        noise_mask = latent["noise_mask"]
comfyanonymous's avatar
comfyanonymous committed
1113

space-nuko's avatar
space-nuko committed
1114
1115
1116
1117
    preview_format = "JPEG"
    if preview_format not in ["JPEG", "PNG"]:
        preview_format = "JPEG"

1118
    previewer = latent_preview.get_previewer(device, model.model.latent_format)
space-nuko's avatar
space-nuko committed
1119

1120
    pbar = comfy.utils.ProgressBar(steps)
1121
    def callback(step, x0, x, total_steps):
space-nuko's avatar
space-nuko committed
1122
        preview_bytes = None
1123
        if previewer:
1124
            preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
space-nuko's avatar
space-nuko committed
1125
        pbar.update_absolute(step + 1, total_steps, preview_bytes)
1126

1127
1128
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
1129
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, seed=seed)
1130
1131
1132
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
1133

comfyanonymous's avatar
comfyanonymous committed
1134
1135
1136
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
1137
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
space-nuko's avatar
space-nuko committed
1148
1149
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1150
1151
1152
1153

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

1154
1155
    CATEGORY = "sampling"

space-nuko's avatar
space-nuko committed
1156
1157
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
1158

comfyanonymous's avatar
comfyanonymous committed
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
space-nuko's avatar
space-nuko committed
1176
1177
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1178
1179
1180
1181
1182

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
1183

space-nuko's avatar
space-nuko committed
1184
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
comfyanonymous's avatar
comfyanonymous committed
1185
1186
1187
1188
1189
1190
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
space-nuko's avatar
space-nuko committed
1191
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
1192
1193
1194

class SaveImage:
    def __init__(self):
1195
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1196
        self.type = "output"
1197
        self.prefix_append = ""
comfyanonymous's avatar
comfyanonymous committed
1198
1199
1200
1201

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
1202
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
1203
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
1204
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
1205
1206
1207
1208
1209
1210
1211
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

1212
1213
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
1214
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
1215
        filename_prefix += self.prefix_append
1216
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
m957ymj75urz's avatar
m957ymj75urz committed
1217
        results = list()
comfyanonymous's avatar
comfyanonymous committed
1218
1219
        for image in images:
            i = 255. * image.cpu().numpy()
1220
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
1221
1222
1223
1224
1225
1226
1227
1228
            metadata = None
            if not args.disable_metadata:
                metadata = PngInfo()
                if prompt is not None:
                    metadata.add_text("prompt", json.dumps(prompt))
                if extra_pnginfo is not None:
                    for x in extra_pnginfo:
                        metadata.add_text(x, json.dumps(extra_pnginfo[x]))
1229

1230
            file = f"{filename}_{counter:05}_.png"
1231
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
1232
1233
1234
1235
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
1236
            })
1237
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
1238

m957ymj75urz's avatar
m957ymj75urz committed
1239
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
1240

pythongosssss's avatar
pythongosssss committed
1241
1242
class PreviewImage(SaveImage):
    def __init__(self):
1243
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1244
        self.type = "temp"
1245
        self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
pythongosssss's avatar
pythongosssss committed
1246
1247
1248

    @classmethod
    def INPUT_TYPES(s):
1249
        return {"required":
pythongosssss's avatar
pythongosssss committed
1250
1251
1252
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
1253

1254
1255
1256
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
1257
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1258
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1259
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1260
                    {"image": (sorted(files), )},
1261
                }
1262
1263

    CATEGORY = "image"
1264

1265
    RETURN_TYPES = ("IMAGE", "MASK")
1266
1267
    FUNCTION = "load_image"
    def load_image(self, image):
1268
        image_path = folder_paths.get_annotated_filepath(image)
1269
        i = Image.open(image_path)
1270
        i = ImageOps.exif_transpose(i)
1271
        image = i.convert("RGB")
1272
        image = np.array(image).astype(np.float32) / 255.0
1273
        image = torch.from_numpy(image)[None,]
1274
1275
1276
1277
1278
1279
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)
1280

1281
1282
    @classmethod
    def IS_CHANGED(s, image):
1283
        image_path = folder_paths.get_annotated_filepath(image)
1284
1285
1286
1287
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1288

1289
1290
1291
1292
1293
1294
1295
    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

1296
class LoadImageMask:
1297
    _color_channels = ["alpha", "red", "green", "blue"]
1298
1299
    @classmethod
    def INPUT_TYPES(s):
1300
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1301
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1302
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1303
                    {"image": (sorted(files), ),
1304
                     "channel": (s._color_channels, ), }
1305
1306
                }

1307
    CATEGORY = "mask"
1308
1309
1310
1311

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
1312
        image_path = folder_paths.get_annotated_filepath(image)
1313
        i = Image.open(image_path)
1314
        i = ImageOps.exif_transpose(i)
1315
1316
        if i.getbands() != ("R", "G", "B", "A"):
            i = i.convert("RGBA")
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
1330
        image_path = folder_paths.get_annotated_filepath(image)
1331
1332
1333
1334
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1335

1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
    @classmethod
    def VALIDATE_INPUTS(s, image, channel):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        if channel not in s._color_channels:
            return "Invalid color channel: {}".format(channel)

        return True

comfyanonymous's avatar
comfyanonymous committed
1346
class ImageScale:
comfyanonymous's avatar
comfyanonymous committed
1347
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic"]
comfyanonymous's avatar
comfyanonymous committed
1348
1349
1350
1351
1352
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1353
1354
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1355
1356
1357
1358
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1359
    CATEGORY = "image/upscaling"
1360

comfyanonymous's avatar
comfyanonymous committed
1361
1362
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
1363
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1364
1365
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1366

comfyanonymous's avatar
comfyanonymous committed
1367
class ImageScaleBy:
comfyanonymous's avatar
comfyanonymous committed
1368
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic"]
comfyanonymous's avatar
comfyanonymous committed
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

    CATEGORY = "image/upscaling"

    def upscale(self, image, upscale_method, scale_by):
        samples = image.movedim(-1,1)
        width = round(samples.shape[3] * scale_by)
        height = round(samples.shape[2] * scale_by)
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
        s = s.movedim(1,-1)
        return (s,)

1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


Guo Y.K's avatar
Guo Y.K committed
1403
1404
1405
1406
1407
1408
1409
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1410
1411
1412
1413
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1414
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1415
1416
1417
1418
1419
1420
1421
1422
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1423
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1436

1437
1438
1439
1440
1441
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1442
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1462

Guo Y.K's avatar
Guo Y.K committed
1463
1464
1465
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1466
1467
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1468
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1469
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1470
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1471
1472
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1473
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1474
1475
1476
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
comfyanonymous's avatar
comfyanonymous committed
1477
    "LatentUpscaleBy": LatentUpscaleBy,
1478
    "LatentFromBatch": LatentFromBatch,
1479
    "RepeatLatentBatch": RepeatLatentBatch,
comfyanonymous's avatar
comfyanonymous committed
1480
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1481
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1482
    "LoadImage": LoadImage,
1483
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1484
    "ImageScale": ImageScale,
comfyanonymous's avatar
comfyanonymous committed
1485
    "ImageScaleBy": ImageScaleBy,
1486
    "ImageInvert": ImageInvert,
Guo Y.K's avatar
Guo Y.K committed
1487
    "ImagePadForOutpaint": ImagePadForOutpaint,
FizzleDorf's avatar
FizzleDorf committed
1488
    "ConditioningAverage ": ConditioningAverage ,
comfyanonymous's avatar
comfyanonymous committed
1489
    "ConditioningCombine": ConditioningCombine,
1490
    "ConditioningConcat": ConditioningConcat,
comfyanonymous's avatar
comfyanonymous committed
1491
    "ConditioningSetArea": ConditioningSetArea,
Jacob Segal's avatar
Jacob Segal committed
1492
    "ConditioningSetMask": ConditioningSetMask,
comfyanonymous's avatar
comfyanonymous committed
1493
    "KSamplerAdvanced": KSamplerAdvanced,
1494
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1495
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
1496
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1497
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1498
    "LatentCrop": LatentCrop,
1499
    "LoraLoader": LoraLoader,
1500
    "CLIPLoader": CLIPLoader,
1501
    "UNETLoader": UNETLoader,
1502
    "DualCLIPLoader": DualCLIPLoader,
1503
    "CLIPVisionEncode": CLIPVisionEncode,
1504
    "StyleModelApply": StyleModelApply,
1505
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1506
    "ControlNetApply": ControlNetApply,
1507
    "ControlNetApplyAdvanced": ControlNetApplyAdvanced,
comfyanonymous's avatar
comfyanonymous committed
1508
    "ControlNetLoader": ControlNetLoader,
1509
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1510
1511
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1512
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1513
    "VAEEncodeTiled": VAEEncodeTiled,
1514
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1515
1516
1517
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,

1518
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1519
    "DiffusersLoader": DiffusersLoader,
Dr.Lt.Data's avatar
Dr.Lt.Data committed
1520
1521

    "LoadLatent": LoadLatent,
1522
    "SaveLatent": SaveLatent,
1523
1524

    "ConditioningZeroOut": ConditioningZeroOut,
1525
    "ConditioningSetTimestepRange": ConditioningSetTimestepRange,
comfyanonymous's avatar
comfyanonymous committed
1526
1527
}

City's avatar
City committed
1528
1529
1530
1531
1532
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1533
1534
    "CheckpointLoader": "Load Checkpoint (With Config)",
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
FizzleDorf's avatar
FizzleDorf committed
1549
    "ConditioningAverage ": "Conditioning (Average)",
1550
    "ConditioningConcat": "Conditioning (Concat)",
City's avatar
City committed
1551
    "ConditioningSetArea": "Conditioning (Set Area)",
Jacob Segal's avatar
Jacob Segal committed
1552
    "ConditioningSetMask": "Conditioning (Set Mask)",
City's avatar
City committed
1553
    "ControlNetApply": "Apply ControlNet",
1554
    "ControlNetApplyAdvanced": "Apply ControlNet (Advanced)",
City's avatar
City committed
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
comfyanonymous's avatar
comfyanonymous committed
1565
    "LatentUpscaleBy": "Upscale Latent By",
City's avatar
City committed
1566
    "LatentComposite": "Latent Composite",
1567
1568
    "LatentFromBatch" : "Latent From Batch",
    "RepeatLatentBatch": "Repeat Latent Batch",
City's avatar
City committed
1569
1570
1571
1572
1573
1574
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
comfyanonymous's avatar
comfyanonymous committed
1575
    "ImageScaleBy": "Upscale Image By",
City's avatar
City committed
1576
1577
1578
1579
1580
1581
1582
1583
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1584
def load_custom_node(module_path, ignore=set()):
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
1598
1599
1600
            for name in module.NODE_CLASS_MAPPINGS:
                if name not in ignore:
                    NODE_CLASS_MAPPINGS[name] = module.NODE_CLASS_MAPPINGS[name]
1601
1602
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1603
            return True
1604
1605
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
1606
            return False
1607
1608
1609
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)
1610
        return False
1611

Hacker 17082006's avatar
Hacker 17082006 committed
1612
def load_custom_nodes():
1613
    base_node_names = set(NODE_CLASS_MAPPINGS.keys())
1614
    node_paths = folder_paths.get_folder_paths("custom_nodes")
1615
    node_import_times = []
1616
1617
1618
1619
1620
1621
1622
1623
    for custom_node_path in node_paths:
        possible_modules = os.listdir(custom_node_path)
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1624
            if module_path.endswith(".disabled"): continue
1625
            time_before = time.perf_counter()
1626
            success = load_custom_node(module_path, base_node_names)
1627
            node_import_times.append((time.perf_counter() - time_before, module_path, success))
1628

1629
    if len(node_import_times) > 0:
comfyanonymous's avatar
comfyanonymous committed
1630
        print("\nImport times for custom nodes:")
1631
        for n in sorted(node_import_times):
1632
1633
1634
1635
1636
            if n[2]:
                import_message = ""
            else:
                import_message = " (IMPORT FAILED)"
            print("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
1637
        print()
1638

1639
def init_custom_nodes():
1640
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_hypernetwork.py"))
1641
1642
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
1643
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))
1644
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_rebatch.py"))
1645
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_model_merging.py"))
1646
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_tomesd.py"))
1647
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_clip_sdxl.py"))
1648
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_canny.py"))
1649
    load_custom_nodes()