nodes.py 36.1 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
comfyanonymous's avatar
comfyanonymous committed
7
import copy
8
import traceback
comfyanonymous's avatar
comfyanonymous committed
9
10
11
12
13

from PIL import Image
from PIL.PngImagePlugin import PngInfo
import numpy as np

comfyanonymous's avatar
comfyanonymous committed
14
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
15
16
17
18


import comfy.samplers
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
19
20
import comfy.utils

21
22
import comfy_extras.clip_vision

23
import model_management
24
import importlib
comfyanonymous's avatar
comfyanonymous committed
25

26
import folder_paths
27
28
29
30

def before_node_execution():
    model_management.throw_exception_if_processing_interrupted()

31
32
def interrupt_processing(value=True):
    model_management.interrupt_current_processing(value)
33

34
35
MAX_RESOLUTION=8192

comfyanonymous's avatar
comfyanonymous committed
36
37
38
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
39
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
40
41
42
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

43
44
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
45
    def encode(self, clip, text):
comfyanonymous's avatar
comfyanonymous committed
46
47
48
49
50
51
52
53
54
        return ([[clip.encode(text), {}]], )

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

55
56
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
57
58
59
60
61
62
63
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
64
65
66
67
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
comfyanonymous's avatar
comfyanonymous committed
68
69
70
71
72
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

73
74
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
75
    def append(self, conditioning, width, height, x, y, strength, min_sigma=0.0, max_sigma=99.0):
comfyanonymous's avatar
comfyanonymous committed
76
77
78
79
80
81
82
83
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
            n[1]['min_sigma'] = min_sigma
            n[1]['max_sigma'] = max_sigma
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
84
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
85
86
87
88
89
90
91
92
93
94
95

class VAEDecode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

96
97
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
98
    def decode(self, vae, samples):
99
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
100

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
class VAEDecodeTiled:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
116
117
118
119
120
121
122
123
124
125
class VAEEncode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

126
127
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
128
    def encode(self, vae, pixels):
129
130
131
132
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
133
134
135
        t = vae.encode(pixels[:,:,:,:3])

        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
136

comfyanonymous's avatar
comfyanonymous committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

class VAEEncodeTiled:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

    def encode(self, vae, pixels):
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
        t = vae.encode_tiled(pixels[:,:,:,:3])

        return ({"samples":t}, )
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
class VAEEncodeForInpaint:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

    def encode(self, vae, pixels, mask):
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
173
174
        mask = torch.nn.functional.interpolate(mask[None,None,], size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")[0][0]

175
        pixels = pixels.clone()
176
177
178
179
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
            mask = mask[:x,:y]

180
        #grow mask by a few pixels to keep things seamless in latent space
181
        kernel_tensor = torch.ones((1, 1, 6, 6))
182
183
        mask_erosion = torch.clamp(torch.nn.functional.conv2d((mask.round())[None], kernel_tensor, padding=3), 0, 1)
        m = (1.0 - mask.round())
184
185
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
186
            pixels[:,:,:,i] *= m
187
188
189
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

190
        return ({"samples":t, "noise_mask": (mask_erosion[0][:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
191
192
193
194

class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
195
196
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
197
198
199
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

200
201
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
202
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
203
204
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
205
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
206

207
208
209
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
210
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
211
212
213
214
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

215
    CATEGORY = "loaders"
216

217
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
218
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
219
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
220
221
        return out

comfyanonymous's avatar
comfyanonymous committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

238
239
240
241
242
class LoraLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
243
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
244
245
246
247
248
249
250
251
252
                              "strength_model": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
253
        lora_path = folder_paths.get_full_path("loras", lora_name)
254
255
256
        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
        return (model_lora, clip_lora)

comfyanonymous's avatar
comfyanonymous committed
257
258
259
class VAELoader:
    @classmethod
    def INPUT_TYPES(s):
260
        return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
comfyanonymous's avatar
comfyanonymous committed
261
262
263
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

264
265
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
266
267
    #TODO: scale factor?
    def load_vae(self, vae_name):
268
        vae_path = folder_paths.get_full_path("vae", vae_name)
comfyanonymous's avatar
comfyanonymous committed
269
270
271
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
272
273
274
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
275
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
276
277
278
279
280
281
282

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
283
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
comfyanonymous's avatar
comfyanonymous committed
284
285
286
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

287
288
289
290
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
291
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
292
293
294
295
296
297
298

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
299
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
300
301
302
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
303
304
305
306

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
307
308
309
310
311
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
312
313
314
315
316
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

317
    def apply_controlnet(self, conditioning, control_net, image, strength):
comfyanonymous's avatar
comfyanonymous committed
318
319
320
321
322
        c = []
        control_hint = image.movedim(-1,1)
        print(control_hint.shape)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
323
324
325
326
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
comfyanonymous's avatar
comfyanonymous committed
327
328
329
            c.append(n)
        return (c, )

330
331
332
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
333
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
334
335
336
337
338
339
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

340
    def load_clip(self, clip_name):
341
        clip_path = folder_paths.get_full_path("clip", clip_name)
comfyanonymous's avatar
comfyanonymous committed
342
        clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=folder_paths.get_folder_paths("embeddings"))
343
344
        return (clip,)

345
346
347
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
348
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
349
350
351
352
353
354
355
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
356
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
357
358
359
360
361
362
363
364
365
        clip_vision = comfy_extras.clip_vision.load(clip_path)
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
366
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
367
368
    FUNCTION = "encode"

comfyanonymous's avatar
comfyanonymous committed
369
    CATEGORY = "conditioning/style_model"
370
371
372
373
374
375
376
377

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
378
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
379
380
381
382
383
384
385

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
386
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
387
388
389
390
391
392
393
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
394
395
396
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
397
398
399
400
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
401
    CATEGORY = "conditioning/style_model"
402

403
404
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
        cond = style_model.get_cond(clip_vision_output)
405
        c = []
406
407
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
408
409
410
            c.append(n)
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
411
412
413
414
415
416
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
417
418
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
comfyanonymous's avatar
comfyanonymous committed
419
420
421
422
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

423
424
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
425
426
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
427
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
428

comfyanonymous's avatar
comfyanonymous committed
429

comfyanonymous's avatar
comfyanonymous committed
430

comfyanonymous's avatar
comfyanonymous committed
431
432
class LatentUpscale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
433
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
434
435
436
437

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
438
439
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
440
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
441
442
443
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

444
445
    CATEGORY = "latent"

446
    def upscale(self, samples, upscale_method, width, height, crop):
447
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
448
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
449
450
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
451
452
453
454
455
456
457
458
459
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
460
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
461
462

    def rotate(self, samples, rotation):
463
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
464
465
466
467
468
469
470
471
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

472
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
473
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
474
475
476
477
478
479
480
481
482
483

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
484
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
485
486

    def flip(self, samples, flip_method):
487
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
488
        if flip_method.startswith("x"):
489
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
490
        elif flip_method.startswith("y"):
491
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
492
493

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
494
495
496
497
498
499

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
500
501
502
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
503
504
505
506
507
508
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

509
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
comfyanonymous's avatar
comfyanonymous committed
510
511
        x =  x // 8
        y = y // 8
512
        feather = feather // 8
513
514
515
516
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
517
518
519
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
520
521
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
522
523
524
525
526
527
528
529
530
531
532
533
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
534
535
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
536

comfyanonymous's avatar
comfyanonymous committed
537
538
539
540
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
541
542
543
544
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
545
546
547
548
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
549
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
550
551

    def crop(self, samples, width, height, x, y):
552
553
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
        def enforce_image_dim(d, to_d, max_d):
            if to_d > max_d:
                leftover = (to_d - max_d) % 8
                to_d = max_d
                d -= leftover
            return (d, to_d)

        #make sure size is always multiple of 64
        x, to_x = enforce_image_dim(x, to_x, samples.shape[3])
        y, to_y = enforce_image_dim(y, to_y, samples.shape[2])
577
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
578
579
        return (s,)

580
581
582
583
584
585
586
587
588
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

589
    CATEGORY = "latent/inpaint"
590
591
592
593
594
595
596

    def set_mask(self, samples, mask):
        s = samples.copy()
        s["noise_mask"] = mask
        return (s,)


597
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
598
599
    latent_image = latent["samples"]
    noise_mask = None
600
    device = model_management.get_torch_device()
601

comfyanonymous's avatar
comfyanonymous committed
602
603
604
605
606
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
        noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=torch.manual_seed(seed), device="cpu")

607
608
609
    if "noise_mask" in latent:
        noise_mask = latent['noise_mask']
        noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear")
610
        noise_mask = noise_mask.round()
611
612
613
614
        noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1)
        noise_mask = torch.cat([noise_mask] * noise.shape[0])
        noise_mask = noise_mask.to(device)

615
    real_model = None
616
617
618
    model_management.load_model_gpu(model)
    real_model = model.model

619
620
621
622
623
624
    noise = noise.to(device)
    latent_image = latent_image.to(device)

    positive_copy = []
    negative_copy = []

comfyanonymous's avatar
comfyanonymous committed
625
    control_nets = []
626
627
628
629
630
    for p in positive:
        t = p[0]
        if t.shape[0] < noise.shape[0]:
            t = torch.cat([t] * noise.shape[0])
        t = t.to(device)
comfyanonymous's avatar
comfyanonymous committed
631
632
        if 'control' in p[1]:
            control_nets += [p[1]['control']]
633
634
635
636
637
638
        positive_copy += [[t] + p[1:]]
    for n in negative:
        t = n[0]
        if t.shape[0] < noise.shape[0]:
            t = torch.cat([t] * noise.shape[0])
        t = t.to(device)
639
640
        if 'control' in n[1]:
            control_nets += [n[1]['control']]
641
642
        negative_copy += [[t] + n[1:]]

comfyanonymous's avatar
comfyanonymous committed
643
644
645
646
    control_net_models = []
    for x in control_nets:
        control_net_models += x.get_control_models()
    model_management.load_controlnet_gpu(control_net_models)
comfyanonymous's avatar
comfyanonymous committed
647

648
649
650
651
652
653
    if sampler_name in comfy.samplers.KSampler.SAMPLERS:
        sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise)
    else:
        #other samplers
        pass

654
    samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask)
655
    samples = samples.cpu()
comfyanonymous's avatar
comfyanonymous committed
656
657
    for c in control_nets:
        c.cleanup()
comfyanonymous's avatar
comfyanonymous committed
658

659
660
661
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
662

comfyanonymous's avatar
comfyanonymous committed
663
664
665
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
666
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

682
683
    CATEGORY = "sampling"

comfyanonymous's avatar
comfyanonymous committed
684
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
685
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
686

comfyanonymous's avatar
comfyanonymous committed
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
710

comfyanonymous's avatar
comfyanonymous committed
711
712
713
714
715
716
717
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
718
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
719
720
721
722

class SaveImage:
    def __init__(self):
        self.output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output")
m957ymj75urz's avatar
m957ymj75urz committed
723
        self.type = "output"
comfyanonymous's avatar
comfyanonymous committed
724
725
726
727

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
728
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
729
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
730
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
731
732
733
734
735
736
737
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

738
739
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
740
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
741
        def map_filename(filename):
742
            prefix_len = len(os.path.basename(filename_prefix))
743
744
745
746
747
748
            prefix = filename[:prefix_len + 1]
            try:
                digits = int(filename[prefix_len + 1:].split('_')[0])
            except:
                digits = 0
            return (digits, prefix)
comfyanonymous's avatar
comfyanonymous committed
749

m957ymj75urz's avatar
m957ymj75urz committed
750
751
752
        subfolder = os.path.dirname(os.path.normpath(filename_prefix))
        filename = os.path.basename(os.path.normpath(filename_prefix))

comfyanonymous's avatar
comfyanonymous committed
753
        full_output_folder = os.path.join(self.output_dir, subfolder)
754

755
        if os.path.commonpath((self.output_dir, os.path.realpath(full_output_folder))) != self.output_dir:
756
            print("Saving image outside the output folder is not allowed.")
comfyanonymous's avatar
comfyanonymous committed
757
758
            return {}

759
        try:
760
            counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1
761
762
        except ValueError:
            counter = 1
763
        except FileNotFoundError:
764
            os.makedirs(full_output_folder, exist_ok=True)
765
            counter = 1
pythongosssss's avatar
pythongosssss committed
766

pythongosssss's avatar
pythongosssss committed
767
768
        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
769

m957ymj75urz's avatar
m957ymj75urz committed
770
        results = list()
comfyanonymous's avatar
comfyanonymous committed
771
772
        for image in images:
            i = 255. * image.cpu().numpy()
773
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
comfyanonymous's avatar
comfyanonymous committed
774
775
776
777
778
779
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
780

781
            file = f"{filename}_{counter:05}_.png"
782
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
783
784
785
786
787
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
            });
788
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
789

m957ymj75urz's avatar
m957ymj75urz committed
790
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
791

pythongosssss's avatar
pythongosssss committed
792
793
794
class PreviewImage(SaveImage):
    def __init__(self):
        self.output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "temp")
m957ymj75urz's avatar
m957ymj75urz committed
795
        self.type = "temp"
pythongosssss's avatar
pythongosssss committed
796
797
798

    @classmethod
    def INPUT_TYPES(s):
799
        return {"required":
pythongosssss's avatar
pythongosssss committed
800
801
802
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
803

804
805
806
807
class LoadImage:
    input_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
    @classmethod
    def INPUT_TYPES(s):
pythongosssss's avatar
pythongosssss committed
808
809
        if not os.path.exists(s.input_dir):
            os.makedirs(s.input_dir)
810
        return {"required":
811
                    {"image": (sorted(os.listdir(s.input_dir)), )},
812
                }
813
814

    CATEGORY = "image"
815

816
    RETURN_TYPES = ("IMAGE", "MASK")
817
818
819
    FUNCTION = "load_image"
    def load_image(self, image):
        image_path = os.path.join(self.input_dir, image)
820
821
        i = Image.open(image_path)
        image = i.convert("RGB")
822
        image = np.array(image).astype(np.float32) / 255.0
823
        image = torch.from_numpy(image)[None,]
824
825
826
827
828
829
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)
830

831
832
833
834
835
836
837
    @classmethod
    def IS_CHANGED(s, image):
        image_path = os.path.join(s.input_dir, image)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
838

839
840
841
842
843
class LoadImageMask:
    input_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
844
                    {"image": (sorted(os.listdir(s.input_dir)), ),
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
                    "channel": (["alpha", "red", "green", "blue"], ),}
                }

    CATEGORY = "image"

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
        image_path = os.path.join(self.input_dir, image)
        i = Image.open(image_path)
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
        image_path = os.path.join(s.input_dir, image)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
873

comfyanonymous's avatar
comfyanonymous committed
874
875
876
877
878
879
880
class ImageScale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
881
882
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
883
884
885
886
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

887
    CATEGORY = "image/upscaling"
888

comfyanonymous's avatar
comfyanonymous committed
889
890
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
891
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
892
893
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
894

895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


Guo Y.K's avatar
Guo Y.K committed
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
                "left": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}),
                "top": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}),
                "right": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}),
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

    def expand_image(self, image, left, top, right, bottom):
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
        mask[top:top + d2, left:left + d3] = torch.zeros(
            (d2, d3),
            dtype=torch.float32,
        )
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
950
951
952
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
    "CheckpointLoader": CheckpointLoader,
953
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
954
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
955
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
956
957
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
958
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
959
960
961
962
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
963
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
964
    "LoadImage": LoadImage,
965
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
966
    "ImageScale": ImageScale,
967
    "ImageInvert": ImageInvert,
Guo Y.K's avatar
Guo Y.K committed
968
    "ImagePadForOutpaint": ImagePadForOutpaint,
comfyanonymous's avatar
comfyanonymous committed
969
970
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
comfyanonymous's avatar
comfyanonymous committed
971
    "KSamplerAdvanced": KSamplerAdvanced,
972
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
973
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
974
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
975
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
976
    "LatentCrop": LatentCrop,
977
    "LoraLoader": LoraLoader,
978
    "CLIPLoader": CLIPLoader,
979
    "CLIPVisionEncode": CLIPVisionEncode,
980
    "StyleModelApply": StyleModelApply,
comfyanonymous's avatar
comfyanonymous committed
981
982
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
983
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
984
985
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
986
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
987
    "VAEEncodeTiled": VAEEncodeTiled,
comfyanonymous's avatar
comfyanonymous committed
988
989
}

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
def load_custom_node(module_path):
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
            NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)

Hacker 17082006's avatar
Hacker 17082006 committed
1011
def load_custom_nodes():
1012
    CUSTOM_NODE_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)), "custom_nodes")
1013
    possible_modules = os.listdir(CUSTOM_NODE_PATH)
1014
    if "__pycache__" in possible_modules:
Hacker 17082006's avatar
.  
Hacker 17082006 committed
1015
        possible_modules.remove("__pycache__")
1016

Hacker 17082006's avatar
Hacker 17082006 committed
1017
    for possible_module in possible_modules:
1018
1019
        module_path = os.path.join(CUSTOM_NODE_PATH, possible_module)
        if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1020
        load_custom_node(module_path)
1021

1022
load_custom_nodes()
1023
1024

load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))