nodes.py 8.45 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import torch

import os
import sys
import json

from PIL import Image
from PIL.PngImagePlugin import PngInfo
import numpy as np

sys.path.append(os.path.join(sys.path[0], "comfy"))


import comfy.samplers
import comfy.sd

supported_ckpt_extensions = ['.ckpt']
try:
    import safetensors.torch
    supported_ckpt_extensions += ['.safetensors']
except:
    print("Could not import safetensors, safetensors support disabled.")

def filter_files_extensions(files, extensions):
    return sorted(list(filter(lambda a: os.path.splitext(a)[-1].lower() in extensions, files)))

class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"text": ("STRING", ), "clip": ("CLIP", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

    def encode(self, clip, text):
        return (clip.encode(text), )

class VAEDecode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    def decode(self, vae, samples):
        return (vae.decode(samples), )

class VAEEncode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    def encode(self, vae, pixels):
61
62
63
64
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
comfyanonymous's avatar
comfyanonymous committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
        return (vae.encode(pixels), )

class CheckpointLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    config_dir = os.path.join(models_dir, "configs")
    ckpt_dir = os.path.join(models_dir, "checkpoints")

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "config_name": (filter_files_extensions(os.listdir(s.config_dir), '.yaml'), ),
                              "ckpt_name": (filter_files_extensions(os.listdir(s.ckpt_dir), supported_ckpt_extensions), )}}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
        config_path = os.path.join(self.config_dir, config_name)
        ckpt_path = os.path.join(self.ckpt_dir, ckpt_name)
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True)

class VAELoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    vae_dir = os.path.join(models_dir, "vae")
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "vae_name": (filter_files_extensions(os.listdir(s.vae_dir), supported_ckpt_extensions), )}}
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

    #TODO: scale factor?
    def load_vae(self, vae_name):
        vae_path = os.path.join(self.vae_dir, vae_name)
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
        return (latent, )

class LatentUpscale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
                              "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

    def upscale(self, samples, upscale_method, width, height):
        s = torch.nn.functional.interpolate(samples, size=(height // 8, width // 8), mode=upscale_method)
        return (s,)

class KSampler:
    def __init__(self, device="cuda"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
        noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=torch.manual_seed(seed), device="cpu")
        model = model.to(self.device)
        noise = noise.to(self.device)
        latent_image = latent_image.to(self.device)

        if positive.shape[0] < noise.shape[0]:
            positive = torch.cat([positive] * noise.shape[0])

        if negative.shape[0] < noise.shape[0]:
            negative = torch.cat([negative] * noise.shape[0])

        positive = positive.to(self.device)
        negative = negative.to(self.device)

        if sampler_name in comfy.samplers.KSampler.SAMPLERS:
            sampler = comfy.samplers.KSampler(model, steps=steps, device=self.device, sampler=sampler_name, scheduler=scheduler, denoise=denoise)
        else:
            #other samplers
            pass

        samples = sampler.sample(noise, positive, negative, cfg=cfg, latent_image=latent_image)
        samples = samples.cpu()
        model = model.cpu()
        return (samples, )


class SaveImage:
    def __init__(self):
        self.output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output")
        try:
            self.counter = int(max(filter(lambda a: 'ComfyUI_' in a, os.listdir(self.output_dir))).split('_')[1]) + 1
        except:
            self.counter = 1

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
                    {"images": ("IMAGE", )},
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

    def save_images(self, images, prompt=None, extra_pnginfo=None):
        for image in images:
            i = 255. * image.cpu().numpy()
            img = Image.fromarray(i.astype(np.uint8))
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
            img.save(f"output/ComfyUI_{self.counter:05}_.png", pnginfo=metadata, optimize=True)
            self.counter += 1

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
class LoadImage:
    input_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"image": (os.listdir(s.input_dir), )},
                }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "load_image"
    def load_image(self, image):
        image_path = os.path.join(self.input_dir, image)
        image = Image.open(image_path).convert("RGB")
        image = np.array(image).astype(np.float32) / 255.0
        image = torch.from_numpy(image[None])[None,]
        return image


comfyanonymous's avatar
comfyanonymous committed
230
231
232
233
234
235
236
237
238
239
240

NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
    "CheckpointLoader": CheckpointLoader,
    "CLIPTextEncode": CLIPTextEncode,
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
    "SaveImage": SaveImage,
241
    "LoadImage": LoadImage
comfyanonymous's avatar
comfyanonymous committed
242
243
244
}