nodes.py 36.1 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
comfyanonymous's avatar
comfyanonymous committed
7
import copy
8
import traceback
comfyanonymous's avatar
comfyanonymous committed
9
10
11
12
13

from PIL import Image
from PIL.PngImagePlugin import PngInfo
import numpy as np

14
sys.path.insert(0, os.path.join(sys.path[0], "comfy"))
comfyanonymous's avatar
comfyanonymous committed
15
16
17
18


import comfy.samplers
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
19
20
import comfy.utils

21
22
import comfy_extras.clip_vision

23
import model_management
24
import importlib
comfyanonymous's avatar
comfyanonymous committed
25

comfyanonymous's avatar
comfyanonymous committed
26
27
supported_ckpt_extensions = ['.ckpt', '.pth']
supported_pt_extensions = ['.ckpt', '.pt', '.bin', '.pth']
comfyanonymous's avatar
comfyanonymous committed
28
29
30
try:
    import safetensors.torch
    supported_ckpt_extensions += ['.safetensors']
comfyanonymous's avatar
comfyanonymous committed
31
    supported_pt_extensions += ['.safetensors']
comfyanonymous's avatar
comfyanonymous committed
32
33
34
except:
    print("Could not import safetensors, safetensors support disabled.")

35
36
37
38
def recursive_search(directory):  
    result = []
    for root, subdir, file in os.walk(directory, followlinks=True):
        for filepath in file:
39
40
            #we os.path,join directory with a blank string to generate a path separator at the end.
            result.append(os.path.join(root, filepath).replace(os.path.join(directory,''),'')) 
41
42
    return result

comfyanonymous's avatar
comfyanonymous committed
43
44
45
def filter_files_extensions(files, extensions):
    return sorted(list(filter(lambda a: os.path.splitext(a)[-1].lower() in extensions, files)))

46
47
48
49

def before_node_execution():
    model_management.throw_exception_if_processing_interrupted()

50
51
def interrupt_processing(value=True):
    model_management.interrupt_current_processing(value)
52

comfyanonymous's avatar
comfyanonymous committed
53
54
55
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
56
        return {"required": {"text": ("STRING", {"multiline": True, "dynamic_prompt": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
57
58
59
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

60
61
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
62
    def encode(self, clip, text):
comfyanonymous's avatar
comfyanonymous committed
63
64
65
66
67
68
69
70
71
        return ([[clip.encode(text), {}]], )

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

72
73
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "width": ("INT", {"default": 64, "min": 64, "max": 4096, "step": 64}),
                              "height": ("INT", {"default": 64, "min": 64, "max": 4096, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}),
                              "y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

90
91
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
92
    def append(self, conditioning, width, height, x, y, strength, min_sigma=0.0, max_sigma=99.0):
comfyanonymous's avatar
comfyanonymous committed
93
94
95
96
97
98
99
100
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
            n[1]['min_sigma'] = min_sigma
            n[1]['max_sigma'] = max_sigma
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
101
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
102
103
104
105
106
107
108
109
110
111
112

class VAEDecode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

113
114
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
115
    def decode(self, vae, samples):
116
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
class VAEDecodeTiled:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
133
134
135
136
137
138
139
140
141
142
class VAEEncode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

143
144
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
145
    def encode(self, vae, pixels):
146
147
148
149
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
150
151
152
        t = vae.encode(pixels[:,:,:,:3])

        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
153

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
class VAEEncodeForInpaint:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

    def encode(self, vae, pixels, mask):
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
169
170
        mask = torch.nn.functional.interpolate(mask[None,None,], size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")[0][0]

171
172
173
174
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
            mask = mask[:x,:y]

175
        #grow mask by a few pixels to keep things seamless in latent space
176
        kernel_tensor = torch.ones((1, 1, 6, 6))
177
178
        mask_erosion = torch.clamp(torch.nn.functional.conv2d((mask.round())[None], kernel_tensor, padding=3), 0, 1)
        m = (1.0 - mask.round())
179
180
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
181
            pixels[:,:,:,i] *= m
182
183
184
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

185
        return ({"samples":t, "noise_mask": (mask_erosion[0][:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
186
187
188
189
190

class CheckpointLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    config_dir = os.path.join(models_dir, "configs")
    ckpt_dir = os.path.join(models_dir, "checkpoints")
191
    embedding_directory = os.path.join(models_dir, "embeddings")
comfyanonymous's avatar
comfyanonymous committed
192
193
194

    @classmethod
    def INPUT_TYPES(s):
195
196
        return {"required": { "config_name": (filter_files_extensions(recursive_search(s.config_dir), '.yaml'), ),
                              "ckpt_name": (filter_files_extensions(recursive_search(s.ckpt_dir), supported_ckpt_extensions), )}}
comfyanonymous's avatar
comfyanonymous committed
197
198
199
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

200
201
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
202
203
204
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
        config_path = os.path.join(self.config_dir, config_name)
        ckpt_path = os.path.join(self.ckpt_dir, ckpt_name)
205
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=self.embedding_directory)
comfyanonymous's avatar
comfyanonymous committed
206

207
208
209
210
211
212
213
214
215
216
217
class CheckpointLoaderSimple:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    ckpt_dir = os.path.join(models_dir, "checkpoints")

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (filter_files_extensions(recursive_search(s.ckpt_dir), supported_ckpt_extensions), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

218
    CATEGORY = "loaders"
219

220
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
221
        ckpt_path = os.path.join(self.ckpt_dir, ckpt_name)
222
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=CheckpointLoader.embedding_directory)
223
224
        return out

comfyanonymous's avatar
comfyanonymous committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

241
242
243
244
245
246
247
class LoraLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    lora_dir = os.path.join(models_dir, "loras")
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
248
                              "lora_name": (filter_files_extensions(recursive_search(s.lora_dir), supported_pt_extensions), ),
249
250
251
252
253
254
255
256
257
258
259
260
261
                              "strength_model": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
        lora_path = os.path.join(self.lora_dir, lora_name)
        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
        return (model_lora, clip_lora)

comfyanonymous's avatar
comfyanonymous committed
262
263
264
265
266
class VAELoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    vae_dir = os.path.join(models_dir, "vae")
    @classmethod
    def INPUT_TYPES(s):
267
        return {"required": { "vae_name": (filter_files_extensions(recursive_search(s.vae_dir), supported_pt_extensions), )}}
comfyanonymous's avatar
comfyanonymous committed
268
269
270
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

271
272
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
273
274
275
276
277
278
    #TODO: scale factor?
    def load_vae(self, vae_name):
        vae_path = os.path.join(self.vae_dir, vae_name)
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
class ControlNetLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    controlnet_dir = os.path.join(models_dir, "controlnet")
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "control_net_name": (filter_files_extensions(recursive_search(s.controlnet_dir), supported_pt_extensions), )}}

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
        controlnet_path = os.path.join(self.controlnet_dir, control_net_name)
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
class DiffControlNetLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    controlnet_dir = os.path.join(models_dir, "controlnet")
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "control_net_name": (filter_files_extensions(recursive_search(s.controlnet_dir), supported_pt_extensions), )}}

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
        controlnet_path = os.path.join(self.controlnet_dir, control_net_name)
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
314
315
316
317

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
318
319
320
321
322
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
323
324
325
326
327
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

328
    def apply_controlnet(self, conditioning, control_net, image, strength):
comfyanonymous's avatar
comfyanonymous committed
329
330
331
332
333
        c = []
        control_hint = image.movedim(-1,1)
        print(control_hint.shape)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
334
335
336
337
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
comfyanonymous's avatar
comfyanonymous committed
338
339
340
            c.append(n)
        return (c, )

341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
class T2IAdapterLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    t2i_adapter_dir = os.path.join(models_dir, "t2i_adapter")
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "t2i_adapter_name": (filter_files_extensions(recursive_search(s.t2i_adapter_dir), supported_pt_extensions), )}}

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_t2i_adapter"

    CATEGORY = "loaders"

    def load_t2i_adapter(self, t2i_adapter_name):
        t2i_path = os.path.join(self.t2i_adapter_dir, t2i_adapter_name)
        t2i_adapter = comfy.sd.load_t2i_adapter(t2i_path)
        return (t2i_adapter,)
comfyanonymous's avatar
comfyanonymous committed
357

358
359
360
361
362
class CLIPLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    clip_dir = os.path.join(models_dir, "clip")
    @classmethod
    def INPUT_TYPES(s):
363
        return {"required": { "clip_name": (filter_files_extensions(recursive_search(s.clip_dir), supported_pt_extensions), ),
364
365
366
367
368
369
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

370
    def load_clip(self, clip_name):
371
372
373
374
        clip_path = os.path.join(self.clip_dir, clip_name)
        clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=CheckpointLoader.embedding_directory)
        return (clip,)

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
class CLIPVisionLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    clip_dir = os.path.join(models_dir, "clip_vision")
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_name": (filter_files_extensions(recursive_search(s.clip_dir), supported_pt_extensions), ),
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
        clip_path = os.path.join(self.clip_dir, clip_name)
        clip_vision = comfy_extras.clip_vision.load(clip_path)
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
398
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
399
400
    FUNCTION = "encode"

comfyanonymous's avatar
comfyanonymous committed
401
    CATEGORY = "conditioning/style_model"
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    style_model_dir = os.path.join(models_dir, "style_models")
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "style_model_name": (filter_files_extensions(recursive_search(s.style_model_dir), supported_pt_extensions), )}}

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
        style_model_path = os.path.join(self.style_model_dir, style_model_name)
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
428
        return {"required": {"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
429
430
431
432
433
                             "style_model": ("STYLE_MODEL", )
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
434
    CATEGORY = "conditioning/style_model"
435

comfyanonymous's avatar
comfyanonymous committed
436
437
    def apply_stylemodel(self, clip_vision_output, style_model):
        c = style_model.get_cond(clip_vision_output)
438
439
440
441
442
443
444
445
446
447
        return ([[c, {}]], )


class ConditioningAppend:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
448
    CATEGORY = "conditioning/style_model"
449
450
451
452
453
454
455
456
457

    def append(self, conditioning_to, conditioning_from):
        c = []
        to_append = conditioning_from[0][0]
        for t in conditioning_to:
            n = [torch.cat((t[0],to_append), dim=1), t[1].copy()]
            c.append(n)
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
458
459
460
461
462
463
464
465
466
467
468
469
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

470
471
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
472
473
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
474
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
475

comfyanonymous's avatar
comfyanonymous committed
476

comfyanonymous's avatar
comfyanonymous committed
477

comfyanonymous's avatar
comfyanonymous committed
478
479
class LatentUpscale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
480
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
481
482
483
484
485

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
                              "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
486
487
                              "height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
488
489
490
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

491
492
    CATEGORY = "latent"

493
    def upscale(self, samples, upscale_method, width, height, crop):
494
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
495
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
496
497
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
498
499
500
501
502
503
504
505
506
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
507
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
508
509

    def rotate(self, samples, rotation):
510
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
511
512
513
514
515
516
517
518
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

519
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
520
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
521
522
523
524
525
526
527
528
529
530

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
531
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
532
533

    def flip(self, samples, flip_method):
534
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
535
        if flip_method.startswith("x"):
536
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
537
        elif flip_method.startswith("y"):
538
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
539
540

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
541
542
543
544
545
546
547
548

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
549
                              "feather": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
550
551
552
553
554
555
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

556
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
comfyanonymous's avatar
comfyanonymous committed
557
558
        x =  x // 8
        y = y // 8
559
        feather = feather // 8
560
561
562
563
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
564
565
566
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
567
568
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
569
570
571
572
573
574
575
576
577
578
579
580
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
581
582
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
583

comfyanonymous's avatar
comfyanonymous committed
584
585
586
587
588
589
590
591
592
593
594
595
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
596
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
597
598

    def crop(self, samples, width, height, x, y):
599
600
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
        def enforce_image_dim(d, to_d, max_d):
            if to_d > max_d:
                leftover = (to_d - max_d) % 8
                to_d = max_d
                d -= leftover
            return (d, to_d)

        #make sure size is always multiple of 64
        x, to_x = enforce_image_dim(x, to_x, samples.shape[3])
        y, to_y = enforce_image_dim(y, to_y, samples.shape[2])
624
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
625
626
        return (s,)

627
628
629
630
631
632
633
634
635
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

636
    CATEGORY = "latent/inpaint"
637
638
639
640
641
642
643
644
645
646
647

    def set_mask(self, samples, mask):
        s = samples.copy()
        s["noise_mask"] = mask
        return (s,)


def common_ksampler(device, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
    latent_image = latent["samples"]
    noise_mask = None

comfyanonymous's avatar
comfyanonymous committed
648
649
650
651
652
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
        noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=torch.manual_seed(seed), device="cpu")

653
654
655
    if "noise_mask" in latent:
        noise_mask = latent['noise_mask']
        noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear")
656
        noise_mask = noise_mask.round()
657
658
659
660
        noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1)
        noise_mask = torch.cat([noise_mask] * noise.shape[0])
        noise_mask = noise_mask.to(device)

661
    real_model = None
662
663
664
665
666
    if device != "cpu":
        model_management.load_model_gpu(model)
        real_model = model.model
    else:
        #TODO: cpu support
667
        real_model = model.patch_model()
668
669
670
671
672
673
    noise = noise.to(device)
    latent_image = latent_image.to(device)

    positive_copy = []
    negative_copy = []

comfyanonymous's avatar
comfyanonymous committed
674
    control_nets = []
675
676
677
678
679
    for p in positive:
        t = p[0]
        if t.shape[0] < noise.shape[0]:
            t = torch.cat([t] * noise.shape[0])
        t = t.to(device)
comfyanonymous's avatar
comfyanonymous committed
680
681
        if 'control' in p[1]:
            control_nets += [p[1]['control']]
682
683
684
685
686
687
        positive_copy += [[t] + p[1:]]
    for n in negative:
        t = n[0]
        if t.shape[0] < noise.shape[0]:
            t = torch.cat([t] * noise.shape[0])
        t = t.to(device)
comfyanonymous's avatar
comfyanonymous committed
688
689
        if 'control' in p[1]:
            control_nets += [p[1]['control']]
690
691
        negative_copy += [[t] + n[1:]]

comfyanonymous's avatar
comfyanonymous committed
692
693
694
695
    control_net_models = []
    for x in control_nets:
        control_net_models += x.get_control_models()
    model_management.load_controlnet_gpu(control_net_models)
comfyanonymous's avatar
comfyanonymous committed
696

697
698
699
700
701
702
    if sampler_name in comfy.samplers.KSampler.SAMPLERS:
        sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise)
    else:
        #other samplers
        pass

703
    samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask)
704
    samples = samples.cpu()
comfyanonymous's avatar
comfyanonymous committed
705
706
    for c in control_nets:
        c.cleanup()
comfyanonymous's avatar
comfyanonymous committed
707

708
709
710
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
711

comfyanonymous's avatar
comfyanonymous committed
712
713
714
715
716
717
class KSampler:
    def __init__(self, device="cuda"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
718
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

734
735
    CATEGORY = "sampling"

comfyanonymous's avatar
comfyanonymous committed
736
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
comfyanonymous's avatar
comfyanonymous committed
737
        return common_ksampler(self.device, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
738

comfyanonymous's avatar
comfyanonymous committed
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
class KSamplerAdvanced:
    def __init__(self, device="cuda"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
765

comfyanonymous's avatar
comfyanonymous committed
766
767
768
769
770
771
772
773
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
        return common_ksampler(self.device, model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
774
775
776
777
778
779
780
781

class SaveImage:
    def __init__(self):
        self.output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output")

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
782
783
                    {"images": ("IMAGE", ),
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
784
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
785
786
787
788
789
790
791
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

792
793
    CATEGORY = "image"

pythongosssss's avatar
pythongosssss committed
794
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
795
796
797
798
799
800
801
802
803
804
805
806
        def map_filename(filename):
            prefix_len = len(filename_prefix)
            prefix = filename[:prefix_len + 1]
            try:
                digits = int(filename[prefix_len + 1:].split('_')[0])
            except:
                digits = 0
            return (digits, prefix)
        try:
            counter = max(filter(lambda a: a[1][:-1] == filename_prefix and a[1][-1] == "_", map(map_filename, os.listdir(self.output_dir))))[0] + 1
        except ValueError:
            counter = 1
807
808
809
        except FileNotFoundError:
            os.mkdir(self.output_dir)
            counter = 1
pythongosssss's avatar
pythongosssss committed
810
811

        paths = list()
comfyanonymous's avatar
comfyanonymous committed
812
813
814
815
816
817
818
819
820
        for image in images:
            i = 255. * image.cpu().numpy()
            img = Image.fromarray(i.astype(np.uint8))
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
pythongosssss's avatar
pythongosssss committed
821
822
            file = f"{filename_prefix}_{counter:05}_.png"
            img.save(os.path.join(self.output_dir, file), pnginfo=metadata, optimize=True)
pythongosssss's avatar
pythongosssss committed
823
            paths.append(file)
824
            counter += 1
pythongosssss's avatar
pythongosssss committed
825
        return { "ui": { "images": paths } }
comfyanonymous's avatar
comfyanonymous committed
826

827
828
829
830
831
class LoadImage:
    input_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
832
                    {"image": (sorted(os.listdir(s.input_dir)), )},
833
                }
834
835

    CATEGORY = "image"
836
837
838
839
840

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "load_image"
    def load_image(self, image):
        image_path = os.path.join(self.input_dir, image)
841
842
        i = Image.open(image_path)
        image = i.convert("RGB")
843
        image = np.array(image).astype(np.float32) / 255.0
844
845
        image = torch.from_numpy(image)[None,]
        return (image,)
846

847
848
849
850
851
852
853
854
    @classmethod
    def IS_CHANGED(s, image):
        image_path = os.path.join(s.input_dir, image)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

855
856
857
858
859
class LoadImageMask:
    input_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
860
                    {"image": (sorted(os.listdir(s.input_dir)), ),
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
                    "channel": (["alpha", "red", "green", "blue"], ),}
                }

    CATEGORY = "image"

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
        image_path = os.path.join(self.input_dir, image)
        i = Image.open(image_path)
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
        image_path = os.path.join(s.input_dir, image)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

comfyanonymous's avatar
comfyanonymous committed
890
891
892
893
894
895
896
897
898
899
900
901
902
903
class ImageScale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
                              "width": ("INT", {"default": 512, "min": 1, "max": 4096, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": 4096, "step": 1}),
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

    CATEGORY = "image"
904

comfyanonymous's avatar
comfyanonymous committed
905
906
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
907
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
908
909
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
910

911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


comfyanonymous's avatar
comfyanonymous committed
927
928
929
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
    "CheckpointLoader": CheckpointLoader,
930
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
931
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
932
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
933
934
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
935
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
936
937
938
939
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
    "SaveImage": SaveImage,
comfyanonymous's avatar
comfyanonymous committed
940
    "LoadImage": LoadImage,
941
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
942
    "ImageScale": ImageScale,
943
    "ImageInvert": ImageInvert,
comfyanonymous's avatar
comfyanonymous committed
944
945
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
comfyanonymous's avatar
comfyanonymous committed
946
    "KSamplerAdvanced": KSamplerAdvanced,
947
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
948
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
949
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
950
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
951
    "LatentCrop": LatentCrop,
952
    "LoraLoader": LoraLoader,
953
    "CLIPLoader": CLIPLoader,
954
955
956
    "CLIPVisionEncode": CLIPVisionEncode,
    "StyleModelApply":StyleModelApply,
    "ConditioningAppend":ConditioningAppend,
comfyanonymous's avatar
comfyanonymous committed
957
958
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
959
    "DiffControlNetLoader": DiffControlNetLoader,
960
    "T2IAdapterLoader": T2IAdapterLoader,
comfyanonymous's avatar
comfyanonymous committed
961
962
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
963
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
964
965
}

966
CUSTOM_NODE_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)), "custom_nodes")
Hacker 17082006's avatar
Hacker 17082006 committed
967
def load_custom_nodes():
968
    possible_modules = os.listdir(CUSTOM_NODE_PATH)
969
    if "__pycache__" in possible_modules:
Hacker 17082006's avatar
.  
Hacker 17082006 committed
970
        possible_modules.remove("__pycache__")
971

Hacker 17082006's avatar
Hacker 17082006 committed
972
    for possible_module in possible_modules:
973
974
        module_path = os.path.join(CUSTOM_NODE_PATH, possible_module)
        if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
975

976
        module_name = possible_module
Hacker 17082006's avatar
Hacker 17082006 committed
977
        try:
978
            if os.path.isfile(module_path):
979
                module_spec = importlib.util.spec_from_file_location(module_name, module_path)
980
            else:
981
                module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
982
            module = importlib.util.module_from_spec(module_spec)
983
            sys.modules[module_name] = module
984
            module_spec.loader.exec_module(module)
985
            if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
986
                NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
Hacker 17082006's avatar
Hacker 17082006 committed
987
            else:
Hacker 17082006's avatar
Hacker 17082006 committed
988
                print(f"Skip {possible_module} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
989
990
991
        except Exception as e:
            print(traceback.format_exc())
            print(f"Cannot import {possible_module} module for custom nodes:", e)
Hacker 17082006's avatar
Hacker 17082006 committed
992
993

load_custom_nodes()