"tasks/vision/vscode:/vscode.git/clone" did not exist on "0024a5c66f90c7d3d02f7ef08a773aace6deb155"
nodes.py 62.6 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
8
import math
9
import time
10
import random
comfyanonymous's avatar
comfyanonymous committed
11

12
from PIL import Image, ImageOps
comfyanonymous's avatar
comfyanonymous committed
13
14
from PIL.PngImagePlugin import PngInfo
import numpy as np
15
import safetensors.torch
comfyanonymous's avatar
comfyanonymous committed
16

comfyanonymous's avatar
comfyanonymous committed
17
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
18
19


20
import comfy.diffusers_load
comfyanonymous's avatar
comfyanonymous committed
21
import comfy.samplers
22
import comfy.sample
comfyanonymous's avatar
comfyanonymous committed
23
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
24
25
import comfy.utils

26
import comfy.clip_vision
27

28
import comfy.model_management
29
30
from comfy.cli_args import args

31
import importlib
comfyanonymous's avatar
comfyanonymous committed
32

33
import folder_paths
34
import latent_preview
space-nuko's avatar
space-nuko committed
35

36
def before_node_execution():
37
    comfy.model_management.throw_exception_if_processing_interrupted()
38

39
def interrupt_processing(value=True):
40
    comfy.model_management.interrupt_current_processing(value)
41

42
43
MAX_RESOLUTION=8192

comfyanonymous's avatar
comfyanonymous committed
44
45
46
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
47
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
48
49
50
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

51
52
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
53
    def encode(self, clip, text):
54
55
56
        tokens = clip.tokenize(text)
        cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
        return ([[cond, {"pooled_output": pooled}]], )
comfyanonymous's avatar
comfyanonymous committed
57
58
59
60
61
62
63
64

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

65
66
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
67
68
69
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

FizzleDorf's avatar
FizzleDorf committed
70
71
72
class ConditioningAverage :
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
73
74
        return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
                              "conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
FizzleDorf's avatar
FizzleDorf committed
75
76
77
78
79
80
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "addWeighted"

    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
81
    def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
FizzleDorf's avatar
FizzleDorf committed
82
        out = []
comfyanonymous's avatar
comfyanonymous committed
83
84
85
86
87

        if len(conditioning_from) > 1:
            print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

        cond_from = conditioning_from[0][0]
88
        pooled_output_from = conditioning_from[0][1].get("pooled_output", None)
comfyanonymous's avatar
comfyanonymous committed
89
90
91

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
92
            pooled_output_to = conditioning_to[i][1].get("pooled_output", pooled_output_from)
comfyanonymous's avatar
comfyanonymous committed
93
94
95
96
97
            t0 = cond_from[:,:t1.shape[1]]
            if t0.shape[1] < t1.shape[1]:
                t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)

            tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
98
99
100
101
102
103
104
            t_to = conditioning_to[i][1].copy()
            if pooled_output_from is not None and pooled_output_to is not None:
                t_to["pooled_output"] = torch.mul(pooled_output_to, conditioning_to_strength) + torch.mul(pooled_output_from, (1.0 - conditioning_to_strength))
            elif pooled_output_from is not None:
                t_to["pooled_output"] = pooled_output_from

            n = [tw, t_to]
FizzleDorf's avatar
FizzleDorf committed
105
106
107
            out.append(n)
        return (out, )

108
109
110
111
112
113
114
115
116
117
class ConditioningConcat:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "conditioning_to": ("CONDITIONING",),
            "conditioning_from": ("CONDITIONING",),
            }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "concat"

118
    CATEGORY = "conditioning"
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

    def concat(self, conditioning_to, conditioning_from):
        out = []

        if len(conditioning_from) > 1:
            print("Warning: ConditioningConcat conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

        cond_from = conditioning_from[0][0]

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
            tw = torch.cat((t1, cond_from),1)
            n = [tw, conditioning_to[i][1].copy()]
            out.append(n)

        return (out, )

comfyanonymous's avatar
comfyanonymous committed
136
137
138
139
class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
140
141
142
143
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
144
145
146
147
148
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

149
150
    CATEGORY = "conditioning"

151
    def append(self, conditioning, width, height, x, y, strength):
comfyanonymous's avatar
comfyanonymous committed
152
153
154
155
156
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
157
            n[1]['set_area_to_bounds'] = False
comfyanonymous's avatar
comfyanonymous committed
158
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
159
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
160

Jacob Segal's avatar
Jacob Segal committed
161
162
163
164
165
166
class ConditioningSetMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "mask": ("MASK", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
167
                              "set_cond_area": (["default", "mask bounds"],),
Jacob Segal's avatar
Jacob Segal committed
168
169
170
171
172
173
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

174
    def append(self, conditioning, mask, set_cond_area, strength):
Jacob Segal's avatar
Jacob Segal committed
175
        c = []
176
177
178
        set_area_to_bounds = False
        if set_cond_area != "default":
            set_area_to_bounds = True
Jacob Segal's avatar
Jacob Segal committed
179
180
181
182
183
184
        if len(mask.shape) < 3:
            mask = mask.unsqueeze(0)
        for t in conditioning:
            n = [t[0], t[1].copy()]
            _, h, w = mask.shape
            n[1]['mask'] = mask
Jacob Segal's avatar
Jacob Segal committed
185
            n[1]['set_area_to_bounds'] = set_area_to_bounds
186
            n[1]['mask_strength'] = strength
Jacob Segal's avatar
Jacob Segal committed
187
188
189
            c.append(n)
        return (c, )

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
class ConditioningZeroOut:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "zero_out"

    CATEGORY = "advanced/conditioning"

    def zero_out(self, conditioning):
        c = []
        for t in conditioning:
            d = t[1].copy()
            if "pooled_output" in d:
                d["pooled_output"] = torch.zeros_like(d["pooled_output"])
            n = [torch.zeros_like(t[0]), d]
            c.append(n)
        return (c, )

209
210
211
212
class ConditioningSetTimestepRange:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
213
214
                             "start": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                             "end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
215
216
217
218
219
220
221
222
223
224
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "set_range"

    CATEGORY = "advanced/conditioning"

    def set_range(self, conditioning, start, end):
        c = []
        for t in conditioning:
            d = t[1].copy()
225
226
            d['start_percent'] = 1.0 - start
            d['end_percent'] = 1.0 - end
227
228
229
230
            n = [t[0], d]
            c.append(n)
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
231
232
233
234
235
236
237
class VAEDecode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

238
239
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
240
    def decode(self, vae, samples):
241
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
242

243
244
245
246
247
248
249
250
251
252
253
254
class VAEDecodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
255
256
257
258
259
260
261
class VAEEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

262
263
    CATEGORY = "latent"

264
265
266
267
    @staticmethod
    def vae_encode_crop_pixels(pixels):
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
268
        if pixels.shape[1] != x or pixels.shape[2] != y:
269
270
271
272
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
        return pixels
273

274
275
276
    def encode(self, vae, pixels):
        pixels = self.vae_encode_crop_pixels(pixels)
        t = vae.encode(pixels[:,:,:,:3])
277
        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
278

comfyanonymous's avatar
comfyanonymous committed
279
280
281
282
283
284
285
286
287
288
class VAEEncodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

    def encode(self, vae, pixels):
289
        pixels = VAEEncode.vae_encode_crop_pixels(pixels)
comfyanonymous's avatar
comfyanonymous committed
290
291
        t = vae.encode_tiled(pixels[:,:,:,:3])
        return ({"samples":t}, )
292

293
294
295
class VAEEncodeForInpaint:
    @classmethod
    def INPUT_TYPES(s):
296
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
297
298
299
300
301
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

302
    def encode(self, vae, pixels, mask, grow_mask_by=6):
303
304
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
305
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
306

307
        pixels = pixels.clone()
308
        if pixels.shape[1] != x or pixels.shape[2] != y:
309
310
311
312
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
313

314
        #grow mask by a few pixels to keep things seamless in latent space
315
316
317
318
319
320
321
322
        if grow_mask_by == 0:
            mask_erosion = mask
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)

323
        m = (1.0 - mask.round()).squeeze(1)
324
325
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
326
            pixels[:,:,:,i] *= m
327
328
329
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

330
        return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
331

Dr.Lt.Data's avatar
Dr.Lt.Data committed
332
333
class SaveLatent:
    def __init__(self):
334
        self.output_dir = folder_paths.get_output_directory()
Dr.Lt.Data's avatar
Dr.Lt.Data committed
335
336
337
338

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ),
339
                              "filename_prefix": ("STRING", {"default": "latents/ComfyUI"})},
Dr.Lt.Data's avatar
Dr.Lt.Data committed
340
341
342
343
344
345
346
347
348
349
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
    RETURN_TYPES = ()
    FUNCTION = "save"

    OUTPUT_NODE = True

    CATEGORY = "_for_testing"

    def save(self, samples, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
350
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
351
352
353
354
355
356

        # support save metadata for latent sharing
        prompt_info = ""
        if prompt is not None:
            prompt_info = json.dumps(prompt)

357
358
359
360
361
362
        metadata = None
        if not args.disable_metadata:
            metadata = {"prompt": prompt_info}
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata[x] = json.dumps(extra_pnginfo[x])
Dr.Lt.Data's avatar
Dr.Lt.Data committed
363
364

        file = f"{filename}_{counter:05}_.latent"
365
366
367
368
369
370
371
372

        results = list()
        results.append({
            "filename": file,
            "subfolder": subfolder,
            "type": "output"
        })

Dr.Lt.Data's avatar
Dr.Lt.Data committed
373
374
        file = os.path.join(full_output_folder, file)

375
376
        output = {}
        output["latent_tensor"] = samples["samples"]
377
        output["latent_format_version_0"] = torch.tensor([])
378

379
        comfy.utils.save_torch_file(output, file, metadata=metadata)
380
        return { "ui": { "latents": results } }
Dr.Lt.Data's avatar
Dr.Lt.Data committed
381
382
383
384
385


class LoadLatent:
    @classmethod
    def INPUT_TYPES(s):
386
387
        input_dir = folder_paths.get_input_directory()
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.endswith(".latent")]
Dr.Lt.Data's avatar
Dr.Lt.Data committed
388
389
390
391
392
393
394
395
        return {"required": {"latent": [sorted(files), ]}, }

    CATEGORY = "_for_testing"

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "load"

    def load(self, latent):
396
397
        latent_path = folder_paths.get_annotated_filepath(latent)
        latent = safetensors.torch.load_file(latent_path, device="cpu")
398
399
400
401
        multiplier = 1.0
        if "latent_format_version_0" not in latent:
            multiplier = 1.0 / 0.18215
        samples = {"samples": latent["latent_tensor"].float() * multiplier}
402
        return (samples, )
Dr.Lt.Data's avatar
Dr.Lt.Data committed
403

404
405
406
407
408
409
410
411
412
413
414
415
416
417
    @classmethod
    def IS_CHANGED(s, latent):
        image_path = folder_paths.get_annotated_filepath(latent)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

    @classmethod
    def VALIDATE_INPUTS(s, latent):
        if not folder_paths.exists_annotated_filepath(latent):
            return "Invalid latent file: {}".format(latent)
        return True

Dr.Lt.Data's avatar
Dr.Lt.Data committed
418

comfyanonymous's avatar
comfyanonymous committed
419
420
421
class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
422
423
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
424
425
426
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

427
    CATEGORY = "advanced/loaders"
428

comfyanonymous's avatar
comfyanonymous committed
429
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
430
431
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
432
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
433

434
435
436
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
437
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
438
439
440
441
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

442
    CATEGORY = "loaders"
443

444
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
445
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
446
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
447
448
        return out

sALTaccount's avatar
sALTaccount committed
449
450
451
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
452
        paths = []
sALTaccount's avatar
sALTaccount committed
453
        for search_path in folder_paths.get_folder_paths("diffusers"):
454
            if os.path.exists(search_path):
455
456
457
458
                for root, subdir, files in os.walk(search_path, followlinks=True):
                    if "model_index.json" in files:
                        paths.append(os.path.relpath(root, start=search_path))

459
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
460
461
462
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

463
    CATEGORY = "advanced/loaders/deprecated"
sALTaccount's avatar
sALTaccount committed
464
465

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
466
467
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
468
469
470
                path = os.path.join(search_path, model_path)
                if os.path.exists(path):
                    model_path = path
sALTaccount's avatar
sALTaccount committed
471
                    break
472

473
        return comfy.diffusers_load.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
474
475


476
477
478
479
480
481
482
483
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

484
    CATEGORY = "loaders"
485
486
487
488
489
490

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

507
class LoraLoader:
508
509
510
    def __init__(self):
        self.loaded_lora = None

511
512
513
514
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
515
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
516
517
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
518
519
520
521
522
523
524
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
525
526
527
        if strength_model == 0 and strength_clip == 0:
            return (model, clip)

528
        lora_path = folder_paths.get_full_path("loras", lora_name)
529
530
531
532
533
        lora = None
        if self.loaded_lora is not None:
            if self.loaded_lora[0] == lora_path:
                lora = self.loaded_lora[1]
            else:
534
535
536
                temp = self.loaded_lora
                self.loaded_lora = None
                del temp
537
538
539
540
541
542

        if lora is None:
            lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
            self.loaded_lora = (lora_path, lora)

        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
543
544
        return (model_lora, clip_lora)

comfyanonymous's avatar
comfyanonymous committed
545
546
547
class VAELoader:
    @classmethod
    def INPUT_TYPES(s):
548
        return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
comfyanonymous's avatar
comfyanonymous committed
549
550
551
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

552
553
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
554
555
    #TODO: scale factor?
    def load_vae(self, vae_name):
556
        vae_path = folder_paths.get_full_path("vae", vae_name)
comfyanonymous's avatar
comfyanonymous committed
557
558
559
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
560
561
562
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
563
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
564
565
566
567
568
569
570

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
571
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
comfyanonymous's avatar
comfyanonymous committed
572
573
574
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

575
576
577
578
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
579
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
580
581
582
583
584
585
586

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
587
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
588
589
590
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
591
592
593
594

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
595
596
597
598
599
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
600
601
602
603
604
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

605
    def apply_controlnet(self, conditioning, control_net, image, strength):
606
607
608
        if strength == 0:
            return (conditioning, )

comfyanonymous's avatar
comfyanonymous committed
609
610
611
612
        c = []
        control_hint = image.movedim(-1,1)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
613
614
615
616
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
617
            n[1]['control_apply_to_uncond'] = True
comfyanonymous's avatar
comfyanonymous committed
618
619
620
            c.append(n)
        return (c, )

621
622
623
624
625
626
627
628
629

class ControlNetApplyAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"positive": ("CONDITIONING", ),
                             "negative": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
630
631
                             "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                             "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
632
633
634
635
636
637
638
639
                             }}

    RETURN_TYPES = ("CONDITIONING","CONDITIONING")
    RETURN_NAMES = ("positive", "negative")
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

640
    def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent):
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
        if strength == 0:
            return (positive, negative)

        control_hint = image.movedim(-1,1)
        cnets = {}

        out = []
        for conditioning in [positive, negative]:
            c = []
            for t in conditioning:
                d = t[1].copy()

                prev_cnet = d.get('control', None)
                if prev_cnet in cnets:
                    c_net = cnets[prev_cnet]
                else:
657
                    c_net = control_net.copy().set_cond_hint(control_hint, strength, (1.0 - start_percent, 1.0 - end_percent))
658
659
660
661
662
663
664
665
666
667
668
                    c_net.set_previous_controlnet(prev_cnet)
                    cnets[prev_cnet] = c_net

                d['control'] = c_net
                d['control_apply_to_uncond'] = False
                n = [t[0], d]
                c.append(n)
            out.append(c)
        return (out[0], out[1])


669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
class UNETLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "unet_name": (folder_paths.get_filename_list("unet"), ),
                             }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "load_unet"

    CATEGORY = "advanced/loaders"

    def load_unet(self, unet_name):
        unet_path = folder_paths.get_full_path("unet", unet_name)
        model = comfy.sd.load_unet(unet_path)
        return (model,)

684
685
686
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
687
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
688
689
690
691
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

692
    CATEGORY = "advanced/loaders"
693

694
    def load_clip(self, clip_name):
695
        clip_path = folder_paths.get_full_path("clip", clip_name)
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return (clip,)

class DualCLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_name1": (folder_paths.get_filename_list("clip"), ), "clip_name2": (folder_paths.get_filename_list("clip"), ),
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "advanced/loaders"

    def load_clip(self, clip_name1, clip_name2):
        clip_path1 = folder_paths.get_full_path("clip", clip_name1)
        clip_path2 = folder_paths.get_full_path("clip", clip_name2)
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"))
713
714
        return (clip,)

715
716
717
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
718
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
719
720
721
722
723
724
725
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
726
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
727
        clip_vision = comfy.clip_vision.load(clip_path)
728
729
730
731
732
733
734
735
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
736
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
737
738
    FUNCTION = "encode"

739
    CATEGORY = "conditioning"
740
741
742
743
744
745
746
747

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
748
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
749
750
751
752
753
754
755

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
756
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
757
758
759
760
761
762
763
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
764
765
766
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
767
768
769
770
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
771
    CATEGORY = "conditioning/style_model"
772

773
774
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
        cond = style_model.get_cond(clip_vision_output)
775
        c = []
776
777
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
778
779
780
            c.append(n)
        return (c, )

781
782
783
784
785
786
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
787
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
788
789
790
791
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

792
    CATEGORY = "conditioning"
793

794
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
795
796
797
        if strength == 0:
            return (conditioning, )

798
799
800
        c = []
        for t in conditioning:
            o = t[1].copy()
801
802
803
            x = {"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation}
            if "unclip_conditioning" in o:
                o["unclip_conditioning"] = o["unclip_conditioning"][:] + [x]
804
            else:
805
                o["unclip_conditioning"] = [x]
806
807
808
809
            n = [t[0], o]
            c.append(n)
        return (c, )

810
811
812
813
814
815
816
817
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
818
    CATEGORY = "loaders"
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
                              "text": ("STRING", {"multiline": True}),
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
840
    CATEGORY = "conditioning/gligen"
841
842
843
844
845
846
847
848
849
850
851
852
853
854

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
855

comfyanonymous's avatar
comfyanonymous committed
856
857
858
859
860
861
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
862
863
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
864
865
866
867
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

868
869
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
870
871
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
872
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
873

comfyanonymous's avatar
comfyanonymous committed
874

875
876
877
878
879
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
880
                              "length": ("INT", {"default": 1, "min": 1, "max": 64}),
881
882
                              }}
    RETURN_TYPES = ("LATENT",)
883
    FUNCTION = "frombatch"
884

885
    CATEGORY = "latent/batch"
886

887
    def frombatch(self, samples, batch_index, length):
888
889
890
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
        length = min(s_in.shape[0] - batch_index, length)
        s["samples"] = s_in[batch_index:batch_index + length].clone()
        if "noise_mask" in samples:
            masks = samples["noise_mask"]
            if masks.shape[0] == 1:
                s["noise_mask"] = masks.clone()
            else:
                if masks.shape[0] < s_in.shape[0]:
                    masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
                s["noise_mask"] = masks[batch_index:batch_index + length].clone()
        if "batch_index" not in s:
            s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
        else:
            s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
        return (s,)
    
class RepeatLatentBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "amount": ("INT", {"default": 1, "min": 1, "max": 64}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "repeat"

    CATEGORY = "latent/batch"

    def repeat(self, samples, amount):
        s = samples.copy()
        s_in = samples["samples"]
        
        s["samples"] = s_in.repeat((amount, 1,1,1))
        if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
            masks = samples["noise_mask"]
            if masks.shape[0] < s_in.shape[0]:
                masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
            s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
        if "batch_index" in s:
            offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
            s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
931
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
932

comfyanonymous's avatar
comfyanonymous committed
933
class LatentUpscale:
comfyanonymous's avatar
comfyanonymous committed
934
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
935
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
936
937
938
939

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
940
941
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
942
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
943
944
945
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

946
947
    CATEGORY = "latent"

948
    def upscale(self, samples, upscale_method, width, height, crop):
949
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
950
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
951
952
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
953
class LatentUpscaleBy:
comfyanonymous's avatar
comfyanonymous committed
954
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
comfyanonymous's avatar
comfyanonymous committed
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.5, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

    CATEGORY = "latent"

    def upscale(self, samples, upscale_method, scale_by):
        s = samples.copy()
        width = round(samples["samples"].shape[3] * scale_by)
        height = round(samples["samples"].shape[2] * scale_by)
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled")
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
972
973
974
975
976
977
978
979
980
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
981
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
982
983

    def rotate(self, samples, rotation):
984
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
985
986
987
988
989
990
991
992
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

993
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
994
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
995
996
997
998
999
1000
1001
1002
1003
1004

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
1005
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
1006
1007

    def flip(self, samples, flip_method):
1008
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
1009
        if flip_method.startswith("x"):
1010
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
1011
        elif flip_method.startswith("y"):
1012
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
1013
1014

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1015
1016
1017
1018

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
1019
1020
1021
1022
1023
1024
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
1025
1026
1027
1028
1029
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
1030
1031
1032
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
1033
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
1057

1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
class LatentBlend:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "samples_a": ("LATENT",),
            "samples_b": ("LATENT",),
            "blend_factor": ("FLOAT", {
                "default": 0.5,
                "min": 0,
                "max": 1,
                "step": 0.01
            }),
            "blend_mode": (["normal"],),
        }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "blend"

    CATEGORY = "_for_testing"

    def blend(self, samples_a, samples_b, blend_factor:float, blend_mode: str):

        samples_out = samples_a.copy()
        samples_a = samples_a["samples"]
        samples_b = samples_b["samples"]

        if samples_a.shape != samples_b.shape:
            samples_b.permute(0, 3, 1, 2)
            samples_b = comfy.utils.common_upscale(samples_b, samples_a.shape[3], samples_a.shape[2], 'bicubic', crop='center')
            samples_b.permute(0, 2, 3, 1)

        samples_blended = self.blend_mode(samples_a, samples_b, blend_mode)
        samples_blended = samples_a * (1 - blend_factor) + samples_blended * blend_factor
        samples_out["samples"] = samples_blended
        return (samples_out,)

    def blend_mode(self, img1, img2, mode):
        if mode == "normal":
            return img2
        else:
            raise ValueError(f"Unsupported blend mode: {mode}")

comfyanonymous's avatar
comfyanonymous committed
1100
1101
1102
1103
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
1104
1105
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
1106
1107
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
1108
1109
1110
1111
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
1112
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
1113
1114

    def crop(self, samples, width, height, x, y):
1115
1116
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
1130
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
1131
1132
        return (s,)

1133
1134
1135
1136
1137
1138
1139
1140
1141
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

1142
    CATEGORY = "latent/inpaint"
1143
1144
1145

    def set_mask(self, samples, mask):
        s = samples.copy()
1146
        s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
1147
1148
        return (s,)

space-nuko's avatar
space-nuko committed
1149

space-nuko's avatar
space-nuko committed
1150
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
1151
    device = comfy.model_management.get_torch_device()
1152
    latent_image = latent["samples"]
1153

comfyanonymous's avatar
comfyanonymous committed
1154
1155
1156
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
1157
1158
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
comfyanonymous's avatar
comfyanonymous committed
1159

1160
    noise_mask = None
1161
    if "noise_mask" in latent:
1162
        noise_mask = latent["noise_mask"]
comfyanonymous's avatar
comfyanonymous committed
1163

space-nuko's avatar
space-nuko committed
1164
1165
1166
1167
    preview_format = "JPEG"
    if preview_format not in ["JPEG", "PNG"]:
        preview_format = "JPEG"

1168
    previewer = latent_preview.get_previewer(device, model.model.latent_format)
space-nuko's avatar
space-nuko committed
1169

1170
    pbar = comfy.utils.ProgressBar(steps)
1171
    def callback(step, x0, x, total_steps):
space-nuko's avatar
space-nuko committed
1172
        preview_bytes = None
1173
        if previewer:
1174
            preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
space-nuko's avatar
space-nuko committed
1175
        pbar.update_absolute(step + 1, total_steps, preview_bytes)
1176

1177
1178
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
1179
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, seed=seed)
1180
1181
1182
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
1183

comfyanonymous's avatar
comfyanonymous committed
1184
1185
1186
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
1187
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
space-nuko's avatar
space-nuko committed
1198
1199
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1200
1201
1202
1203

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

1204
1205
    CATEGORY = "sampling"

space-nuko's avatar
space-nuko committed
1206
1207
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
1208

comfyanonymous's avatar
comfyanonymous committed
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
space-nuko's avatar
space-nuko committed
1226
1227
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1228
1229
1230
1231
1232

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
1233

space-nuko's avatar
space-nuko committed
1234
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
comfyanonymous's avatar
comfyanonymous committed
1235
1236
1237
1238
1239
1240
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
space-nuko's avatar
space-nuko committed
1241
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
1242
1243
1244

class SaveImage:
    def __init__(self):
1245
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1246
        self.type = "output"
1247
        self.prefix_append = ""
comfyanonymous's avatar
comfyanonymous committed
1248
1249
1250
1251

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
1252
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
1253
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
1254
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
1255
1256
1257
1258
1259
1260
1261
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

1262
1263
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
1264
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
1265
        filename_prefix += self.prefix_append
1266
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
m957ymj75urz's avatar
m957ymj75urz committed
1267
        results = list()
comfyanonymous's avatar
comfyanonymous committed
1268
1269
        for image in images:
            i = 255. * image.cpu().numpy()
1270
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
1271
1272
1273
1274
1275
1276
1277
1278
            metadata = None
            if not args.disable_metadata:
                metadata = PngInfo()
                if prompt is not None:
                    metadata.add_text("prompt", json.dumps(prompt))
                if extra_pnginfo is not None:
                    for x in extra_pnginfo:
                        metadata.add_text(x, json.dumps(extra_pnginfo[x]))
1279

1280
            file = f"{filename}_{counter:05}_.png"
1281
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
1282
1283
1284
1285
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
1286
            })
1287
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
1288

m957ymj75urz's avatar
m957ymj75urz committed
1289
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
1290

pythongosssss's avatar
pythongosssss committed
1291
1292
class PreviewImage(SaveImage):
    def __init__(self):
1293
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1294
        self.type = "temp"
1295
        self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
pythongosssss's avatar
pythongosssss committed
1296
1297
1298

    @classmethod
    def INPUT_TYPES(s):
1299
        return {"required":
pythongosssss's avatar
pythongosssss committed
1300
1301
1302
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
1303

1304
1305
1306
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
1307
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1308
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1309
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1310
                    {"image": (sorted(files), )},
1311
                }
1312
1313

    CATEGORY = "image"
1314

1315
    RETURN_TYPES = ("IMAGE", "MASK")
1316
1317
    FUNCTION = "load_image"
    def load_image(self, image):
1318
        image_path = folder_paths.get_annotated_filepath(image)
1319
        i = Image.open(image_path)
1320
        i = ImageOps.exif_transpose(i)
1321
        image = i.convert("RGB")
1322
        image = np.array(image).astype(np.float32) / 255.0
1323
        image = torch.from_numpy(image)[None,]
1324
1325
1326
1327
1328
1329
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)
1330

1331
1332
    @classmethod
    def IS_CHANGED(s, image):
1333
        image_path = folder_paths.get_annotated_filepath(image)
1334
1335
1336
1337
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1338

1339
1340
1341
1342
1343
1344
1345
    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

1346
class LoadImageMask:
1347
    _color_channels = ["alpha", "red", "green", "blue"]
1348
1349
    @classmethod
    def INPUT_TYPES(s):
1350
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1351
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1352
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1353
                    {"image": (sorted(files), ),
1354
                     "channel": (s._color_channels, ), }
1355
1356
                }

1357
    CATEGORY = "mask"
1358
1359
1360
1361

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
1362
        image_path = folder_paths.get_annotated_filepath(image)
1363
        i = Image.open(image_path)
1364
        i = ImageOps.exif_transpose(i)
1365
1366
        if i.getbands() != ("R", "G", "B", "A"):
            i = i.convert("RGBA")
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
1380
        image_path = folder_paths.get_annotated_filepath(image)
1381
1382
1383
1384
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1385

1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
    @classmethod
    def VALIDATE_INPUTS(s, image, channel):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        if channel not in s._color_channels:
            return "Invalid color channel: {}".format(channel)

        return True

comfyanonymous's avatar
comfyanonymous committed
1396
class ImageScale:
comfyanonymous's avatar
comfyanonymous committed
1397
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic"]
comfyanonymous's avatar
comfyanonymous committed
1398
1399
1400
1401
1402
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1403
1404
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1405
1406
1407
1408
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1409
    CATEGORY = "image/upscaling"
1410

comfyanonymous's avatar
comfyanonymous committed
1411
1412
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
1413
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1414
1415
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1416

comfyanonymous's avatar
comfyanonymous committed
1417
class ImageScaleBy:
comfyanonymous's avatar
comfyanonymous committed
1418
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic"]
comfyanonymous's avatar
comfyanonymous committed
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

    CATEGORY = "image/upscaling"

    def upscale(self, image, upscale_method, scale_by):
        samples = image.movedim(-1,1)
        width = round(samples.shape[3] * scale_by)
        height = round(samples.shape[2] * scale_by)
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
        s = s.movedim(1,-1)
        return (s,)

1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


Guo Y.K's avatar
Guo Y.K committed
1453
1454
1455
1456
1457
1458
1459
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1460
1461
1462
1463
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1464
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1465
1466
1467
1468
1469
1470
1471
1472
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1473
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1486

1487
1488
1489
1490
1491
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1492
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1512

Guo Y.K's avatar
Guo Y.K committed
1513
1514
1515
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1516
1517
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1518
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1519
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1520
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1521
1522
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1523
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1524
1525
1526
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
comfyanonymous's avatar
comfyanonymous committed
1527
    "LatentUpscaleBy": LatentUpscaleBy,
1528
    "LatentFromBatch": LatentFromBatch,
1529
    "RepeatLatentBatch": RepeatLatentBatch,
comfyanonymous's avatar
comfyanonymous committed
1530
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1531
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1532
    "LoadImage": LoadImage,
1533
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1534
    "ImageScale": ImageScale,
comfyanonymous's avatar
comfyanonymous committed
1535
    "ImageScaleBy": ImageScaleBy,
1536
    "ImageInvert": ImageInvert,
Guo Y.K's avatar
Guo Y.K committed
1537
    "ImagePadForOutpaint": ImagePadForOutpaint,
FizzleDorf's avatar
FizzleDorf committed
1538
    "ConditioningAverage ": ConditioningAverage ,
comfyanonymous's avatar
comfyanonymous committed
1539
    "ConditioningCombine": ConditioningCombine,
1540
    "ConditioningConcat": ConditioningConcat,
comfyanonymous's avatar
comfyanonymous committed
1541
    "ConditioningSetArea": ConditioningSetArea,
Jacob Segal's avatar
Jacob Segal committed
1542
    "ConditioningSetMask": ConditioningSetMask,
comfyanonymous's avatar
comfyanonymous committed
1543
    "KSamplerAdvanced": KSamplerAdvanced,
1544
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1545
    "LatentComposite": LatentComposite,
1546
    "LatentBlend": LatentBlend,
comfyanonymous's avatar
comfyanonymous committed
1547
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1548
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1549
    "LatentCrop": LatentCrop,
1550
    "LoraLoader": LoraLoader,
1551
    "CLIPLoader": CLIPLoader,
1552
    "UNETLoader": UNETLoader,
1553
    "DualCLIPLoader": DualCLIPLoader,
1554
    "CLIPVisionEncode": CLIPVisionEncode,
1555
    "StyleModelApply": StyleModelApply,
1556
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1557
    "ControlNetApply": ControlNetApply,
1558
    "ControlNetApplyAdvanced": ControlNetApplyAdvanced,
comfyanonymous's avatar
comfyanonymous committed
1559
    "ControlNetLoader": ControlNetLoader,
1560
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1561
1562
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1563
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1564
    "VAEEncodeTiled": VAEEncodeTiled,
1565
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1566
1567
1568
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,

1569
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1570
    "DiffusersLoader": DiffusersLoader,
Dr.Lt.Data's avatar
Dr.Lt.Data committed
1571
1572

    "LoadLatent": LoadLatent,
1573
    "SaveLatent": SaveLatent,
1574
1575

    "ConditioningZeroOut": ConditioningZeroOut,
1576
    "ConditioningSetTimestepRange": ConditioningSetTimestepRange,
comfyanonymous's avatar
comfyanonymous committed
1577
1578
}

City's avatar
City committed
1579
1580
1581
1582
1583
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1584
1585
    "CheckpointLoader": "Load Checkpoint (With Config)",
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
FizzleDorf's avatar
FizzleDorf committed
1600
    "ConditioningAverage ": "Conditioning (Average)",
1601
    "ConditioningConcat": "Conditioning (Concat)",
City's avatar
City committed
1602
    "ConditioningSetArea": "Conditioning (Set Area)",
Jacob Segal's avatar
Jacob Segal committed
1603
    "ConditioningSetMask": "Conditioning (Set Mask)",
City's avatar
City committed
1604
    "ControlNetApply": "Apply ControlNet",
1605
    "ControlNetApplyAdvanced": "Apply ControlNet (Advanced)",
City's avatar
City committed
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
comfyanonymous's avatar
comfyanonymous committed
1616
    "LatentUpscaleBy": "Upscale Latent By",
City's avatar
City committed
1617
    "LatentComposite": "Latent Composite",
1618
    "LatentBlend": "Latent Blend",
1619
1620
    "LatentFromBatch" : "Latent From Batch",
    "RepeatLatentBatch": "Repeat Latent Batch",
City's avatar
City committed
1621
1622
1623
1624
1625
1626
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
comfyanonymous's avatar
comfyanonymous committed
1627
    "ImageScaleBy": "Upscale Image By",
City's avatar
City committed
1628
1629
1630
1631
1632
1633
1634
1635
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1636
def load_custom_node(module_path, ignore=set()):
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
1650
1651
1652
            for name in module.NODE_CLASS_MAPPINGS:
                if name not in ignore:
                    NODE_CLASS_MAPPINGS[name] = module.NODE_CLASS_MAPPINGS[name]
1653
1654
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1655
            return True
1656
1657
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
1658
            return False
1659
1660
1661
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)
1662
        return False
1663

Hacker 17082006's avatar
Hacker 17082006 committed
1664
def load_custom_nodes():
1665
    base_node_names = set(NODE_CLASS_MAPPINGS.keys())
1666
    node_paths = folder_paths.get_folder_paths("custom_nodes")
1667
    node_import_times = []
1668
1669
1670
1671
1672
1673
1674
1675
    for custom_node_path in node_paths:
        possible_modules = os.listdir(custom_node_path)
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1676
            if module_path.endswith(".disabled"): continue
1677
            time_before = time.perf_counter()
1678
            success = load_custom_node(module_path, base_node_names)
1679
            node_import_times.append((time.perf_counter() - time_before, module_path, success))
1680

1681
    if len(node_import_times) > 0:
comfyanonymous's avatar
comfyanonymous committed
1682
        print("\nImport times for custom nodes:")
1683
        for n in sorted(node_import_times):
1684
1685
1686
1687
1688
            if n[2]:
                import_message = ""
            else:
                import_message = " (IMPORT FAILED)"
            print("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
1689
        print()
1690

1691
def init_custom_nodes():
1692
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_hypernetwork.py"))
1693
1694
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
1695
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))
1696
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_rebatch.py"))
1697
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_model_merging.py"))
1698
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_tomesd.py"))
1699
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_clip_sdxl.py"))
1700
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_canny.py"))
1701
    load_custom_nodes()