nodes.py 73.1 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
8
import math
9
import time
10
import random
11
import logging
comfyanonymous's avatar
comfyanonymous committed
12

13
from PIL import Image, ImageOps, ImageSequence
comfyanonymous's avatar
comfyanonymous committed
14
15
from PIL.PngImagePlugin import PngInfo
import numpy as np
16
import safetensors.torch
comfyanonymous's avatar
comfyanonymous committed
17

18
import comfy.diffusers_load
comfyanonymous's avatar
comfyanonymous committed
19
import comfy.samplers
20
import comfy.sample
comfyanonymous's avatar
comfyanonymous committed
21
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
22
import comfy.utils
23
import comfy.controlnet
comfyanonymous's avatar
comfyanonymous committed
24

25
import comfy.clip_vision
26

27
import comfy.model_management
28
29
from comfy.cli_args import args

30
import importlib
comfyanonymous's avatar
comfyanonymous committed
31

32
import folder_paths
33
import latent_preview
space-nuko's avatar
space-nuko committed
34

35
def before_node_execution():
36
    comfy.model_management.throw_exception_if_processing_interrupted()
37

38
def interrupt_processing(value=True):
39
    comfy.model_management.interrupt_current_processing(value)
40

41
42
MAX_RESOLUTION=8192

comfyanonymous's avatar
comfyanonymous committed
43
44
45
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
46
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
47
48
49
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

50
51
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
52
    def encode(self, clip, text):
53
54
55
        tokens = clip.tokenize(text)
        cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
        return ([[cond, {"pooled_output": pooled}]], )
comfyanonymous's avatar
comfyanonymous committed
56
57
58
59
60
61
62
63

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

64
65
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
66
67
68
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

FizzleDorf's avatar
FizzleDorf committed
69
70
71
class ConditioningAverage :
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
72
73
        return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
                              "conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
FizzleDorf's avatar
FizzleDorf committed
74
75
76
77
78
79
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "addWeighted"

    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
80
    def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
FizzleDorf's avatar
FizzleDorf committed
81
        out = []
comfyanonymous's avatar
comfyanonymous committed
82
83

        if len(conditioning_from) > 1:
84
            logging.warning("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
comfyanonymous's avatar
comfyanonymous committed
85
86

        cond_from = conditioning_from[0][0]
87
        pooled_output_from = conditioning_from[0][1].get("pooled_output", None)
comfyanonymous's avatar
comfyanonymous committed
88
89
90

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
91
            pooled_output_to = conditioning_to[i][1].get("pooled_output", pooled_output_from)
comfyanonymous's avatar
comfyanonymous committed
92
93
94
95
96
            t0 = cond_from[:,:t1.shape[1]]
            if t0.shape[1] < t1.shape[1]:
                t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)

            tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
97
98
99
100
101
102
103
            t_to = conditioning_to[i][1].copy()
            if pooled_output_from is not None and pooled_output_to is not None:
                t_to["pooled_output"] = torch.mul(pooled_output_to, conditioning_to_strength) + torch.mul(pooled_output_from, (1.0 - conditioning_to_strength))
            elif pooled_output_from is not None:
                t_to["pooled_output"] = pooled_output_from

            n = [tw, t_to]
FizzleDorf's avatar
FizzleDorf committed
104
105
106
            out.append(n)
        return (out, )

107
108
109
110
111
112
113
114
115
116
class ConditioningConcat:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "conditioning_to": ("CONDITIONING",),
            "conditioning_from": ("CONDITIONING",),
            }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "concat"

117
    CATEGORY = "conditioning"
118
119
120
121
122

    def concat(self, conditioning_to, conditioning_from):
        out = []

        if len(conditioning_from) > 1:
123
            logging.warning("Warning: ConditioningConcat conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
124
125
126
127
128
129
130
131
132
133
134

        cond_from = conditioning_from[0][0]

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
            tw = torch.cat((t1, cond_from),1)
            n = [tw, conditioning_to[i][1].copy()]
            out.append(n)

        return (out, )

comfyanonymous's avatar
comfyanonymous committed
135
136
137
138
class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
139
140
141
142
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
143
144
145
146
147
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

148
149
    CATEGORY = "conditioning"

150
    def append(self, conditioning, width, height, x, y, strength):
comfyanonymous's avatar
comfyanonymous committed
151
152
153
154
155
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
156
            n[1]['set_area_to_bounds'] = False
comfyanonymous's avatar
comfyanonymous committed
157
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
158
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
class ConditioningSetAreaPercentage:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "width": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
                              "height": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
                              "x": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
                              "y": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

    def append(self, conditioning, width, height, x, y, strength):
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = ("percentage", height, width, y, x)
            n[1]['strength'] = strength
            n[1]['set_area_to_bounds'] = False
            c.append(n)
        return (c, )

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
class ConditioningSetAreaStrength:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

    def append(self, conditioning, strength):
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['strength'] = strength
            c.append(n)
        return (c, )


Jacob Segal's avatar
Jacob Segal committed
205
206
207
208
209
210
class ConditioningSetMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "mask": ("MASK", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
211
                              "set_cond_area": (["default", "mask bounds"],),
Jacob Segal's avatar
Jacob Segal committed
212
213
214
215
216
217
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

218
    def append(self, conditioning, mask, set_cond_area, strength):
Jacob Segal's avatar
Jacob Segal committed
219
        c = []
220
221
222
        set_area_to_bounds = False
        if set_cond_area != "default":
            set_area_to_bounds = True
Jacob Segal's avatar
Jacob Segal committed
223
224
225
226
227
228
        if len(mask.shape) < 3:
            mask = mask.unsqueeze(0)
        for t in conditioning:
            n = [t[0], t[1].copy()]
            _, h, w = mask.shape
            n[1]['mask'] = mask
Jacob Segal's avatar
Jacob Segal committed
229
            n[1]['set_area_to_bounds'] = set_area_to_bounds
230
            n[1]['mask_strength'] = strength
Jacob Segal's avatar
Jacob Segal committed
231
232
233
            c.append(n)
        return (c, )

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
class ConditioningZeroOut:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "zero_out"

    CATEGORY = "advanced/conditioning"

    def zero_out(self, conditioning):
        c = []
        for t in conditioning:
            d = t[1].copy()
            if "pooled_output" in d:
                d["pooled_output"] = torch.zeros_like(d["pooled_output"])
            n = [torch.zeros_like(t[0]), d]
            c.append(n)
        return (c, )

253
254
255
256
class ConditioningSetTimestepRange:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
257
258
                             "start": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                             "end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
259
260
261
262
263
264
265
266
267
268
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "set_range"

    CATEGORY = "advanced/conditioning"

    def set_range(self, conditioning, start, end):
        c = []
        for t in conditioning:
            d = t[1].copy()
269
270
            d['start_percent'] = start
            d['end_percent'] = end
271
272
273
274
            n = [t[0], d]
            c.append(n)
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
275
276
277
278
279
280
281
class VAEDecode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

282
283
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
284
    def decode(self, vae, samples):
285
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
286

287
288
289
class VAEDecodeTiled:
    @classmethod
    def INPUT_TYPES(s):
290
        return {"required": {"samples": ("LATENT", ), "vae": ("VAE", ),
comfyanonymous's avatar
comfyanonymous committed
291
                             "tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64})
292
                            }}
293
294
295
296
297
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

298
    def decode(self, vae, samples, tile_size):
299
        return (vae.decode_tiled(samples["samples"], tile_x=tile_size // 8, tile_y=tile_size // 8, ), )
300

comfyanonymous's avatar
comfyanonymous committed
301
302
303
304
305
306
307
class VAEEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

308
309
    CATEGORY = "latent"

310
311
    def encode(self, vae, pixels):
        t = vae.encode(pixels[:,:,:,:3])
312
        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
313

comfyanonymous's avatar
comfyanonymous committed
314
315
316
class VAEEncodeTiled:
    @classmethod
    def INPUT_TYPES(s):
317
        return {"required": {"pixels": ("IMAGE", ), "vae": ("VAE", ),
318
                             "tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64})
319
                            }}
comfyanonymous's avatar
comfyanonymous committed
320
321
322
323
324
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

325
326
    def encode(self, vae, pixels, tile_size):
        t = vae.encode_tiled(pixels[:,:,:,:3], tile_x=tile_size, tile_y=tile_size, )
comfyanonymous's avatar
comfyanonymous committed
327
        return ({"samples":t}, )
328

329
330
331
class VAEEncodeForInpaint:
    @classmethod
    def INPUT_TYPES(s):
332
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
333
334
335
336
337
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

338
    def encode(self, vae, pixels, mask, grow_mask_by=6):
339
340
        x = (pixels.shape[1] // vae.downscale_ratio) * vae.downscale_ratio
        y = (pixels.shape[2] // vae.downscale_ratio) * vae.downscale_ratio
341
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
342

343
        pixels = pixels.clone()
344
        if pixels.shape[1] != x or pixels.shape[2] != y:
345
346
            x_offset = (pixels.shape[1] % vae.downscale_ratio) // 2
            y_offset = (pixels.shape[2] % vae.downscale_ratio) // 2
347
348
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
349

350
        #grow mask by a few pixels to keep things seamless in latent space
351
352
353
354
355
356
357
358
        if grow_mask_by == 0:
            mask_erosion = mask
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)

359
        m = (1.0 - mask.round()).squeeze(1)
360
361
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
362
            pixels[:,:,:,i] *= m
363
364
365
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

366
        return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
367

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

class InpaintModelConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"positive": ("CONDITIONING", ),
                             "negative": ("CONDITIONING", ),
                             "vae": ("VAE", ),
                             "pixels": ("IMAGE", ),
                             "mask": ("MASK", ),
                             }}

    RETURN_TYPES = ("CONDITIONING","CONDITIONING","LATENT")
    RETURN_NAMES = ("positive", "negative", "latent")
    FUNCTION = "encode"

    CATEGORY = "conditioning/inpaint"

    def encode(self, positive, negative, pixels, vae, mask):
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")

        orig_pixels = pixels
        pixels = orig_pixels.clone()
        if pixels.shape[1] != x or pixels.shape[2] != y:
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]

        m = (1.0 - mask.round()).squeeze(1)
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
            pixels[:,:,:,i] *= m
            pixels[:,:,:,i] += 0.5
        concat_latent = vae.encode(pixels)
        orig_latent = vae.encode(orig_pixels)

        out_latent = {}

        out_latent["samples"] = orig_latent
        out_latent["noise_mask"] = mask

        out = []
        for conditioning in [positive, negative]:
            c = []
            for t in conditioning:
                d = t[1].copy()
                d["concat_latent_image"] = concat_latent
                d["concat_mask"] = mask
                n = [t[0], d]
                c.append(n)
            out.append(c)
        return (out[0], out[1], out_latent)


Dr.Lt.Data's avatar
Dr.Lt.Data committed
424
425
class SaveLatent:
    def __init__(self):
426
        self.output_dir = folder_paths.get_output_directory()
Dr.Lt.Data's avatar
Dr.Lt.Data committed
427
428
429
430

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ),
431
                              "filename_prefix": ("STRING", {"default": "latents/ComfyUI"})},
Dr.Lt.Data's avatar
Dr.Lt.Data committed
432
433
434
435
436
437
438
439
440
441
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
    RETURN_TYPES = ()
    FUNCTION = "save"

    OUTPUT_NODE = True

    CATEGORY = "_for_testing"

    def save(self, samples, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
442
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
443
444
445
446
447
448

        # support save metadata for latent sharing
        prompt_info = ""
        if prompt is not None:
            prompt_info = json.dumps(prompt)

449
450
451
452
453
454
        metadata = None
        if not args.disable_metadata:
            metadata = {"prompt": prompt_info}
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata[x] = json.dumps(extra_pnginfo[x])
Dr.Lt.Data's avatar
Dr.Lt.Data committed
455
456

        file = f"{filename}_{counter:05}_.latent"
457
458
459
460
461
462
463
464

        results = list()
        results.append({
            "filename": file,
            "subfolder": subfolder,
            "type": "output"
        })

Dr.Lt.Data's avatar
Dr.Lt.Data committed
465
466
        file = os.path.join(full_output_folder, file)

467
468
        output = {}
        output["latent_tensor"] = samples["samples"]
469
        output["latent_format_version_0"] = torch.tensor([])
470

471
        comfy.utils.save_torch_file(output, file, metadata=metadata)
472
        return { "ui": { "latents": results } }
Dr.Lt.Data's avatar
Dr.Lt.Data committed
473
474
475
476
477


class LoadLatent:
    @classmethod
    def INPUT_TYPES(s):
478
479
        input_dir = folder_paths.get_input_directory()
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.endswith(".latent")]
Dr.Lt.Data's avatar
Dr.Lt.Data committed
480
481
482
483
484
485
486
487
        return {"required": {"latent": [sorted(files), ]}, }

    CATEGORY = "_for_testing"

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "load"

    def load(self, latent):
488
489
        latent_path = folder_paths.get_annotated_filepath(latent)
        latent = safetensors.torch.load_file(latent_path, device="cpu")
490
491
492
493
        multiplier = 1.0
        if "latent_format_version_0" not in latent:
            multiplier = 1.0 / 0.18215
        samples = {"samples": latent["latent_tensor"].float() * multiplier}
494
        return (samples, )
Dr.Lt.Data's avatar
Dr.Lt.Data committed
495

496
497
498
499
500
501
502
503
504
505
506
507
508
509
    @classmethod
    def IS_CHANGED(s, latent):
        image_path = folder_paths.get_annotated_filepath(latent)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

    @classmethod
    def VALIDATE_INPUTS(s, latent):
        if not folder_paths.exists_annotated_filepath(latent):
            return "Invalid latent file: {}".format(latent)
        return True

Dr.Lt.Data's avatar
Dr.Lt.Data committed
510

comfyanonymous's avatar
comfyanonymous committed
511
512
513
class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
514
515
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
516
517
518
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

519
    CATEGORY = "advanced/loaders"
520

comfyanonymous's avatar
comfyanonymous committed
521
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
522
523
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
524
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
525

526
527
528
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
529
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
530
531
532
533
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

534
    CATEGORY = "loaders"
535

536
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
537
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
538
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
539
        return out[:3]
540

sALTaccount's avatar
sALTaccount committed
541
542
543
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
544
        paths = []
sALTaccount's avatar
sALTaccount committed
545
        for search_path in folder_paths.get_folder_paths("diffusers"):
546
            if os.path.exists(search_path):
547
548
549
550
                for root, subdir, files in os.walk(search_path, followlinks=True):
                    if "model_index.json" in files:
                        paths.append(os.path.relpath(root, start=search_path))

551
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
552
553
554
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

555
    CATEGORY = "advanced/loaders/deprecated"
sALTaccount's avatar
sALTaccount committed
556
557

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
558
559
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
560
561
562
                path = os.path.join(search_path, model_path)
                if os.path.exists(path):
                    model_path = path
sALTaccount's avatar
sALTaccount committed
563
                    break
564

565
        return comfy.diffusers_load.load_diffusers(model_path, output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
566
567


568
569
570
571
572
573
574
575
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

576
    CATEGORY = "loaders"
577
578
579
580
581
582

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

599
class LoraLoader:
600
601
602
    def __init__(self):
        self.loaded_lora = None

603
604
605
606
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
607
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
608
609
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step": 0.01}),
610
611
612
613
614
615
616
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
617
618
619
        if strength_model == 0 and strength_clip == 0:
            return (model, clip)

620
        lora_path = folder_paths.get_full_path("loras", lora_name)
621
622
623
624
625
        lora = None
        if self.loaded_lora is not None:
            if self.loaded_lora[0] == lora_path:
                lora = self.loaded_lora[1]
            else:
626
627
628
                temp = self.loaded_lora
                self.loaded_lora = None
                del temp
629
630
631
632
633
634

        if lora is None:
            lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
            self.loaded_lora = (lora_path, lora)

        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
635
636
        return (model_lora, clip_lora)

637
638
639
640
641
642
643
644
645
646
647
648
649
class LoraLoaderModelOnly(LoraLoader):
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "load_lora_model_only"

    def load_lora_model_only(self, model, lora_name, strength_model):
        return (self.load_lora(model, None, lora_name, strength_model, 0)[0],)

comfyanonymous's avatar
comfyanonymous committed
650
class VAELoader:
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
    @staticmethod
    def vae_list():
        vaes = folder_paths.get_filename_list("vae")
        approx_vaes = folder_paths.get_filename_list("vae_approx")
        sdxl_taesd_enc = False
        sdxl_taesd_dec = False
        sd1_taesd_enc = False
        sd1_taesd_dec = False

        for v in approx_vaes:
            if v.startswith("taesd_decoder."):
                sd1_taesd_dec = True
            elif v.startswith("taesd_encoder."):
                sd1_taesd_enc = True
            elif v.startswith("taesdxl_decoder."):
                sdxl_taesd_dec = True
            elif v.startswith("taesdxl_encoder."):
                sdxl_taesd_enc = True
        if sd1_taesd_dec and sd1_taesd_enc:
            vaes.append("taesd")
        if sdxl_taesd_dec and sdxl_taesd_enc:
            vaes.append("taesdxl")
        return vaes

    @staticmethod
    def load_taesd(name):
        sd = {}
        approx_vaes = folder_paths.get_filename_list("vae_approx")

        encoder = next(filter(lambda a: a.startswith("{}_encoder.".format(name)), approx_vaes))
        decoder = next(filter(lambda a: a.startswith("{}_decoder.".format(name)), approx_vaes))

        enc = comfy.utils.load_torch_file(folder_paths.get_full_path("vae_approx", encoder))
        for k in enc:
            sd["taesd_encoder.{}".format(k)] = enc[k]

        dec = comfy.utils.load_torch_file(folder_paths.get_full_path("vae_approx", decoder))
        for k in dec:
            sd["taesd_decoder.{}".format(k)] = dec[k]

        if name == "taesd":
            sd["vae_scale"] = torch.tensor(0.18215)
        elif name == "taesdxl":
            sd["vae_scale"] = torch.tensor(0.13025)
        return sd

comfyanonymous's avatar
comfyanonymous committed
697
698
    @classmethod
    def INPUT_TYPES(s):
699
        return {"required": { "vae_name": (s.vae_list(), )}}
comfyanonymous's avatar
comfyanonymous committed
700
701
702
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

703
704
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
705
706
    #TODO: scale factor?
    def load_vae(self, vae_name):
707
708
709
710
711
        if vae_name in ["taesd", "taesdxl"]:
            sd = self.load_taesd(vae_name)
        else:
            vae_path = folder_paths.get_full_path("vae", vae_name)
            sd = comfy.utils.load_torch_file(vae_path)
comfyanonymous's avatar
comfyanonymous committed
712
        vae = comfy.sd.VAE(sd=sd)
comfyanonymous's avatar
comfyanonymous committed
713
714
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
715
716
717
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
718
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
719
720
721
722
723
724
725

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
726
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
727
        controlnet = comfy.controlnet.load_controlnet(controlnet_path)
comfyanonymous's avatar
comfyanonymous committed
728
729
        return (controlnet,)

730
731
732
733
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
734
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
735
736
737
738
739
740
741

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
742
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
743
        controlnet = comfy.controlnet.load_controlnet(controlnet_path, model)
744
745
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
746
747
748
749

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
750
751
752
753
754
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
755
756
757
758
759
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

760
    def apply_controlnet(self, conditioning, control_net, image, strength):
761
762
763
        if strength == 0:
            return (conditioning, )

comfyanonymous's avatar
comfyanonymous committed
764
765
766
767
        c = []
        control_hint = image.movedim(-1,1)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
768
769
770
771
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
772
            n[1]['control_apply_to_uncond'] = True
comfyanonymous's avatar
comfyanonymous committed
773
774
775
            c.append(n)
        return (c, )

776
777
778
779
780
781
782
783
784

class ControlNetApplyAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"positive": ("CONDITIONING", ),
                             "negative": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
785
786
                             "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                             "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
787
788
789
790
791
792
793
794
                             }}

    RETURN_TYPES = ("CONDITIONING","CONDITIONING")
    RETURN_NAMES = ("positive", "negative")
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

795
    def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent):
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
        if strength == 0:
            return (positive, negative)

        control_hint = image.movedim(-1,1)
        cnets = {}

        out = []
        for conditioning in [positive, negative]:
            c = []
            for t in conditioning:
                d = t[1].copy()

                prev_cnet = d.get('control', None)
                if prev_cnet in cnets:
                    c_net = cnets[prev_cnet]
                else:
812
                    c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_percent, end_percent))
813
814
815
816
817
818
819
820
821
822
823
                    c_net.set_previous_controlnet(prev_cnet)
                    cnets[prev_cnet] = c_net

                d['control'] = c_net
                d['control_apply_to_uncond'] = False
                n = [t[0], d]
                c.append(n)
            out.append(c)
        return (out[0], out[1])


824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
class UNETLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "unet_name": (folder_paths.get_filename_list("unet"), ),
                             }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "load_unet"

    CATEGORY = "advanced/loaders"

    def load_unet(self, unet_name):
        unet_path = folder_paths.get_full_path("unet", unet_name)
        model = comfy.sd.load_unet(unet_path)
        return (model,)

839
840
841
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
842
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
843
                              "type": (["stable_diffusion", "stable_cascade"], ),
844
845
846
847
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

848
    CATEGORY = "advanced/loaders"
849

850
851
852
853
854
    def load_clip(self, clip_name, type="stable_diffusion"):
        clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION
        if type == "stable_cascade":
            clip_type = comfy.sd.CLIPType.STABLE_CASCADE

855
        clip_path = folder_paths.get_full_path("clip", clip_name)
856
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type)
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
        return (clip,)

class DualCLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_name1": (folder_paths.get_filename_list("clip"), ), "clip_name2": (folder_paths.get_filename_list("clip"), ),
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "advanced/loaders"

    def load_clip(self, clip_name1, clip_name2):
        clip_path1 = folder_paths.get_full_path("clip", clip_name1)
        clip_path2 = folder_paths.get_full_path("clip", clip_name2)
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"))
873
874
        return (clip,)

875
876
877
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
878
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
879
880
881
882
883
884
885
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
886
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
887
        clip_vision = comfy.clip_vision.load(clip_path)
888
889
890
891
892
893
894
895
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
896
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
897
898
    FUNCTION = "encode"

899
    CATEGORY = "conditioning"
900
901
902
903
904
905
906
907

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
908
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
909
910
911
912
913
914
915

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
916
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
917
918
919
920
921
922
923
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
924
925
926
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
927
928
929
930
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
931
    CATEGORY = "conditioning/style_model"
932

933
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
934
        cond = style_model.get_cond(clip_vision_output).flatten(start_dim=0, end_dim=1).unsqueeze(dim=0)
935
        c = []
936
937
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
938
939
940
            c.append(n)
        return (c, )

941
942
943
944
945
946
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
947
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
948
949
950
951
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

952
    CATEGORY = "conditioning"
953

954
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
955
956
957
        if strength == 0:
            return (conditioning, )

958
959
960
        c = []
        for t in conditioning:
            o = t[1].copy()
961
962
963
            x = {"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation}
            if "unclip_conditioning" in o:
                o["unclip_conditioning"] = o["unclip_conditioning"][:] + [x]
964
            else:
965
                o["unclip_conditioning"] = [x]
966
967
968
969
            n = [t[0], o]
            c.append(n)
        return (c, )

970
971
972
973
974
975
976
977
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
978
    CATEGORY = "loaders"
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
                              "text": ("STRING", {"multiline": True}),
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
1000
    CATEGORY = "conditioning/gligen"
1001
1002
1003

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
1004
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled="unprojected")
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
1015

comfyanonymous's avatar
comfyanonymous committed
1016
class EmptyLatentImage:
1017
1018
    def __init__(self):
        self.device = comfy.model_management.intermediate_device()
comfyanonymous's avatar
comfyanonymous committed
1019
1020
1021

    @classmethod
    def INPUT_TYPES(s):
1022
1023
        return {"required": { "width": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
1024
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}}
comfyanonymous's avatar
comfyanonymous committed
1025
1026
1027
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

1028
1029
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
1030
    def generate(self, width, height, batch_size=1):
1031
        latent = torch.zeros([batch_size, 4, height // 8, width // 8], device=self.device)
1032
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
1033

comfyanonymous's avatar
comfyanonymous committed
1034

1035
1036
1037
1038
1039
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
1040
                              "length": ("INT", {"default": 1, "min": 1, "max": 64}),
1041
1042
                              }}
    RETURN_TYPES = ("LATENT",)
1043
    FUNCTION = "frombatch"
1044

1045
    CATEGORY = "latent/batch"
1046

1047
    def frombatch(self, samples, batch_index, length):
1048
1049
1050
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
        length = min(s_in.shape[0] - batch_index, length)
        s["samples"] = s_in[batch_index:batch_index + length].clone()
        if "noise_mask" in samples:
            masks = samples["noise_mask"]
            if masks.shape[0] == 1:
                s["noise_mask"] = masks.clone()
            else:
                if masks.shape[0] < s_in.shape[0]:
                    masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
                s["noise_mask"] = masks[batch_index:batch_index + length].clone()
        if "batch_index" not in s:
            s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
        else:
            s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
        return (s,)
    
class RepeatLatentBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "amount": ("INT", {"default": 1, "min": 1, "max": 64}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "repeat"

    CATEGORY = "latent/batch"

    def repeat(self, samples, amount):
        s = samples.copy()
        s_in = samples["samples"]
        
        s["samples"] = s_in.repeat((amount, 1,1,1))
        if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
            masks = samples["noise_mask"]
            if masks.shape[0] < s_in.shape[0]:
                masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
            s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
        if "batch_index" in s:
            offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
            s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
1091
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1092

comfyanonymous's avatar
comfyanonymous committed
1093
class LatentUpscale:
comfyanonymous's avatar
comfyanonymous committed
1094
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
1095
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
1096
1097
1098
1099

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
1100
1101
                              "width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1102
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
1103
1104
1105
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

1106
1107
    CATEGORY = "latent"

1108
    def upscale(self, samples, upscale_method, width, height, crop):
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
        if width == 0 and height == 0:
            s = samples
        else:
            s = samples.copy()

            if width == 0:
                height = max(64, height)
                width = max(64, round(samples["samples"].shape[3] * height / samples["samples"].shape[2]))
            elif height == 0:
                width = max(64, width)
                height = max(64, round(samples["samples"].shape[2] * width / samples["samples"].shape[3]))
            else:
                width = max(64, width)
                height = max(64, height)

            s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1125
1126
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
1127
class LatentUpscaleBy:
comfyanonymous's avatar
comfyanonymous committed
1128
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
comfyanonymous's avatar
comfyanonymous committed
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.5, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

    CATEGORY = "latent"

    def upscale(self, samples, upscale_method, scale_by):
        s = samples.copy()
        width = round(samples["samples"].shape[3] * scale_by)
        height = round(samples["samples"].shape[2] * scale_by)
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled")
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
1146
1147
1148
1149
1150
1151
1152
1153
1154
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
1155
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
1156
1157

    def rotate(self, samples, rotation):
1158
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
1159
1160
1161
1162
1163
1164
1165
1166
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

1167
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
1168
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
1179
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
1180
1181

    def flip(self, samples, flip_method):
1182
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
1183
        if flip_method.startswith("x"):
1184
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
1185
        elif flip_method.startswith("y"):
1186
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
1187
1188

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1189
1190
1191
1192

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
1193
1194
1195
1196
1197
1198
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
1199
1200
1201
1202
1203
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
1204
1205
1206
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
1207
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
1231

1232
1233
1234
1235
class LatentBlend:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
1236
1237
            "samples1": ("LATENT",),
            "samples2": ("LATENT",),
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
            "blend_factor": ("FLOAT", {
                "default": 0.5,
                "min": 0,
                "max": 1,
                "step": 0.01
            }),
        }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "blend"

    CATEGORY = "_for_testing"

1251
    def blend(self, samples1, samples2, blend_factor:float, blend_mode: str="normal"):
1252

1253
1254
1255
        samples_out = samples1.copy()
        samples1 = samples1["samples"]
        samples2 = samples2["samples"]
1256

1257
1258
1259
1260
        if samples1.shape != samples2.shape:
            samples2.permute(0, 3, 1, 2)
            samples2 = comfy.utils.common_upscale(samples2, samples1.shape[3], samples1.shape[2], 'bicubic', crop='center')
            samples2.permute(0, 2, 3, 1)
1261

1262
1263
        samples_blended = self.blend_mode(samples1, samples2, blend_mode)
        samples_blended = samples1 * blend_factor + samples_blended * (1 - blend_factor)
1264
1265
1266
1267
1268
1269
1270
1271
1272
        samples_out["samples"] = samples_blended
        return (samples_out,)

    def blend_mode(self, img1, img2, mode):
        if mode == "normal":
            return img2
        else:
            raise ValueError(f"Unsupported blend mode: {mode}")

comfyanonymous's avatar
comfyanonymous committed
1273
1274
1275
1276
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
1277
1278
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
1279
1280
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
1281
1282
1283
1284
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
1285
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
1286
1287

    def crop(self, samples, width, height, x, y):
1288
1289
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
1303
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
1304
1305
        return (s,)

1306
1307
1308
1309
1310
1311
1312
1313
1314
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

1315
    CATEGORY = "latent/inpaint"
1316
1317
1318

    def set_mask(self, samples, mask):
        s = samples.copy()
1319
        s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
1320
1321
        return (s,)

space-nuko's avatar
space-nuko committed
1322
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
1323
    latent_image = latent["samples"]
comfyanonymous's avatar
comfyanonymous committed
1324
1325
1326
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
1327
1328
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
comfyanonymous's avatar
comfyanonymous committed
1329

1330
    noise_mask = None
1331
    if "noise_mask" in latent:
1332
        noise_mask = latent["noise_mask"]
comfyanonymous's avatar
comfyanonymous committed
1333

1334
    callback = latent_preview.prepare_callback(model, steps)
1335
    disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
1336
1337
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
comfyanonymous's avatar
comfyanonymous committed
1338
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
1339
1340
1341
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
1342

comfyanonymous's avatar
comfyanonymous committed
1343
1344
1345
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
1346
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1347
1348
1349
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
1350
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
comfyanonymous's avatar
comfyanonymous committed
1351
1352
1353
1354
1355
1356
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
space-nuko's avatar
space-nuko committed
1357
1358
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1359
1360
1361
1362

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

1363
1364
    CATEGORY = "sampling"

space-nuko's avatar
space-nuko committed
1365
1366
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
1367

comfyanonymous's avatar
comfyanonymous committed
1368
1369
1370
1371
1372
1373
1374
1375
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
1376
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
comfyanonymous's avatar
comfyanonymous committed
1377
1378
1379
1380
1381
1382
1383
1384
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
space-nuko's avatar
space-nuko committed
1385
1386
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1387
1388
1389
1390
1391

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
1392

space-nuko's avatar
space-nuko committed
1393
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
comfyanonymous's avatar
comfyanonymous committed
1394
1395
1396
1397
1398
1399
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
space-nuko's avatar
space-nuko committed
1400
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
1401
1402
1403

class SaveImage:
    def __init__(self):
1404
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1405
        self.type = "output"
1406
        self.prefix_append = ""
1407
        self.compress_level = 4
comfyanonymous's avatar
comfyanonymous committed
1408
1409
1410
1411

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
1412
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
1413
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
1414
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
1415
1416
1417
1418
1419
1420
1421
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

1422
1423
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
1424
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
1425
        filename_prefix += self.prefix_append
1426
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
m957ymj75urz's avatar
m957ymj75urz committed
1427
        results = list()
1428
        for (batch_number, image) in enumerate(images):
comfyanonymous's avatar
comfyanonymous committed
1429
            i = 255. * image.cpu().numpy()
1430
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
1431
1432
1433
1434
1435
1436
1437
1438
            metadata = None
            if not args.disable_metadata:
                metadata = PngInfo()
                if prompt is not None:
                    metadata.add_text("prompt", json.dumps(prompt))
                if extra_pnginfo is not None:
                    for x in extra_pnginfo:
                        metadata.add_text(x, json.dumps(extra_pnginfo[x]))
1439

1440
1441
            filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
            file = f"{filename_with_batch_num}_{counter:05}_.png"
1442
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=self.compress_level)
m957ymj75urz's avatar
m957ymj75urz committed
1443
1444
1445
1446
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
1447
            })
1448
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
1449

m957ymj75urz's avatar
m957ymj75urz committed
1450
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
1451

pythongosssss's avatar
pythongosssss committed
1452
1453
class PreviewImage(SaveImage):
    def __init__(self):
1454
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1455
        self.type = "temp"
1456
        self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
1457
        self.compress_level = 1
pythongosssss's avatar
pythongosssss committed
1458
1459
1460

    @classmethod
    def INPUT_TYPES(s):
1461
        return {"required":
pythongosssss's avatar
pythongosssss committed
1462
1463
1464
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
1465

1466
1467
1468
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
1469
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1470
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1471
        return {"required":
1472
                    {"image": (sorted(files), {"image_upload": True})},
1473
                }
1474
1475

    CATEGORY = "image"
1476

1477
    RETURN_TYPES = ("IMAGE", "MASK")
1478
1479
    FUNCTION = "load_image"
    def load_image(self, image):
1480
        image_path = folder_paths.get_annotated_filepath(image)
1481
1482
1483
1484
1485
        img = Image.open(image_path)
        output_images = []
        output_masks = []
        for i in ImageSequence.Iterator(img):
            i = ImageOps.exif_transpose(i)
1486
1487
            if i.mode == 'I':
                i = i.point(lambda i: i * (1 / 255))
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
            image = i.convert("RGB")
            image = np.array(image).astype(np.float32) / 255.0
            image = torch.from_numpy(image)[None,]
            if 'A' in i.getbands():
                mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
                mask = 1. - torch.from_numpy(mask)
            else:
                mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
            output_images.append(image)
            output_masks.append(mask.unsqueeze(0))

        if len(output_images) > 1:
            output_image = torch.cat(output_images, dim=0)
            output_mask = torch.cat(output_masks, dim=0)
1502
        else:
1503
1504
1505
1506
            output_image = output_images[0]
            output_mask = output_masks[0]

        return (output_image, output_mask)
1507

1508
1509
    @classmethod
    def IS_CHANGED(s, image):
1510
        image_path = folder_paths.get_annotated_filepath(image)
1511
1512
1513
1514
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1515

1516
1517
1518
1519
1520
1521
1522
    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

1523
class LoadImageMask:
1524
    _color_channels = ["alpha", "red", "green", "blue"]
1525
1526
    @classmethod
    def INPUT_TYPES(s):
1527
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1528
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1529
        return {"required":
1530
                    {"image": (sorted(files), {"image_upload": True}),
1531
                     "channel": (s._color_channels, ), }
1532
1533
                }

1534
    CATEGORY = "mask"
1535
1536
1537
1538

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
1539
        image_path = folder_paths.get_annotated_filepath(image)
1540
        i = Image.open(image_path)
1541
        i = ImageOps.exif_transpose(i)
1542
        if i.getbands() != ("R", "G", "B", "A"):
1543
1544
            if i.mode == 'I':
                i = i.point(lambda i: i * (1 / 255))
1545
            i = i.convert("RGBA")
1546
1547
1548
1549
1550
1551
1552
1553
1554
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
1555
        return (mask.unsqueeze(0),)
1556
1557
1558

    @classmethod
    def IS_CHANGED(s, image, channel):
1559
        image_path = folder_paths.get_annotated_filepath(image)
1560
1561
1562
1563
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1564

1565
    @classmethod
1566
    def VALIDATE_INPUTS(s, image):
1567
1568
1569
1570
1571
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

comfyanonymous's avatar
comfyanonymous committed
1572
class ImageScale:
1573
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
comfyanonymous's avatar
comfyanonymous committed
1574
1575
1576
1577
1578
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1579
1580
                              "width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1581
1582
1583
1584
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1585
    CATEGORY = "image/upscaling"
1586

comfyanonymous's avatar
comfyanonymous committed
1587
    def upscale(self, image, upscale_method, width, height, crop):
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
        if width == 0 and height == 0:
            s = image
        else:
            samples = image.movedim(-1,1)

            if width == 0:
                width = max(1, round(samples.shape[3] * height / samples.shape[2]))
            elif height == 0:
                height = max(1, round(samples.shape[2] * width / samples.shape[3]))

            s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
            s = s.movedim(1,-1)
comfyanonymous's avatar
comfyanonymous committed
1600
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1601

comfyanonymous's avatar
comfyanonymous committed
1602
class ImageScaleBy:
1603
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
comfyanonymous's avatar
comfyanonymous committed
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

    CATEGORY = "image/upscaling"

    def upscale(self, image, upscale_method, scale_by):
        samples = image.movedim(-1,1)
        width = round(samples.shape[3] * scale_by)
        height = round(samples.shape[2] * scale_by)
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
        s = s.movedim(1,-1)
        return (s,)

1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)

1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
class ImageBatch:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image1": ("IMAGE",), "image2": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "batch"

    CATEGORY = "image"

    def batch(self, image1, image2):
        if image1.shape[1:] != image2.shape[1:]:
            image2 = comfy.utils.common_upscale(image2.movedim(-1,1), image1.shape[2], image1.shape[1], "bilinear", "center").movedim(1,-1)
        s = torch.cat((image1, image2), dim=0)
        return (s,)
1653

comfyanonymous's avatar
comfyanonymous committed
1654
1655
1656
1657
1658
1659
1660
1661
class EmptyImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1662
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
comfyanonymous's avatar
comfyanonymous committed
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
                              "color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}),
                              }}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "generate"

    CATEGORY = "image"

    def generate(self, width, height, batch_size=1, color=0):
        r = torch.full([batch_size, height, width, 1], ((color >> 16) & 0xFF) / 0xFF)
        g = torch.full([batch_size, height, width, 1], ((color >> 8) & 0xFF) / 0xFF)
        b = torch.full([batch_size, height, width, 1], ((color) & 0xFF) / 0xFF)
        return (torch.cat((r, g, b), dim=-1), )

Guo Y.K's avatar
Guo Y.K committed
1676
1677
1678
1679
1680
1681
1682
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1683
1684
1685
1686
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1687
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1688
1689
1690
1691
1692
1693
1694
1695
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1696
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1697
1698
        d1, d2, d3, d4 = image.size()

1699
        new_image = torch.ones(
Guo Y.K's avatar
Guo Y.K committed
1700
1701
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
1702
1703
        ) * 0.5

Guo Y.K's avatar
Guo Y.K committed
1704
1705
1706
1707
1708
1709
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1710

1711
1712
1713
1714
1715
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1716
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1736

Guo Y.K's avatar
Guo Y.K committed
1737
1738
1739
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1740
1741
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1742
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1743
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1744
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1745
1746
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1747
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1748
1749
1750
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
comfyanonymous's avatar
comfyanonymous committed
1751
    "LatentUpscaleBy": LatentUpscaleBy,
1752
    "LatentFromBatch": LatentFromBatch,
1753
    "RepeatLatentBatch": RepeatLatentBatch,
comfyanonymous's avatar
comfyanonymous committed
1754
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1755
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1756
    "LoadImage": LoadImage,
1757
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1758
    "ImageScale": ImageScale,
comfyanonymous's avatar
comfyanonymous committed
1759
    "ImageScaleBy": ImageScaleBy,
1760
    "ImageInvert": ImageInvert,
1761
    "ImageBatch": ImageBatch,
Guo Y.K's avatar
Guo Y.K committed
1762
    "ImagePadForOutpaint": ImagePadForOutpaint,
comfyanonymous's avatar
comfyanonymous committed
1763
    "EmptyImage": EmptyImage,
comfyanonymous's avatar
comfyanonymous committed
1764
    "ConditioningAverage": ConditioningAverage ,
comfyanonymous's avatar
comfyanonymous committed
1765
    "ConditioningCombine": ConditioningCombine,
1766
    "ConditioningConcat": ConditioningConcat,
comfyanonymous's avatar
comfyanonymous committed
1767
    "ConditioningSetArea": ConditioningSetArea,
1768
    "ConditioningSetAreaPercentage": ConditioningSetAreaPercentage,
1769
    "ConditioningSetAreaStrength": ConditioningSetAreaStrength,
Jacob Segal's avatar
Jacob Segal committed
1770
    "ConditioningSetMask": ConditioningSetMask,
comfyanonymous's avatar
comfyanonymous committed
1771
    "KSamplerAdvanced": KSamplerAdvanced,
1772
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1773
    "LatentComposite": LatentComposite,
1774
    "LatentBlend": LatentBlend,
comfyanonymous's avatar
comfyanonymous committed
1775
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1776
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1777
    "LatentCrop": LatentCrop,
1778
    "LoraLoader": LoraLoader,
1779
    "CLIPLoader": CLIPLoader,
1780
    "UNETLoader": UNETLoader,
1781
    "DualCLIPLoader": DualCLIPLoader,
1782
    "CLIPVisionEncode": CLIPVisionEncode,
1783
    "StyleModelApply": StyleModelApply,
1784
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1785
    "ControlNetApply": ControlNetApply,
1786
    "ControlNetApplyAdvanced": ControlNetApplyAdvanced,
comfyanonymous's avatar
comfyanonymous committed
1787
    "ControlNetLoader": ControlNetLoader,
1788
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1789
1790
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1791
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1792
    "VAEEncodeTiled": VAEEncodeTiled,
1793
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1794
1795
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,
1796
    "InpaintModelConditioning": InpaintModelConditioning,
1797

1798
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1799
    "DiffusersLoader": DiffusersLoader,
Dr.Lt.Data's avatar
Dr.Lt.Data committed
1800
1801

    "LoadLatent": LoadLatent,
1802
    "SaveLatent": SaveLatent,
1803
1804

    "ConditioningZeroOut": ConditioningZeroOut,
1805
    "ConditioningSetTimestepRange": ConditioningSetTimestepRange,
1806
    "LoraLoaderModelOnly": LoraLoaderModelOnly,
comfyanonymous's avatar
comfyanonymous committed
1807
1808
}

City's avatar
City committed
1809
1810
1811
1812
1813
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
1814
    "CheckpointLoader": "Load Checkpoint With Config (DEPRECATED)",
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1815
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
FizzleDorf's avatar
FizzleDorf committed
1830
    "ConditioningAverage ": "Conditioning (Average)",
1831
    "ConditioningConcat": "Conditioning (Concat)",
City's avatar
City committed
1832
    "ConditioningSetArea": "Conditioning (Set Area)",
1833
    "ConditioningSetAreaPercentage": "Conditioning (Set Area with Percentage)",
Jacob Segal's avatar
Jacob Segal committed
1834
    "ConditioningSetMask": "Conditioning (Set Mask)",
City's avatar
City committed
1835
    "ControlNetApply": "Apply ControlNet",
1836
    "ControlNetApplyAdvanced": "Apply ControlNet (Advanced)",
City's avatar
City committed
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
comfyanonymous's avatar
comfyanonymous committed
1847
    "LatentUpscaleBy": "Upscale Latent By",
City's avatar
City committed
1848
    "LatentComposite": "Latent Composite",
1849
    "LatentBlend": "Latent Blend",
1850
1851
    "LatentFromBatch" : "Latent From Batch",
    "RepeatLatentBatch": "Repeat Latent Batch",
City's avatar
City committed
1852
1853
1854
1855
1856
1857
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
comfyanonymous's avatar
comfyanonymous committed
1858
    "ImageScaleBy": "Upscale Image By",
City's avatar
City committed
1859
1860
1861
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
1862
    "ImageBatch": "Batch Images",
City's avatar
City committed
1863
1864
1865
1866
1867
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1868
1869
EXTENSION_WEB_DIRS = {}

1870
def load_custom_node(module_path, ignore=set()):
1871
1872
1873
1874
1875
1876
1877
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
1878
            module_dir = os.path.split(module_path)[0]
1879
1880
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
1881
1882
            module_dir = module_path

1883
1884
1885
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
1886
1887
1888
1889
1890
1891

        if hasattr(module, "WEB_DIRECTORY") and getattr(module, "WEB_DIRECTORY") is not None:
            web_dir = os.path.abspath(os.path.join(module_dir, getattr(module, "WEB_DIRECTORY")))
            if os.path.isdir(web_dir):
                EXTENSION_WEB_DIRS[module_name] = web_dir

1892
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
1893
1894
1895
            for name in module.NODE_CLASS_MAPPINGS:
                if name not in ignore:
                    NODE_CLASS_MAPPINGS[name] = module.NODE_CLASS_MAPPINGS[name]
1896
1897
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1898
            return True
1899
        else:
1900
            logging.warning(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
1901
            return False
1902
    except Exception as e:
1903
        logging.warning(traceback.format_exc())
1904
        logging.warning(f"Cannot import {module_path} module for custom nodes: {e}")
1905
        return False
1906

Hacker 17082006's avatar
Hacker 17082006 committed
1907
def load_custom_nodes():
1908
    base_node_names = set(NODE_CLASS_MAPPINGS.keys())
1909
    node_paths = folder_paths.get_folder_paths("custom_nodes")
1910
    node_import_times = []
1911
    for custom_node_path in node_paths:
Enrico Fasoli's avatar
Enrico Fasoli committed
1912
        possible_modules = os.listdir(os.path.realpath(custom_node_path))
1913
1914
1915
1916
1917
1918
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1919
            if module_path.endswith(".disabled"): continue
1920
            time_before = time.perf_counter()
1921
            success = load_custom_node(module_path, base_node_names)
1922
            node_import_times.append((time.perf_counter() - time_before, module_path, success))
1923

1924
    if len(node_import_times) > 0:
comfyanonymous's avatar
comfyanonymous committed
1925
        logging.info("\nImport times for custom nodes:")
1926
        for n in sorted(node_import_times):
1927
1928
1929
1930
            if n[2]:
                import_message = ""
            else:
                import_message = " (IMPORT FAILED)"
comfyanonymous's avatar
comfyanonymous committed
1931
1932
            logging.info("{:6.1f} seconds{}: {}".format(n[0], import_message, n[1]))
        logging.info("")
1933

1934
def init_custom_nodes():
1935
1936
1937
1938
1939
1940
1941
    extras_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras")
    extras_files = [
        "nodes_latent.py",
        "nodes_hypernetwork.py",
        "nodes_upscale_model.py",
        "nodes_post_processing.py",
        "nodes_mask.py",
1942
        "nodes_compositing.py",
1943
1944
1945
1946
1947
1948
        "nodes_rebatch.py",
        "nodes_model_merging.py",
        "nodes_tomesd.py",
        "nodes_clip_sdxl.py",
        "nodes_canny.py",
        "nodes_freelunch.py",
1949
1950
        "nodes_custom_sampler.py",
        "nodes_hypertile.py",
1951
        "nodes_model_advanced.py",
1952
        "nodes_model_downscale.py",
comfyanonymous's avatar
comfyanonymous committed
1953
        "nodes_images.py",
1954
        "nodes_video_model.py",
1955
        "nodes_sag.py",
Hari's avatar
Hari committed
1956
        "nodes_perpneg.py",
1957
        "nodes_stable3d.py",
1958
        "nodes_sdupscale.py",
1959
        "nodes_photomaker.py",
1960
        "nodes_cond.py",
1961
        "nodes_morphology.py",
comfyanonymous's avatar
comfyanonymous committed
1962
        "nodes_stable_cascade.py",
1963
        "nodes_differential_diffusion.py",
1964
1965
    ]

1966
    import_failed = []
1967
    for node_file in extras_files:
1968
1969
        if not load_custom_node(os.path.join(extras_dir, node_file)):
            import_failed.append(node_file)
1970

1971
    load_custom_nodes()
1972
1973

    if len(import_failed) > 0:
1974
        logging.warning("WARNING: some comfy_extras/ nodes did not import correctly. This may be because they are missing some dependencies.\n")
1975
        for node in import_failed:
1976
1977
            logging.warning("IMPORT FAILED: {}".format(node))
        logging.warning("\nThis issue might be caused by new missing dependencies added the last time you updated ComfyUI.")
1978
        if args.windows_standalone_build:
1979
            logging.warning("Please run the update script: update/update_comfyui.bat")
1980
        else:
1981
1982
            logging.warning("Please do a: pip install -r requirements.txt")
        logging.warning("")