nodes.py 31.8 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
comfyanonymous's avatar
comfyanonymous committed
7
import copy
8
import traceback
comfyanonymous's avatar
comfyanonymous committed
9
10
11
12
13

from PIL import Image
from PIL.PngImagePlugin import PngInfo
import numpy as np

14
sys.path.insert(0, os.path.join(sys.path[0], "comfy"))
comfyanonymous's avatar
comfyanonymous committed
15
16
17
18


import comfy.samplers
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
19
20
import comfy.utils

21
import model_management
22
import importlib
comfyanonymous's avatar
comfyanonymous committed
23

comfyanonymous's avatar
comfyanonymous committed
24
25
supported_ckpt_extensions = ['.ckpt', '.pth']
supported_pt_extensions = ['.ckpt', '.pt', '.bin', '.pth']
comfyanonymous's avatar
comfyanonymous committed
26
27
28
try:
    import safetensors.torch
    supported_ckpt_extensions += ['.safetensors']
comfyanonymous's avatar
comfyanonymous committed
29
    supported_pt_extensions += ['.safetensors']
comfyanonymous's avatar
comfyanonymous committed
30
31
32
except:
    print("Could not import safetensors, safetensors support disabled.")

33
34
35
36
def recursive_search(directory):  
    result = []
    for root, subdir, file in os.walk(directory, followlinks=True):
        for filepath in file:
37
38
            #we os.path,join directory with a blank string to generate a path separator at the end.
            result.append(os.path.join(root, filepath).replace(os.path.join(directory,''),'')) 
39
40
    return result

comfyanonymous's avatar
comfyanonymous committed
41
42
43
def filter_files_extensions(files, extensions):
    return sorted(list(filter(lambda a: os.path.splitext(a)[-1].lower() in extensions, files)))

44
45
46
47
48
49
50

def before_node_execution():
    model_management.throw_exception_if_processing_interrupted()

def interrupt_processing():
    model_management.interrupt_current_processing()

comfyanonymous's avatar
comfyanonymous committed
51
52
53
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
54
        return {"required": {"text": ("STRING", {"multiline": True, "dynamic_prompt": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
55
56
57
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

58
59
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
60
    def encode(self, clip, text):
comfyanonymous's avatar
comfyanonymous committed
61
62
63
64
65
66
67
68
69
        return ([[clip.encode(text), {}]], )

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

70
71
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "width": ("INT", {"default": 64, "min": 64, "max": 4096, "step": 64}),
                              "height": ("INT", {"default": 64, "min": 64, "max": 4096, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}),
                              "y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

88
89
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
90
    def append(self, conditioning, width, height, x, y, strength, min_sigma=0.0, max_sigma=99.0):
comfyanonymous's avatar
comfyanonymous committed
91
92
93
94
95
96
97
98
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
            n[1]['min_sigma'] = min_sigma
            n[1]['max_sigma'] = max_sigma
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
99
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
100
101
102
103
104
105
106
107
108
109
110

class VAEDecode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

111
112
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
113
    def decode(self, vae, samples):
114
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
115

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
class VAEDecodeTiled:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
131
132
133
134
135
136
137
138
139
140
class VAEEncode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

141
142
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
143
    def encode(self, vae, pixels):
144
145
146
147
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
148
149
150
        t = vae.encode(pixels[:,:,:,:3])

        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
151

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
class VAEEncodeForInpaint:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

    def encode(self, vae, pixels, mask):
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
167
168
        mask = torch.nn.functional.interpolate(mask[None,None,], size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")[0][0]

169
170
171
172
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
            mask = mask[:x,:y]

173
        #grow mask by a few pixels to keep things seamless in latent space
174
        kernel_tensor = torch.ones((1, 1, 6, 6))
175
176
        mask_erosion = torch.clamp(torch.nn.functional.conv2d((mask.round())[None], kernel_tensor, padding=3), 0, 1)
        m = (1.0 - mask.round())
177
178
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
179
            pixels[:,:,:,i] *= m
180
181
182
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

183
        return ({"samples":t, "noise_mask": (mask_erosion[0][:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
184
185
186
187
188

class CheckpointLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    config_dir = os.path.join(models_dir, "configs")
    ckpt_dir = os.path.join(models_dir, "checkpoints")
189
    embedding_directory = os.path.join(models_dir, "embeddings")
comfyanonymous's avatar
comfyanonymous committed
190
191
192

    @classmethod
    def INPUT_TYPES(s):
193
194
        return {"required": { "config_name": (filter_files_extensions(recursive_search(s.config_dir), '.yaml'), ),
                              "ckpt_name": (filter_files_extensions(recursive_search(s.ckpt_dir), supported_ckpt_extensions), )}}
comfyanonymous's avatar
comfyanonymous committed
195
196
197
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

198
199
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
200
201
202
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
        config_path = os.path.join(self.config_dir, config_name)
        ckpt_path = os.path.join(self.ckpt_dir, ckpt_name)
203
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=self.embedding_directory)
comfyanonymous's avatar
comfyanonymous committed
204

205
206
207
208
209
210
211
class LoraLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    lora_dir = os.path.join(models_dir, "loras")
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
212
                              "lora_name": (filter_files_extensions(recursive_search(s.lora_dir), supported_pt_extensions), ),
213
214
215
216
217
218
219
220
221
222
223
224
225
                              "strength_model": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
        lora_path = os.path.join(self.lora_dir, lora_name)
        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
        return (model_lora, clip_lora)

comfyanonymous's avatar
comfyanonymous committed
226
227
228
229
230
class VAELoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    vae_dir = os.path.join(models_dir, "vae")
    @classmethod
    def INPUT_TYPES(s):
231
        return {"required": { "vae_name": (filter_files_extensions(recursive_search(s.vae_dir), supported_pt_extensions), )}}
comfyanonymous's avatar
comfyanonymous committed
232
233
234
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

235
236
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
237
238
239
240
241
242
    #TODO: scale factor?
    def load_vae(self, vae_name):
        vae_path = os.path.join(self.vae_dir, vae_name)
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
class ControlNetLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    controlnet_dir = os.path.join(models_dir, "controlnet")
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "control_net_name": (filter_files_extensions(recursive_search(s.controlnet_dir), supported_pt_extensions), )}}

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
        controlnet_path = os.path.join(self.controlnet_dir, control_net_name)
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
class DiffControlNetLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    controlnet_dir = os.path.join(models_dir, "controlnet")
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "control_net_name": (filter_files_extensions(recursive_search(s.controlnet_dir), supported_pt_extensions), )}}

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
        controlnet_path = os.path.join(self.controlnet_dir, control_net_name)
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
278
279
280
281

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
282
283
284
285
286
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
287
288
289
290
291
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

292
    def apply_controlnet(self, conditioning, control_net, image, strength):
comfyanonymous's avatar
comfyanonymous committed
293
294
295
296
297
        c = []
        control_hint = image.movedim(-1,1)
        print(control_hint.shape)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
298
299
300
301
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
comfyanonymous's avatar
comfyanonymous committed
302
303
304
            c.append(n)
        return (c, )

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
class T2IAdapterLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    t2i_adapter_dir = os.path.join(models_dir, "t2i_adapter")
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "t2i_adapter_name": (filter_files_extensions(recursive_search(s.t2i_adapter_dir), supported_pt_extensions), )}}

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_t2i_adapter"

    CATEGORY = "loaders"

    def load_t2i_adapter(self, t2i_adapter_name):
        t2i_path = os.path.join(self.t2i_adapter_dir, t2i_adapter_name)
        t2i_adapter = comfy.sd.load_t2i_adapter(t2i_path)
        return (t2i_adapter,)
comfyanonymous's avatar
comfyanonymous committed
321

322
323
324
325
326
class CLIPLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    clip_dir = os.path.join(models_dir, "clip")
    @classmethod
    def INPUT_TYPES(s):
327
        return {"required": { "clip_name": (filter_files_extensions(recursive_search(s.clip_dir), supported_pt_extensions), ),
328
329
330
331
332
333
334
335
336
337
338
339
340
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name, stop_at_clip_layer):
        clip_path = os.path.join(self.clip_dir, clip_name)
        clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=CheckpointLoader.embedding_directory)
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

comfyanonymous's avatar
comfyanonymous committed
341
342
343
344
345
346
347
348
349
350
351
352
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

353
354
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
355
356
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
357
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
358

comfyanonymous's avatar
comfyanonymous committed
359

comfyanonymous's avatar
comfyanonymous committed
360

comfyanonymous's avatar
comfyanonymous committed
361
362
class LatentUpscale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
363
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
364
365
366
367
368

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
                              "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
369
370
                              "height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
371
372
373
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

374
375
    CATEGORY = "latent"

376
    def upscale(self, samples, upscale_method, width, height, crop):
377
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
378
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
379
380
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
381
382
383
384
385
386
387
388
389
390
391
392
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

    CATEGORY = "latent"

    def rotate(self, samples, rotation):
393
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
394
395
396
397
398
399
400
401
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

402
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
403
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
404
405
406
407
408
409
410
411
412
413
414
415
416

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

    CATEGORY = "latent"

    def flip(self, samples, flip_method):
417
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
418
        if flip_method.startswith("x"):
419
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
420
        elif flip_method.startswith("y"):
421
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
422
423

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
424
425
426
427
428
429
430
431

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
432
                              "feather": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
433
434
435
436
437
438
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

439
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
comfyanonymous's avatar
comfyanonymous committed
440
441
        x =  x // 8
        y = y // 8
442
        feather = feather // 8
443
444
445
446
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
447
448
449
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
450
451
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
452
453
454
455
456
457
458
459
460
461
462
463
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
464
465
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
466

comfyanonymous's avatar
comfyanonymous committed
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

    CATEGORY = "latent"

    def crop(self, samples, width, height, x, y):
482
483
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
        def enforce_image_dim(d, to_d, max_d):
            if to_d > max_d:
                leftover = (to_d - max_d) % 8
                to_d = max_d
                d -= leftover
            return (d, to_d)

        #make sure size is always multiple of 64
        x, to_x = enforce_image_dim(x, to_x, samples.shape[3])
        y, to_y = enforce_image_dim(y, to_y, samples.shape[2])
507
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
508
509
        return (s,)

510
511
512
513
514
515
516
517
518
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

519
    CATEGORY = "latent/inpaint"
520
521
522
523
524
525
526
527
528
529
530

    def set_mask(self, samples, mask):
        s = samples.copy()
        s["noise_mask"] = mask
        return (s,)


def common_ksampler(device, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
    latent_image = latent["samples"]
    noise_mask = None

comfyanonymous's avatar
comfyanonymous committed
531
532
533
534
535
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
        noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=torch.manual_seed(seed), device="cpu")

536
537
538
    if "noise_mask" in latent:
        noise_mask = latent['noise_mask']
        noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear")
539
        noise_mask = noise_mask.round()
540
541
542
543
        noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1)
        noise_mask = torch.cat([noise_mask] * noise.shape[0])
        noise_mask = noise_mask.to(device)

544
    real_model = None
545
546
547
548
549
    if device != "cpu":
        model_management.load_model_gpu(model)
        real_model = model.model
    else:
        #TODO: cpu support
550
        real_model = model.patch_model()
551
552
553
554
555
556
    noise = noise.to(device)
    latent_image = latent_image.to(device)

    positive_copy = []
    negative_copy = []

comfyanonymous's avatar
comfyanonymous committed
557
    control_nets = []
558
559
560
561
562
    for p in positive:
        t = p[0]
        if t.shape[0] < noise.shape[0]:
            t = torch.cat([t] * noise.shape[0])
        t = t.to(device)
comfyanonymous's avatar
comfyanonymous committed
563
564
        if 'control' in p[1]:
            control_nets += [p[1]['control']]
565
566
567
568
569
570
        positive_copy += [[t] + p[1:]]
    for n in negative:
        t = n[0]
        if t.shape[0] < noise.shape[0]:
            t = torch.cat([t] * noise.shape[0])
        t = t.to(device)
comfyanonymous's avatar
comfyanonymous committed
571
572
        if 'control' in p[1]:
            control_nets += [p[1]['control']]
573
574
        negative_copy += [[t] + n[1:]]

comfyanonymous's avatar
comfyanonymous committed
575
576
577
578
    control_net_models = []
    for x in control_nets:
        control_net_models += x.get_control_models()
    model_management.load_controlnet_gpu(control_net_models)
comfyanonymous's avatar
comfyanonymous committed
579

580
581
582
583
584
585
    if sampler_name in comfy.samplers.KSampler.SAMPLERS:
        sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise)
    else:
        #other samplers
        pass

586
    samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask)
587
    samples = samples.cpu()
comfyanonymous's avatar
comfyanonymous committed
588
589
    for c in control_nets:
        c.cleanup()
comfyanonymous's avatar
comfyanonymous committed
590

591
592
593
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
594

comfyanonymous's avatar
comfyanonymous committed
595
596
597
598
599
600
class KSampler:
    def __init__(self, device="cuda"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
601
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

617
618
    CATEGORY = "sampling"

comfyanonymous's avatar
comfyanonymous committed
619
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
comfyanonymous's avatar
comfyanonymous committed
620
        return common_ksampler(self.device, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
621

comfyanonymous's avatar
comfyanonymous committed
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
class KSamplerAdvanced:
    def __init__(self, device="cuda"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
648

comfyanonymous's avatar
comfyanonymous committed
649
650
651
652
653
654
655
656
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
        return common_ksampler(self.device, model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
657
658
659
660
661
662
663
664

class SaveImage:
    def __init__(self):
        self.output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output")

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
665
666
                    {"images": ("IMAGE", ),
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
667
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
668
669
670
671
672
673
674
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

675
676
    CATEGORY = "image"

pythongosssss's avatar
pythongosssss committed
677
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
678
679
680
681
682
683
684
685
686
687
688
689
        def map_filename(filename):
            prefix_len = len(filename_prefix)
            prefix = filename[:prefix_len + 1]
            try:
                digits = int(filename[prefix_len + 1:].split('_')[0])
            except:
                digits = 0
            return (digits, prefix)
        try:
            counter = max(filter(lambda a: a[1][:-1] == filename_prefix and a[1][-1] == "_", map(map_filename, os.listdir(self.output_dir))))[0] + 1
        except ValueError:
            counter = 1
690
691
692
        except FileNotFoundError:
            os.mkdir(self.output_dir)
            counter = 1
pythongosssss's avatar
pythongosssss committed
693
694

        paths = list()
comfyanonymous's avatar
comfyanonymous committed
695
696
697
698
699
700
701
702
703
        for image in images:
            i = 255. * image.cpu().numpy()
            img = Image.fromarray(i.astype(np.uint8))
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
pythongosssss's avatar
pythongosssss committed
704
705
            file = f"{filename_prefix}_{counter:05}_.png"
            img.save(os.path.join(self.output_dir, file), pnginfo=metadata, optimize=True)
pythongosssss's avatar
pythongosssss committed
706
            paths.append(file)
707
            counter += 1
pythongosssss's avatar
pythongosssss committed
708
        return { "ui": { "images": paths } }
comfyanonymous's avatar
comfyanonymous committed
709

710
711
712
713
714
class LoadImage:
    input_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
715
                    {"image": (sorted(os.listdir(s.input_dir)), )},
716
                }
717
718

    CATEGORY = "image"
719
720
721
722
723

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "load_image"
    def load_image(self, image):
        image_path = os.path.join(self.input_dir, image)
724
725
        i = Image.open(image_path)
        image = i.convert("RGB")
726
        image = np.array(image).astype(np.float32) / 255.0
727
728
        image = torch.from_numpy(image)[None,]
        return (image,)
729

730
731
732
733
734
735
736
737
    @classmethod
    def IS_CHANGED(s, image):
        image_path = os.path.join(s.input_dir, image)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

738
739
740
741
742
class LoadImageMask:
    input_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
743
                    {"image": (sorted(os.listdir(s.input_dir)), ),
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
                    "channel": (["alpha", "red", "green", "blue"], ),}
                }

    CATEGORY = "image"

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
        image_path = os.path.join(self.input_dir, image)
        i = Image.open(image_path)
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
        image_path = os.path.join(s.input_dir, image)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

comfyanonymous's avatar
comfyanonymous committed
773
774
775
776
777
778
779
780
781
782
783
784
785
786
class ImageScale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
                              "width": ("INT", {"default": 512, "min": 1, "max": 4096, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": 4096, "step": 1}),
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

    CATEGORY = "image"
787

comfyanonymous's avatar
comfyanonymous committed
788
789
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
790
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
791
792
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
793

794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


comfyanonymous's avatar
comfyanonymous committed
810
811
812
813
814
815
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
    "CheckpointLoader": CheckpointLoader,
    "CLIPTextEncode": CLIPTextEncode,
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
816
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
817
818
819
820
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
    "SaveImage": SaveImage,
comfyanonymous's avatar
comfyanonymous committed
821
    "LoadImage": LoadImage,
822
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
823
    "ImageScale": ImageScale,
824
    "ImageInvert": ImageInvert,
comfyanonymous's avatar
comfyanonymous committed
825
826
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
comfyanonymous's avatar
comfyanonymous committed
827
    "KSamplerAdvanced": KSamplerAdvanced,
828
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
829
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
830
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
831
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
832
    "LatentCrop": LatentCrop,
833
    "LoraLoader": LoraLoader,
834
    "CLIPLoader": CLIPLoader,
comfyanonymous's avatar
comfyanonymous committed
835
836
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
837
    "DiffControlNetLoader": DiffControlNetLoader,
838
    "T2IAdapterLoader": T2IAdapterLoader,
839
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
840
841
}

842
CUSTOM_NODE_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)), "custom_nodes")
Hacker 17082006's avatar
Hacker 17082006 committed
843
def load_custom_nodes():
844
    possible_modules = os.listdir(CUSTOM_NODE_PATH)
845
    if "__pycache__" in possible_modules:
Hacker 17082006's avatar
.  
Hacker 17082006 committed
846
        possible_modules.remove("__pycache__")
847

Hacker 17082006's avatar
Hacker 17082006 committed
848
    for possible_module in possible_modules:
849
850
        module_path = os.path.join(CUSTOM_NODE_PATH, possible_module)
        if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
851

852
        module_name = possible_module
Hacker 17082006's avatar
Hacker 17082006 committed
853
        try:
854
            if os.path.isfile(module_path):
855
                module_spec = importlib.util.spec_from_file_location(module_name, module_path)
856
            else:
857
                module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
858
            module = importlib.util.module_from_spec(module_spec)
859
            sys.modules[module_name] = module
860
            module_spec.loader.exec_module(module)
861
            if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
862
                NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
Hacker 17082006's avatar
Hacker 17082006 committed
863
            else:
Hacker 17082006's avatar
Hacker 17082006 committed
864
                print(f"Skip {possible_module} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
865
866
867
        except Exception as e:
            print(traceback.format_exc())
            print(f"Cannot import {possible_module} module for custom nodes:", e)
Hacker 17082006's avatar
Hacker 17082006 committed
868
869

load_custom_nodes()