nodes.py 49.6 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
8
import math
9
import time
comfyanonymous's avatar
comfyanonymous committed
10
11
12
13
14

from PIL import Image
from PIL.PngImagePlugin import PngInfo
import numpy as np

sALTaccount's avatar
sALTaccount committed
15

comfyanonymous's avatar
comfyanonymous committed
16
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
17
18


comfyanonymous's avatar
comfyanonymous committed
19
import comfy.diffusers_convert
comfyanonymous's avatar
comfyanonymous committed
20
import comfy.samplers
21
import comfy.sample
comfyanonymous's avatar
comfyanonymous committed
22
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
23
24
import comfy.utils

25
import comfy.clip_vision
26

27
import comfy.model_management
28
import importlib
comfyanonymous's avatar
comfyanonymous committed
29

30
import folder_paths
31
32

def before_node_execution():
33
    comfy.model_management.throw_exception_if_processing_interrupted()
34

35
def interrupt_processing(value=True):
36
    comfy.model_management.interrupt_current_processing(value)
37

38
39
MAX_RESOLUTION=8192

comfyanonymous's avatar
comfyanonymous committed
40
41
42
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
43
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
44
45
46
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

47
48
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
49
    def encode(self, clip, text):
comfyanonymous's avatar
comfyanonymous committed
50
51
52
53
54
55
56
57
58
        return ([[clip.encode(text), {}]], )

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

59
60
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
61
62
63
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

FizzleDorf's avatar
FizzleDorf committed
64
65
66
class ConditioningAverage :
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
67
68
        return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
                              "conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
FizzleDorf's avatar
FizzleDorf committed
69
70
71
72
73
74
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "addWeighted"

    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
75
    def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
FizzleDorf's avatar
FizzleDorf committed
76
        out = []
comfyanonymous's avatar
comfyanonymous committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90

        if len(conditioning_from) > 1:
            print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

        cond_from = conditioning_from[0][0]

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
            t0 = cond_from[:,:t1.shape[1]]
            if t0.shape[1] < t1.shape[1]:
                t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)

            tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
            n = [tw, conditioning_to[i][1].copy()]
FizzleDorf's avatar
FizzleDorf committed
91
92
93
            out.append(n)
        return (out, )

comfyanonymous's avatar
comfyanonymous committed
94
95
96
97
class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
98
99
100
101
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
102
103
104
105
106
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

107
108
    CATEGORY = "conditioning"

109
    def append(self, conditioning, width, height, x, y, strength):
comfyanonymous's avatar
comfyanonymous committed
110
111
112
113
114
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
115
            n[1]['set_area_to_bounds'] = False
comfyanonymous's avatar
comfyanonymous committed
116
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
117
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
118

Jacob Segal's avatar
Jacob Segal committed
119
120
121
122
123
124
class ConditioningSetMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "mask": ("MASK", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
125
                              "set_cond_area": (["default", "mask bounds"],),
Jacob Segal's avatar
Jacob Segal committed
126
127
128
129
130
131
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

132
    def append(self, conditioning, mask, set_cond_area, strength):
Jacob Segal's avatar
Jacob Segal committed
133
        c = []
134
135
136
        set_area_to_bounds = False
        if set_cond_area != "default":
            set_area_to_bounds = True
Jacob Segal's avatar
Jacob Segal committed
137
138
139
140
141
142
        if len(mask.shape) < 3:
            mask = mask.unsqueeze(0)
        for t in conditioning:
            n = [t[0], t[1].copy()]
            _, h, w = mask.shape
            n[1]['mask'] = mask
Jacob Segal's avatar
Jacob Segal committed
143
            n[1]['set_area_to_bounds'] = set_area_to_bounds
144
            n[1]['mask_strength'] = strength
Jacob Segal's avatar
Jacob Segal committed
145
146
147
            c.append(n)
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
148
149
150
151
152
153
154
class VAEDecode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

155
156
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
157
    def decode(self, vae, samples):
158
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
159

160
161
162
163
164
165
166
167
168
169
170
171
class VAEDecodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
172
173
174
175
176
177
178
class VAEEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

179
180
    CATEGORY = "latent"

181
182
183
184
    @staticmethod
    def vae_encode_crop_pixels(pixels):
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
185
        if pixels.shape[1] != x or pixels.shape[2] != y:
186
187
188
189
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
        return pixels
190

191
192
193
    def encode(self, vae, pixels):
        pixels = self.vae_encode_crop_pixels(pixels)
        t = vae.encode(pixels[:,:,:,:3])
194
        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
195

comfyanonymous's avatar
comfyanonymous committed
196
197
198
199
200
201
202
203
204
205
class VAEEncodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

    def encode(self, vae, pixels):
206
        pixels = VAEEncode.vae_encode_crop_pixels(pixels)
comfyanonymous's avatar
comfyanonymous committed
207
208
        t = vae.encode_tiled(pixels[:,:,:,:3])
        return ({"samples":t}, )
209

210
211
212
class VAEEncodeForInpaint:
    @classmethod
    def INPUT_TYPES(s):
213
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
214
215
216
217
218
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

219
    def encode(self, vae, pixels, mask, grow_mask_by=6):
220
221
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
222
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
223

224
        pixels = pixels.clone()
225
        if pixels.shape[1] != x or pixels.shape[2] != y:
226
227
228
229
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
230

231
        #grow mask by a few pixels to keep things seamless in latent space
232
233
234
235
236
237
238
239
        if grow_mask_by == 0:
            mask_erosion = mask
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)

240
        m = (1.0 - mask.round()).squeeze(1)
241
242
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
243
            pixels[:,:,:,i] *= m
244
245
246
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

247
        return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
248
249
250
251

class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
252
253
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
254
255
256
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

257
    CATEGORY = "advanced/loaders"
258

comfyanonymous's avatar
comfyanonymous committed
259
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
260
261
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
262
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
263

264
265
266
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
267
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
268
269
270
271
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

272
    CATEGORY = "loaders"
273

274
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
275
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
276
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
277
278
        return out

sALTaccount's avatar
sALTaccount committed
279
280
281
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
282
        paths = []
sALTaccount's avatar
sALTaccount committed
283
        for search_path in folder_paths.get_folder_paths("diffusers"):
284
            if os.path.exists(search_path):
sALTaccount's avatar
sALTaccount committed
285
                paths += next(os.walk(search_path))[1]
286
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
287
288
289
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

290
    CATEGORY = "advanced/loaders"
sALTaccount's avatar
sALTaccount committed
291
292

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
293
294
295
296
297
298
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
                paths = next(os.walk(search_path))[1]
                if model_path in paths:
                    model_path = os.path.join(search_path, model_path)
                    break
299

300
        return comfy.diffusers_convert.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
301
302


303
304
305
306
307
308
309
310
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

311
    CATEGORY = "loaders"
312
313
314
315
316
317

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

334
335
336
337
338
class LoraLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
339
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
340
341
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
342
343
344
345
346
347
348
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
349
        lora_path = folder_paths.get_full_path("loras", lora_name)
350
351
352
        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
        return (model_lora, clip_lora)

353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
class TomePatchModel:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "_for_testing"

    def patch(self, model, ratio):
        m = model.clone()
        m.set_model_tomesd(ratio)
        return (m, )

comfyanonymous's avatar
comfyanonymous committed
369
370
371
class VAELoader:
    @classmethod
    def INPUT_TYPES(s):
372
        return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
comfyanonymous's avatar
comfyanonymous committed
373
374
375
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

376
377
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
378
379
    #TODO: scale factor?
    def load_vae(self, vae_name):
380
        vae_path = folder_paths.get_full_path("vae", vae_name)
comfyanonymous's avatar
comfyanonymous committed
381
382
383
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
384
385
386
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
387
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
388
389
390
391
392
393
394

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
395
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
comfyanonymous's avatar
comfyanonymous committed
396
397
398
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

399
400
401
402
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
403
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
404
405
406
407
408
409
410

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
411
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
412
413
414
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
415
416
417
418

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
419
420
421
422
423
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
424
425
426
427
428
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

429
    def apply_controlnet(self, conditioning, control_net, image, strength):
comfyanonymous's avatar
comfyanonymous committed
430
431
432
433
        c = []
        control_hint = image.movedim(-1,1)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
434
435
436
437
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
comfyanonymous's avatar
comfyanonymous committed
438
439
440
            c.append(n)
        return (c, )

441
442
443
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
444
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
445
446
447
448
449
450
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

451
    def load_clip(self, clip_name):
452
        clip_path = folder_paths.get_full_path("clip", clip_name)
comfyanonymous's avatar
comfyanonymous committed
453
        clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=folder_paths.get_folder_paths("embeddings"))
454
455
        return (clip,)

456
457
458
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
459
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
460
461
462
463
464
465
466
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
467
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
468
        clip_vision = comfy.clip_vision.load(clip_path)
469
470
471
472
473
474
475
476
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
477
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
478
479
    FUNCTION = "encode"

480
    CATEGORY = "conditioning"
481
482
483
484
485
486
487
488

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
489
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
490
491
492
493
494
495
496

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
497
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
498
499
500
501
502
503
504
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
505
506
507
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
508
509
510
511
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
512
    CATEGORY = "conditioning/style_model"
513

514
515
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
        cond = style_model.get_cond(clip_vision_output)
516
        c = []
517
518
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
519
520
521
            c.append(n)
        return (c, )

522
523
524
525
526
527
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
528
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
529
530
531
532
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

533
    CATEGORY = "conditioning"
534

535
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
536
537
538
        c = []
        for t in conditioning:
            o = t[1].copy()
539
            x = (clip_vision_output, strength, noise_augmentation)
540
541
542
543
544
545
546
547
            if "adm" in o:
                o["adm"] = o["adm"][:] + [x]
            else:
                o["adm"] = [x]
            n = [t[0], o]
            c.append(n)
        return (c, )

548
549
550
551
552
553
554
555
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
556
    CATEGORY = "loaders"
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
                              "text": ("STRING", {"multiline": True}),
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
578
    CATEGORY = "conditioning/gligen"
579
580
581
582
583
584
585
586
587
588
589
590
591
592

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
593

comfyanonymous's avatar
comfyanonymous committed
594
595
596
597
598
599
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
600
601
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
602
603
604
605
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

606
607
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
608
609
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
610
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
611

comfyanonymous's avatar
comfyanonymous committed
612

613
614
615
616
617
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
618
                              "length": ("INT", {"default": 1, "min": 1, "max": 64}),
619
620
                              }}
    RETURN_TYPES = ("LATENT",)
621
    FUNCTION = "frombatch"
622

623
    CATEGORY = "latent/batch"
624

625
    def frombatch(self, samples, batch_index, length):
626
627
628
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
        length = min(s_in.shape[0] - batch_index, length)
        s["samples"] = s_in[batch_index:batch_index + length].clone()
        if "noise_mask" in samples:
            masks = samples["noise_mask"]
            if masks.shape[0] == 1:
                s["noise_mask"] = masks.clone()
            else:
                if masks.shape[0] < s_in.shape[0]:
                    masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
                s["noise_mask"] = masks[batch_index:batch_index + length].clone()
        if "batch_index" not in s:
            s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
        else:
            s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
        return (s,)
    
class RepeatLatentBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "amount": ("INT", {"default": 1, "min": 1, "max": 64}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "repeat"

    CATEGORY = "latent/batch"

    def repeat(self, samples, amount):
        s = samples.copy()
        s_in = samples["samples"]
        
        s["samples"] = s_in.repeat((amount, 1,1,1))
        if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
            masks = samples["noise_mask"]
            if masks.shape[0] < s_in.shape[0]:
                masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
            s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
        if "batch_index" in s:
            offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
            s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
669
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
670

comfyanonymous's avatar
comfyanonymous committed
671
672
class LatentUpscale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
673
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
674
675
676
677

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
678
679
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
680
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
681
682
683
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

684
685
    CATEGORY = "latent"

686
    def upscale(self, samples, upscale_method, width, height, crop):
687
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
688
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
689
690
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
691
692
693
694
695
696
697
698
699
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
700
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
701
702

    def rotate(self, samples, rotation):
703
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
704
705
706
707
708
709
710
711
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

712
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
713
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
714
715
716
717
718
719
720
721
722
723

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
724
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
725
726

    def flip(self, samples, flip_method):
727
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
728
        if flip_method.startswith("x"):
729
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
730
        elif flip_method.startswith("y"):
731
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
732
733

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
734
735
736
737

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
738
739
740
741
742
743
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
744
745
746
747
748
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
749
750
751
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
752
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
776

comfyanonymous's avatar
comfyanonymous committed
777
778
779
780
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
781
782
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
783
784
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
785
786
787
788
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
789
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
790
791

    def crop(self, samples, width, height, x, y):
792
793
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
794
795
796
797
798
799
800
801
802
803
804
805
806
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
807
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
808
809
        return (s,)

810
811
812
813
814
815
816
817
818
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

819
    CATEGORY = "latent/inpaint"
820
821
822

    def set_mask(self, samples, mask):
        s = samples.copy()
823
        s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
824
825
        return (s,)

826
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
827
    device = comfy.model_management.get_torch_device()
828
    latent_image = latent["samples"]
829

comfyanonymous's avatar
comfyanonymous committed
830
831
832
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
833
834
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
comfyanonymous's avatar
comfyanonymous committed
835

836
    noise_mask = None
837
    if "noise_mask" in latent:
838
        noise_mask = latent["noise_mask"]
comfyanonymous's avatar
comfyanonymous committed
839

840
    pbar = comfy.utils.ProgressBar(steps)
841
842
    def callback(step, x0, x, total_steps):
        pbar.update_absolute(step + 1, total_steps)
843

844
845
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
846
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback)
847
848
849
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
850

comfyanonymous's avatar
comfyanonymous committed
851
852
853
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
854
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

870
871
    CATEGORY = "sampling"

comfyanonymous's avatar
comfyanonymous committed
872
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
873
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
874

comfyanonymous's avatar
comfyanonymous committed
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
898

comfyanonymous's avatar
comfyanonymous committed
899
900
901
902
903
904
905
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
906
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
907
908
909

class SaveImage:
    def __init__(self):
910
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
911
        self.type = "output"
comfyanonymous's avatar
comfyanonymous committed
912
913
914
915

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
916
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
917
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
918
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
919
920
921
922
923
924
925
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

926
927
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
928
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
929
        def map_filename(filename):
930
            prefix_len = len(os.path.basename(filename_prefix))
931
932
933
934
935
936
            prefix = filename[:prefix_len + 1]
            try:
                digits = int(filename[prefix_len + 1:].split('_')[0])
            except:
                digits = 0
            return (digits, prefix)
comfyanonymous's avatar
Style.  
comfyanonymous committed
937

938
939
940
941
        def compute_vars(input):
            input = input.replace("%width%", str(images[0].shape[1]))
            input = input.replace("%height%", str(images[0].shape[0]))
            return input
comfyanonymous's avatar
Style.  
comfyanonymous committed
942

943
        filename_prefix = compute_vars(filename_prefix)
comfyanonymous's avatar
comfyanonymous committed
944

m957ymj75urz's avatar
m957ymj75urz committed
945
946
947
        subfolder = os.path.dirname(os.path.normpath(filename_prefix))
        filename = os.path.basename(os.path.normpath(filename_prefix))

comfyanonymous's avatar
comfyanonymous committed
948
        full_output_folder = os.path.join(self.output_dir, subfolder)
949

950
        if os.path.commonpath((self.output_dir, os.path.abspath(full_output_folder))) != self.output_dir:
951
            print("Saving image outside the output folder is not allowed.")
comfyanonymous's avatar
comfyanonymous committed
952
953
            return {}

954
        try:
955
            counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1
956
957
        except ValueError:
            counter = 1
958
        except FileNotFoundError:
959
            os.makedirs(full_output_folder, exist_ok=True)
960
            counter = 1
pythongosssss's avatar
pythongosssss committed
961

m957ymj75urz's avatar
m957ymj75urz committed
962
        results = list()
comfyanonymous's avatar
comfyanonymous committed
963
964
        for image in images:
            i = 255. * image.cpu().numpy()
965
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
comfyanonymous's avatar
comfyanonymous committed
966
967
968
969
970
971
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
972

973
            file = f"{filename}_{counter:05}_.png"
974
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
975
976
977
978
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
979
            })
980
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
981

m957ymj75urz's avatar
m957ymj75urz committed
982
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
983

pythongosssss's avatar
pythongosssss committed
984
985
class PreviewImage(SaveImage):
    def __init__(self):
986
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
987
        self.type = "temp"
pythongosssss's avatar
pythongosssss committed
988
989
990

    @classmethod
    def INPUT_TYPES(s):
991
        return {"required":
pythongosssss's avatar
pythongosssss committed
992
993
994
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
995

996
997
998
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
999
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1000
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1001
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1002
                    {"image": (sorted(files), )},
1003
                }
1004
1005

    CATEGORY = "image"
1006

1007
    RETURN_TYPES = ("IMAGE", "MASK")
1008
1009
    FUNCTION = "load_image"
    def load_image(self, image):
1010
        image_path = folder_paths.get_annotated_filepath(image)
1011
1012
        i = Image.open(image_path)
        image = i.convert("RGB")
1013
        image = np.array(image).astype(np.float32) / 255.0
1014
        image = torch.from_numpy(image)[None,]
1015
1016
1017
1018
1019
1020
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)
1021

1022
1023
    @classmethod
    def IS_CHANGED(s, image):
1024
        image_path = folder_paths.get_annotated_filepath(image)
1025
1026
1027
1028
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1029

1030
1031
1032
1033
1034
1035
1036
    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

1037
class LoadImageMask:
1038
    _color_channels = ["alpha", "red", "green", "blue"]
1039
1040
    @classmethod
    def INPUT_TYPES(s):
1041
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1042
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1043
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1044
                    {"image": (sorted(files), ),
1045
                     "channel": (s._color_channels, ), }
1046
1047
                }

1048
    CATEGORY = "mask"
1049
1050
1051
1052

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
1053
        image_path = folder_paths.get_annotated_filepath(image)
1054
        i = Image.open(image_path)
1055
1056
        if i.getbands() != ("R", "G", "B", "A"):
            i = i.convert("RGBA")
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
1070
        image_path = folder_paths.get_annotated_filepath(image)
1071
1072
1073
1074
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1075

1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
    @classmethod
    def VALIDATE_INPUTS(s, image, channel):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        if channel not in s._color_channels:
            return "Invalid color channel: {}".format(channel)

        return True

comfyanonymous's avatar
comfyanonymous committed
1086
1087
1088
1089
1090
1091
1092
class ImageScale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1093
1094
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1095
1096
1097
1098
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1099
    CATEGORY = "image/upscaling"
1100

comfyanonymous's avatar
comfyanonymous committed
1101
1102
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
1103
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1104
1105
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1106

1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


Guo Y.K's avatar
Guo Y.K committed
1123
1124
1125
1126
1127
1128
1129
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1130
1131
1132
1133
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1134
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1135
1136
1137
1138
1139
1140
1141
1142
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1143
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1156

1157
1158
1159
1160
1161
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1162
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1182

Guo Y.K's avatar
Guo Y.K committed
1183
1184
1185
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1186
1187
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1188
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1189
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1190
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1191
1192
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1193
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1194
1195
1196
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
1197
    "LatentFromBatch": LatentFromBatch,
1198
    "RepeatLatentBatch": RepeatLatentBatch,
comfyanonymous's avatar
comfyanonymous committed
1199
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1200
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1201
    "LoadImage": LoadImage,
1202
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1203
    "ImageScale": ImageScale,
1204
    "ImageInvert": ImageInvert,
Guo Y.K's avatar
Guo Y.K committed
1205
    "ImagePadForOutpaint": ImagePadForOutpaint,
FizzleDorf's avatar
FizzleDorf committed
1206
    "ConditioningAverage ": ConditioningAverage ,
comfyanonymous's avatar
comfyanonymous committed
1207
1208
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
Jacob Segal's avatar
Jacob Segal committed
1209
    "ConditioningSetMask": ConditioningSetMask,
comfyanonymous's avatar
comfyanonymous committed
1210
    "KSamplerAdvanced": KSamplerAdvanced,
1211
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1212
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
1213
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1214
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1215
    "LatentCrop": LatentCrop,
1216
    "LoraLoader": LoraLoader,
1217
    "CLIPLoader": CLIPLoader,
1218
    "CLIPVisionEncode": CLIPVisionEncode,
1219
    "StyleModelApply": StyleModelApply,
1220
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1221
1222
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
1223
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1224
1225
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1226
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1227
    "VAEEncodeTiled": VAEEncodeTiled,
1228
    "TomePatchModel": TomePatchModel,
1229
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1230
1231
1232
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,

1233
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1234
    "DiffusersLoader": DiffusersLoader,
comfyanonymous's avatar
comfyanonymous committed
1235
1236
}

City's avatar
City committed
1237
1238
1239
1240
1241
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1242
1243
    "CheckpointLoader": "Load Checkpoint (With Config)",
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
FizzleDorf's avatar
FizzleDorf committed
1258
    "ConditioningAverage ": "Conditioning (Average)",
City's avatar
City committed
1259
    "ConditioningSetArea": "Conditioning (Set Area)",
Jacob Segal's avatar
Jacob Segal committed
1260
    "ConditioningSetMask": "Conditioning (Set Mask)",
City's avatar
City committed
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
    "ControlNetApply": "Apply ControlNet",
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
    "LatentComposite": "Latent Composite",
1273
1274
    "LatentFromBatch" : "Latent From Batch",
    "RepeatLatentBatch": "Repeat Latent Batch",
City's avatar
City committed
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
def load_custom_node(module_path):
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
            NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
1304
1305
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1306
            return True
1307
1308
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
1309
            return False
1310
1311
1312
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)
1313
        return False
1314

Hacker 17082006's avatar
Hacker 17082006 committed
1315
def load_custom_nodes():
1316
    node_paths = folder_paths.get_folder_paths("custom_nodes")
1317
    node_import_times = []
1318
1319
1320
1321
1322
1323
1324
1325
    for custom_node_path in node_paths:
        possible_modules = os.listdir(custom_node_path)
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1326
            time_before = time.perf_counter()
1327
            success = load_custom_node(module_path)
1328
            node_import_times.append((time.perf_counter() - time_before, module_path, success))
1329

1330
    if len(node_import_times) > 0:
comfyanonymous's avatar
comfyanonymous committed
1331
        print("\nImport times for custom nodes:")
1332
        for n in sorted(node_import_times):
1333
1334
1335
1336
1337
            if n[2]:
                import_message = ""
            else:
                import_message = " (IMPORT FAILED)"
            print("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
1338
        print()
1339

1340
def init_custom_nodes():
1341
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_hypernetwork.py"))
1342
1343
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
1344
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))
1345
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_rebatch.py"))
1346
    load_custom_nodes()