nodes.py 17.9 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
comfyanonymous's avatar
comfyanonymous committed
7
import copy
comfyanonymous's avatar
comfyanonymous committed
8
9
10
11
12
13
14
15
16
17
18
19

from PIL import Image
from PIL.PngImagePlugin import PngInfo
import numpy as np

sys.path.append(os.path.join(sys.path[0], "comfy"))


import comfy.samplers
import comfy.sd

supported_ckpt_extensions = ['.ckpt']
comfyanonymous's avatar
comfyanonymous committed
20
supported_pt_extensions = ['.ckpt', '.pt']
comfyanonymous's avatar
comfyanonymous committed
21
22
23
try:
    import safetensors.torch
    supported_ckpt_extensions += ['.safetensors']
comfyanonymous's avatar
comfyanonymous committed
24
    supported_pt_extensions += ['.safetensors']
comfyanonymous's avatar
comfyanonymous committed
25
26
27
28
29
30
31
32
33
except:
    print("Could not import safetensors, safetensors support disabled.")

def filter_files_extensions(files, extensions):
    return sorted(list(filter(lambda a: os.path.splitext(a)[-1].lower() in extensions, files)))

class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
34
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
35
36
37
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

38
39
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
40
    def encode(self, clip, text):
comfyanonymous's avatar
comfyanonymous committed
41
42
43
44
45
46
47
48
49
        return ([[clip.encode(text), {}]], )

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

50
51
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "width": ("INT", {"default": 64, "min": 64, "max": 4096, "step": 64}),
                              "height": ("INT", {"default": 64, "min": 64, "max": 4096, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}),
                              "y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

68
69
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
70
71
72
73
74
75
76
77
    def append(self, conditioning, width, height, x, y, strength, min_sigma=0.0, max_sigma=99.0):
        c = copy.deepcopy(conditioning)
        for t in c:
            t[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            t[1]['strength'] = strength
            t[1]['min_sigma'] = min_sigma
            t[1]['max_sigma'] = max_sigma
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
78
79
80
81
82
83
84
85
86
87
88

class VAEDecode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

89
90
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
91
92
93
94
95
96
97
98
99
100
101
102
103
    def decode(self, vae, samples):
        return (vae.decode(samples), )

class VAEEncode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

104
105
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
106
    def encode(self, vae, pixels):
107
108
109
110
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
comfyanonymous's avatar
comfyanonymous committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
        return (vae.encode(pixels), )

class CheckpointLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    config_dir = os.path.join(models_dir, "configs")
    ckpt_dir = os.path.join(models_dir, "checkpoints")

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "config_name": (filter_files_extensions(os.listdir(s.config_dir), '.yaml'), ),
                              "ckpt_name": (filter_files_extensions(os.listdir(s.ckpt_dir), supported_ckpt_extensions), )}}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

125
126
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
127
128
129
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
        config_path = os.path.join(self.config_dir, config_name)
        ckpt_path = os.path.join(self.ckpt_dir, ckpt_name)
130
131
        embedding_directory = os.path.join(self.models_dir, "embeddings")
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=embedding_directory)
comfyanonymous's avatar
comfyanonymous committed
132

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
class LoraLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    lora_dir = os.path.join(models_dir, "loras")
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
                              "lora_name": (filter_files_extensions(os.listdir(s.lora_dir), supported_pt_extensions), ),
                              "strength_model": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
        lora_path = os.path.join(self.lora_dir, lora_name)
        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
        return (model_lora, clip_lora)

comfyanonymous's avatar
comfyanonymous committed
154
155
156
157
158
class VAELoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    vae_dir = os.path.join(models_dir, "vae")
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
159
        return {"required": { "vae_name": (filter_files_extensions(os.listdir(s.vae_dir), supported_pt_extensions), )}}
comfyanonymous's avatar
comfyanonymous committed
160
161
162
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

163
164
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    #TODO: scale factor?
    def load_vae(self, vae_name):
        vae_path = os.path.join(self.vae_dir, vae_name)
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

183
184
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
185
186
187
188
189
190
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
        return (latent, )

class LatentUpscale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
191
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
192
193
194
195
196

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
                              "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
197
198
                              "height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
199
200
201
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

202
203
    CATEGORY = "latent"

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    def upscale(self, samples, upscale_method, width, height, crop):
        if crop == "center":
            old_width = samples.shape[3]
            old_height = samples.shape[2]
            old_aspect = old_width / old_height
            new_aspect = width / height
            x = 0
            y = 0
            if old_aspect > new_aspect:
                x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
            elif old_aspect < new_aspect:
                y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
            s = samples[:,:,y:old_height-y,x:old_width-x]
        else:
            s = samples
        s = torch.nn.functional.interpolate(s, size=(height // 8, width // 8), mode=upscale_method)
comfyanonymous's avatar
comfyanonymous committed
220
221
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

    CATEGORY = "latent"

    def rotate(self, samples, rotation):
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

        s = torch.rot90(samples, k=rotate_by, dims=[3, 2])
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

    CATEGORY = "latent"

    def flip(self, samples, flip_method):
        if flip_method.startswith("x"):
            s = torch.flip(samples, dims=[2])
        elif flip_method.startswith("y"):
            s = torch.flip(samples, dims=[3])
        else:
            s = samples

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

    def composite(self, samples_to, samples_from, x, y, composite_method="normal"):
        x =  x // 8
        y = y // 8
        s = samples_to.clone()
        s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
286
287
288
289
290
291
def common_ksampler(device, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
        noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=torch.manual_seed(seed), device="cpu")

292
    real_model = None
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
    try:
        real_model = model.patch_model()
        real_model.to(device)
        noise = noise.to(device)
        latent_image = latent_image.to(device)

        positive_copy = []
        negative_copy = []

        for p in positive:
            t = p[0]
            if t.shape[0] < noise.shape[0]:
                t = torch.cat([t] * noise.shape[0])
            t = t.to(device)
            positive_copy += [[t] + p[1:]]
        for n in negative:
            t = n[0]
            if t.shape[0] < noise.shape[0]:
                t = torch.cat([t] * noise.shape[0])
            t = t.to(device)
            negative_copy += [[t] + n[1:]]

        if sampler_name in comfy.samplers.KSampler.SAMPLERS:
            sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise)
        else:
            #other samplers
            pass

        samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise)
        samples = samples.cpu()
        real_model.cpu()
        model.unpatch_model()
    except Exception as e:
326
327
        if real_model is not None:
            real_model.cpu()
328
329
        model.unpatch_model()
        raise e
comfyanonymous's avatar
comfyanonymous committed
330
331
332

    return (samples, )

comfyanonymous's avatar
comfyanonymous committed
333
334
335
336
337
338
class KSampler:
    def __init__(self, device="cuda"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
339
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

355
356
    CATEGORY = "sampling"

comfyanonymous's avatar
comfyanonymous committed
357
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
comfyanonymous's avatar
comfyanonymous committed
358
        return common_ksampler(self.device, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
359

comfyanonymous's avatar
comfyanonymous committed
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
class KSamplerAdvanced:
    def __init__(self, device="cuda"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
386

comfyanonymous's avatar
comfyanonymous committed
387
388
389
390
391
392
393
394
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
        return common_ksampler(self.device, model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
395
396
397
398
399
400
401
402

class SaveImage:
    def __init__(self):
        self.output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output")

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
403
404
                    {"images": ("IMAGE", ),
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
comfyanonymous's avatar
comfyanonymous committed
405
406
407
408
409
410
411
412
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

413
414
    CATEGORY = "image"

415
416
417
418
419
420
421
422
423
424
425
426
427
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
        def map_filename(filename):
            prefix_len = len(filename_prefix)
            prefix = filename[:prefix_len + 1]
            try:
                digits = int(filename[prefix_len + 1:].split('_')[0])
            except:
                digits = 0
            return (digits, prefix)
        try:
            counter = max(filter(lambda a: a[1][:-1] == filename_prefix and a[1][-1] == "_", map(map_filename, os.listdir(self.output_dir))))[0] + 1
        except ValueError:
            counter = 1
comfyanonymous's avatar
comfyanonymous committed
428
429
430
431
432
433
434
435
436
        for image in images:
            i = 255. * image.cpu().numpy()
            img = Image.fromarray(i.astype(np.uint8))
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
437
438
            img.save(f"output/{filename_prefix}_{counter:05}_.png", pnginfo=metadata, optimize=True)
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
439

440
441
442
443
444
445
446
class LoadImage:
    input_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"image": (os.listdir(s.input_dir), )},
                }
447
448

    CATEGORY = "image"
449
450
451
452
453
454
455
456
457
458

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "load_image"
    def load_image(self, image):
        image_path = os.path.join(self.input_dir, image)
        image = Image.open(image_path).convert("RGB")
        image = np.array(image).astype(np.float32) / 255.0
        image = torch.from_numpy(image[None])[None,]
        return image

459
460
461
462
463
464
465
466
    @classmethod
    def IS_CHANGED(s, image):
        image_path = os.path.join(s.input_dir, image)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

467

comfyanonymous's avatar
comfyanonymous committed
468
469
470
471
472
473
474
475
476
477
478

NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
    "CheckpointLoader": CheckpointLoader,
    "CLIPTextEncode": CLIPTextEncode,
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
    "SaveImage": SaveImage,
comfyanonymous's avatar
comfyanonymous committed
479
480
481
    "LoadImage": LoadImage,
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
comfyanonymous's avatar
comfyanonymous committed
482
    "KSamplerAdvanced": KSamplerAdvanced,
comfyanonymous's avatar
comfyanonymous committed
483
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
484
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
485
    "LatentFlip": LatentFlip,
486
    "LoraLoader": LoraLoader,
comfyanonymous's avatar
comfyanonymous committed
487
488
489
}