nodes.py 58 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
8
import math
9
import time
10
import random
comfyanonymous's avatar
comfyanonymous committed
11

12
from PIL import Image, ImageOps
comfyanonymous's avatar
comfyanonymous committed
13
14
from PIL.PngImagePlugin import PngInfo
import numpy as np
15
import safetensors.torch
comfyanonymous's avatar
comfyanonymous committed
16

comfyanonymous's avatar
comfyanonymous committed
17
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
18
19


20
import comfy.diffusers_load
comfyanonymous's avatar
comfyanonymous committed
21
import comfy.samplers
22
import comfy.sample
comfyanonymous's avatar
comfyanonymous committed
23
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
24
25
import comfy.utils

26
import comfy.clip_vision
27

28
import comfy.model_management
29
import importlib
comfyanonymous's avatar
comfyanonymous committed
30

31
import folder_paths
32
import latent_preview
space-nuko's avatar
space-nuko committed
33

34
def before_node_execution():
35
    comfy.model_management.throw_exception_if_processing_interrupted()
36

37
def interrupt_processing(value=True):
38
    comfy.model_management.interrupt_current_processing(value)
39

40
41
MAX_RESOLUTION=8192

comfyanonymous's avatar
comfyanonymous committed
42
43
44
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
45
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
46
47
48
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

49
50
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
51
    def encode(self, clip, text):
52
53
54
        tokens = clip.tokenize(text)
        cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
        return ([[cond, {"pooled_output": pooled}]], )
comfyanonymous's avatar
comfyanonymous committed
55
56
57
58
59
60
61
62

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

63
64
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
65
66
67
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

FizzleDorf's avatar
FizzleDorf committed
68
69
70
class ConditioningAverage :
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
71
72
        return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
                              "conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
FizzleDorf's avatar
FizzleDorf committed
73
74
75
76
77
78
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "addWeighted"

    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
79
    def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
FizzleDorf's avatar
FizzleDorf committed
80
        out = []
comfyanonymous's avatar
comfyanonymous committed
81
82
83
84
85

        if len(conditioning_from) > 1:
            print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

        cond_from = conditioning_from[0][0]
86
        pooled_output_from = conditioning_from[0][1].get("pooled_output", None)
comfyanonymous's avatar
comfyanonymous committed
87
88
89

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
90
            pooled_output_to = conditioning_to[i][1].get("pooled_output", pooled_output_from)
comfyanonymous's avatar
comfyanonymous committed
91
92
93
94
95
            t0 = cond_from[:,:t1.shape[1]]
            if t0.shape[1] < t1.shape[1]:
                t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)

            tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
96
97
98
99
100
101
102
            t_to = conditioning_to[i][1].copy()
            if pooled_output_from is not None and pooled_output_to is not None:
                t_to["pooled_output"] = torch.mul(pooled_output_to, conditioning_to_strength) + torch.mul(pooled_output_from, (1.0 - conditioning_to_strength))
            elif pooled_output_from is not None:
                t_to["pooled_output"] = pooled_output_from

            n = [tw, t_to]
FizzleDorf's avatar
FizzleDorf committed
103
104
105
            out.append(n)
        return (out, )

106
107
108
109
110
111
112
113
114
115
class ConditioningConcat:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "conditioning_to": ("CONDITIONING",),
            "conditioning_from": ("CONDITIONING",),
            }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "concat"

116
    CATEGORY = "conditioning"
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

    def concat(self, conditioning_to, conditioning_from):
        out = []

        if len(conditioning_from) > 1:
            print("Warning: ConditioningConcat conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

        cond_from = conditioning_from[0][0]

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
            tw = torch.cat((t1, cond_from),1)
            n = [tw, conditioning_to[i][1].copy()]
            out.append(n)

        return (out, )

comfyanonymous's avatar
comfyanonymous committed
134
135
136
137
class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
138
139
140
141
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
142
143
144
145
146
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

147
148
    CATEGORY = "conditioning"

149
    def append(self, conditioning, width, height, x, y, strength):
comfyanonymous's avatar
comfyanonymous committed
150
151
152
153
154
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
155
            n[1]['set_area_to_bounds'] = False
comfyanonymous's avatar
comfyanonymous committed
156
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
157
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
158

Jacob Segal's avatar
Jacob Segal committed
159
160
161
162
163
164
class ConditioningSetMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "mask": ("MASK", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
165
                              "set_cond_area": (["default", "mask bounds"],),
Jacob Segal's avatar
Jacob Segal committed
166
167
168
169
170
171
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

172
    def append(self, conditioning, mask, set_cond_area, strength):
Jacob Segal's avatar
Jacob Segal committed
173
        c = []
174
175
176
        set_area_to_bounds = False
        if set_cond_area != "default":
            set_area_to_bounds = True
Jacob Segal's avatar
Jacob Segal committed
177
178
179
180
181
182
        if len(mask.shape) < 3:
            mask = mask.unsqueeze(0)
        for t in conditioning:
            n = [t[0], t[1].copy()]
            _, h, w = mask.shape
            n[1]['mask'] = mask
Jacob Segal's avatar
Jacob Segal committed
183
            n[1]['set_area_to_bounds'] = set_area_to_bounds
184
            n[1]['mask_strength'] = strength
Jacob Segal's avatar
Jacob Segal committed
185
186
187
            c.append(n)
        return (c, )

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
class ConditioningZeroOut:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "zero_out"

    CATEGORY = "advanced/conditioning"

    def zero_out(self, conditioning):
        c = []
        for t in conditioning:
            d = t[1].copy()
            if "pooled_output" in d:
                d["pooled_output"] = torch.zeros_like(d["pooled_output"])
            n = [torch.zeros_like(t[0]), d]
            c.append(n)
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
207
208
209
210
211
212
213
class VAEDecode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

214
215
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
216
    def decode(self, vae, samples):
217
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
218

219
220
221
222
223
224
225
226
227
228
229
230
class VAEDecodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
231
232
233
234
235
236
237
class VAEEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

238
239
    CATEGORY = "latent"

240
241
242
243
    @staticmethod
    def vae_encode_crop_pixels(pixels):
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
244
        if pixels.shape[1] != x or pixels.shape[2] != y:
245
246
247
248
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
        return pixels
249

250
251
252
    def encode(self, vae, pixels):
        pixels = self.vae_encode_crop_pixels(pixels)
        t = vae.encode(pixels[:,:,:,:3])
253
        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
254

comfyanonymous's avatar
comfyanonymous committed
255
256
257
258
259
260
261
262
263
264
class VAEEncodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

    def encode(self, vae, pixels):
265
        pixels = VAEEncode.vae_encode_crop_pixels(pixels)
comfyanonymous's avatar
comfyanonymous committed
266
267
        t = vae.encode_tiled(pixels[:,:,:,:3])
        return ({"samples":t}, )
268

269
270
271
class VAEEncodeForInpaint:
    @classmethod
    def INPUT_TYPES(s):
272
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
273
274
275
276
277
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

278
    def encode(self, vae, pixels, mask, grow_mask_by=6):
279
280
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
281
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
282

283
        pixels = pixels.clone()
284
        if pixels.shape[1] != x or pixels.shape[2] != y:
285
286
287
288
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
289

290
        #grow mask by a few pixels to keep things seamless in latent space
291
292
293
294
295
296
297
298
        if grow_mask_by == 0:
            mask_erosion = mask
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)

299
        m = (1.0 - mask.round()).squeeze(1)
300
301
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
302
            pixels[:,:,:,i] *= m
303
304
305
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

306
        return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
307

Dr.Lt.Data's avatar
Dr.Lt.Data committed
308
309
class SaveLatent:
    def __init__(self):
310
        self.output_dir = folder_paths.get_output_directory()
Dr.Lt.Data's avatar
Dr.Lt.Data committed
311
312
313
314

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ),
315
                              "filename_prefix": ("STRING", {"default": "latents/ComfyUI"})},
Dr.Lt.Data's avatar
Dr.Lt.Data committed
316
317
318
319
320
321
322
323
324
325
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
    RETURN_TYPES = ()
    FUNCTION = "save"

    OUTPUT_NODE = True

    CATEGORY = "_for_testing"

    def save(self, samples, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
326
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
327
328
329
330
331
332

        # support save metadata for latent sharing
        prompt_info = ""
        if prompt is not None:
            prompt_info = json.dumps(prompt)

333
        metadata = {"prompt": prompt_info}
Dr.Lt.Data's avatar
Dr.Lt.Data committed
334
335
336
337
338
339
340
        if extra_pnginfo is not None:
            for x in extra_pnginfo:
                metadata[x] = json.dumps(extra_pnginfo[x])

        file = f"{filename}_{counter:05}_.latent"
        file = os.path.join(full_output_folder, file)

341
342
        output = {}
        output["latent_tensor"] = samples["samples"]
343
        output["latent_format_version_0"] = torch.tensor([])
344

345
        comfy.utils.save_torch_file(output, file, metadata=metadata)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
346
347
348
349
350
351
        return {}


class LoadLatent:
    @classmethod
    def INPUT_TYPES(s):
352
353
        input_dir = folder_paths.get_input_directory()
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.endswith(".latent")]
Dr.Lt.Data's avatar
Dr.Lt.Data committed
354
355
356
357
358
359
360
361
        return {"required": {"latent": [sorted(files), ]}, }

    CATEGORY = "_for_testing"

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "load"

    def load(self, latent):
362
363
        latent_path = folder_paths.get_annotated_filepath(latent)
        latent = safetensors.torch.load_file(latent_path, device="cpu")
364
365
366
367
        multiplier = 1.0
        if "latent_format_version_0" not in latent:
            multiplier = 1.0 / 0.18215
        samples = {"samples": latent["latent_tensor"].float() * multiplier}
368
        return (samples, )
Dr.Lt.Data's avatar
Dr.Lt.Data committed
369

370
371
372
373
374
375
376
377
378
379
380
381
382
383
    @classmethod
    def IS_CHANGED(s, latent):
        image_path = folder_paths.get_annotated_filepath(latent)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

    @classmethod
    def VALIDATE_INPUTS(s, latent):
        if not folder_paths.exists_annotated_filepath(latent):
            return "Invalid latent file: {}".format(latent)
        return True

Dr.Lt.Data's avatar
Dr.Lt.Data committed
384

comfyanonymous's avatar
comfyanonymous committed
385
386
387
class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
388
389
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
390
391
392
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

393
    CATEGORY = "advanced/loaders"
394

comfyanonymous's avatar
comfyanonymous committed
395
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
396
397
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
398
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
399

400
401
402
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
403
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
404
405
406
407
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

408
    CATEGORY = "loaders"
409

410
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
411
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
412
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
413
414
        return out

sALTaccount's avatar
sALTaccount committed
415
416
417
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
418
        paths = []
sALTaccount's avatar
sALTaccount committed
419
        for search_path in folder_paths.get_folder_paths("diffusers"):
420
            if os.path.exists(search_path):
421
422
423
424
                for root, subdir, files in os.walk(search_path, followlinks=True):
                    if "model_index.json" in files:
                        paths.append(os.path.relpath(root, start=search_path))

425
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
426
427
428
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

429
    CATEGORY = "advanced/loaders/deprecated"
sALTaccount's avatar
sALTaccount committed
430
431

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
432
433
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
434
435
436
                path = os.path.join(search_path, model_path)
                if os.path.exists(path):
                    model_path = path
sALTaccount's avatar
sALTaccount committed
437
                    break
438

439
        return comfy.diffusers_load.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
440
441


442
443
444
445
446
447
448
449
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

450
    CATEGORY = "loaders"
451
452
453
454
455
456

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

473
class LoraLoader:
474
475
476
    def __init__(self):
        self.loaded_lora = None

477
478
479
480
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
481
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
482
483
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
484
485
486
487
488
489
490
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
491
492
493
        if strength_model == 0 and strength_clip == 0:
            return (model, clip)

494
        lora_path = folder_paths.get_full_path("loras", lora_name)
495
496
497
498
499
        lora = None
        if self.loaded_lora is not None:
            if self.loaded_lora[0] == lora_path:
                lora = self.loaded_lora[1]
            else:
500
501
502
                temp = self.loaded_lora
                self.loaded_lora = None
                del temp
503
504
505
506
507
508

        if lora is None:
            lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
            self.loaded_lora = (lora_path, lora)

        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
509
510
        return (model_lora, clip_lora)

comfyanonymous's avatar
comfyanonymous committed
511
512
513
class VAELoader:
    @classmethod
    def INPUT_TYPES(s):
514
        return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
comfyanonymous's avatar
comfyanonymous committed
515
516
517
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

518
519
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
520
521
    #TODO: scale factor?
    def load_vae(self, vae_name):
522
        vae_path = folder_paths.get_full_path("vae", vae_name)
comfyanonymous's avatar
comfyanonymous committed
523
524
525
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
526
527
528
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
529
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
530
531
532
533
534
535
536

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
537
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
comfyanonymous's avatar
comfyanonymous committed
538
539
540
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

541
542
543
544
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
545
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
546
547
548
549
550
551
552

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
553
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
554
555
556
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
557
558
559
560

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
561
562
563
564
565
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
566
567
568
569
570
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

571
    def apply_controlnet(self, conditioning, control_net, image, strength):
572
573
574
        if strength == 0:
            return (conditioning, )

comfyanonymous's avatar
comfyanonymous committed
575
576
577
578
        c = []
        control_hint = image.movedim(-1,1)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
579
580
581
582
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
comfyanonymous's avatar
comfyanonymous committed
583
584
585
            c.append(n)
        return (c, )

586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
class UNETLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "unet_name": (folder_paths.get_filename_list("unet"), ),
                             }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "load_unet"

    CATEGORY = "advanced/loaders"

    def load_unet(self, unet_name):
        unet_path = folder_paths.get_full_path("unet", unet_name)
        model = comfy.sd.load_unet(unet_path)
        return (model,)

601
602
603
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
604
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
605
606
607
608
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

609
    CATEGORY = "advanced/loaders"
610

611
    def load_clip(self, clip_name):
612
        clip_path = folder_paths.get_full_path("clip", clip_name)
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return (clip,)

class DualCLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_name1": (folder_paths.get_filename_list("clip"), ), "clip_name2": (folder_paths.get_filename_list("clip"), ),
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "advanced/loaders"

    def load_clip(self, clip_name1, clip_name2):
        clip_path1 = folder_paths.get_full_path("clip", clip_name1)
        clip_path2 = folder_paths.get_full_path("clip", clip_name2)
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"))
630
631
        return (clip,)

632
633
634
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
635
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
636
637
638
639
640
641
642
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
643
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
644
        clip_vision = comfy.clip_vision.load(clip_path)
645
646
647
648
649
650
651
652
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
653
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
654
655
    FUNCTION = "encode"

656
    CATEGORY = "conditioning"
657
658
659
660
661
662
663
664

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
665
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
666
667
668
669
670
671
672

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
673
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
674
675
676
677
678
679
680
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
681
682
683
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
684
685
686
687
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
688
    CATEGORY = "conditioning/style_model"
689

690
691
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
        cond = style_model.get_cond(clip_vision_output)
692
        c = []
693
694
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
695
696
697
            c.append(n)
        return (c, )

698
699
700
701
702
703
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
704
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
705
706
707
708
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

709
    CATEGORY = "conditioning"
710

711
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
712
713
714
        if strength == 0:
            return (conditioning, )

715
716
717
        c = []
        for t in conditioning:
            o = t[1].copy()
718
719
720
            x = {"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation}
            if "unclip_conditioning" in o:
                o["unclip_conditioning"] = o["unclip_conditioning"][:] + [x]
721
            else:
722
                o["unclip_conditioning"] = [x]
723
724
725
726
            n = [t[0], o]
            c.append(n)
        return (c, )

727
728
729
730
731
732
733
734
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
735
    CATEGORY = "loaders"
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
                              "text": ("STRING", {"multiline": True}),
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
757
    CATEGORY = "conditioning/gligen"
758
759
760
761
762
763
764
765
766
767
768
769
770
771

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
772

comfyanonymous's avatar
comfyanonymous committed
773
774
775
776
777
778
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
779
780
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
781
782
783
784
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

785
786
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
787
788
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
789
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
790

comfyanonymous's avatar
comfyanonymous committed
791

792
793
794
795
796
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
797
                              "length": ("INT", {"default": 1, "min": 1, "max": 64}),
798
799
                              }}
    RETURN_TYPES = ("LATENT",)
800
    FUNCTION = "frombatch"
801

802
    CATEGORY = "latent/batch"
803

804
    def frombatch(self, samples, batch_index, length):
805
806
807
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
        length = min(s_in.shape[0] - batch_index, length)
        s["samples"] = s_in[batch_index:batch_index + length].clone()
        if "noise_mask" in samples:
            masks = samples["noise_mask"]
            if masks.shape[0] == 1:
                s["noise_mask"] = masks.clone()
            else:
                if masks.shape[0] < s_in.shape[0]:
                    masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
                s["noise_mask"] = masks[batch_index:batch_index + length].clone()
        if "batch_index" not in s:
            s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
        else:
            s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
        return (s,)
    
class RepeatLatentBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "amount": ("INT", {"default": 1, "min": 1, "max": 64}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "repeat"

    CATEGORY = "latent/batch"

    def repeat(self, samples, amount):
        s = samples.copy()
        s_in = samples["samples"]
        
        s["samples"] = s_in.repeat((amount, 1,1,1))
        if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
            masks = samples["noise_mask"]
            if masks.shape[0] < s_in.shape[0]:
                masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
            s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
        if "batch_index" in s:
            offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
            s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
848
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
849

comfyanonymous's avatar
comfyanonymous committed
850
class LatentUpscale:
comfyanonymous's avatar
comfyanonymous committed
851
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
852
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
853
854
855
856

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
857
858
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
859
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
860
861
862
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

863
864
    CATEGORY = "latent"

865
    def upscale(self, samples, upscale_method, width, height, crop):
866
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
867
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
868
869
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
870
class LatentUpscaleBy:
comfyanonymous's avatar
comfyanonymous committed
871
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
comfyanonymous's avatar
comfyanonymous committed
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.5, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

    CATEGORY = "latent"

    def upscale(self, samples, upscale_method, scale_by):
        s = samples.copy()
        width = round(samples["samples"].shape[3] * scale_by)
        height = round(samples["samples"].shape[2] * scale_by)
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled")
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
889
890
891
892
893
894
895
896
897
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
898
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
899
900

    def rotate(self, samples, rotation):
901
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
902
903
904
905
906
907
908
909
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

910
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
911
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
912
913
914
915
916
917
918
919
920
921

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
922
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
923
924

    def flip(self, samples, flip_method):
925
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
926
        if flip_method.startswith("x"):
927
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
928
        elif flip_method.startswith("y"):
929
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
930
931

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
932
933
934
935

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
936
937
938
939
940
941
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
942
943
944
945
946
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
947
948
949
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
950
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
974

comfyanonymous's avatar
comfyanonymous committed
975
976
977
978
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
979
980
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
981
982
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
983
984
985
986
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
987
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
988
989

    def crop(self, samples, width, height, x, y):
990
991
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
1005
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
1006
1007
        return (s,)

1008
1009
1010
1011
1012
1013
1014
1015
1016
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

1017
    CATEGORY = "latent/inpaint"
1018
1019
1020

    def set_mask(self, samples, mask):
        s = samples.copy()
1021
        s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
1022
1023
        return (s,)

space-nuko's avatar
space-nuko committed
1024

space-nuko's avatar
space-nuko committed
1025
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
1026
    device = comfy.model_management.get_torch_device()
1027
    latent_image = latent["samples"]
1028

comfyanonymous's avatar
comfyanonymous committed
1029
1030
1031
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
1032
1033
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
comfyanonymous's avatar
comfyanonymous committed
1034

1035
    noise_mask = None
1036
    if "noise_mask" in latent:
1037
        noise_mask = latent["noise_mask"]
comfyanonymous's avatar
comfyanonymous committed
1038

space-nuko's avatar
space-nuko committed
1039
1040
1041
1042
    preview_format = "JPEG"
    if preview_format not in ["JPEG", "PNG"]:
        preview_format = "JPEG"

1043
    previewer = latent_preview.get_previewer(device, model.model.latent_format)
space-nuko's avatar
space-nuko committed
1044

1045
    pbar = comfy.utils.ProgressBar(steps)
1046
    def callback(step, x0, x, total_steps):
space-nuko's avatar
space-nuko committed
1047
        preview_bytes = None
1048
        if previewer:
1049
            preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
space-nuko's avatar
space-nuko committed
1050
        pbar.update_absolute(step + 1, total_steps, preview_bytes)
1051

1052
1053
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
1054
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, seed=seed)
1055
1056
1057
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
1058

comfyanonymous's avatar
comfyanonymous committed
1059
1060
1061
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
1062
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
space-nuko's avatar
space-nuko committed
1073
1074
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1075
1076
1077
1078

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

1079
1080
    CATEGORY = "sampling"

space-nuko's avatar
space-nuko committed
1081
1082
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
1083

comfyanonymous's avatar
comfyanonymous committed
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
space-nuko's avatar
space-nuko committed
1101
1102
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1103
1104
1105
1106
1107

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
1108

space-nuko's avatar
space-nuko committed
1109
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
comfyanonymous's avatar
comfyanonymous committed
1110
1111
1112
1113
1114
1115
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
space-nuko's avatar
space-nuko committed
1116
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
1117
1118
1119

class SaveImage:
    def __init__(self):
1120
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1121
        self.type = "output"
1122
        self.prefix_append = ""
comfyanonymous's avatar
comfyanonymous committed
1123
1124
1125
1126

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
1127
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
1128
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
1129
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
1130
1131
1132
1133
1134
1135
1136
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

1137
1138
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
1139
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
1140
        filename_prefix += self.prefix_append
1141
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
m957ymj75urz's avatar
m957ymj75urz committed
1142
        results = list()
comfyanonymous's avatar
comfyanonymous committed
1143
1144
        for image in images:
            i = 255. * image.cpu().numpy()
1145
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
comfyanonymous's avatar
comfyanonymous committed
1146
1147
1148
1149
1150
1151
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
1152

1153
            file = f"{filename}_{counter:05}_.png"
1154
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
1155
1156
1157
1158
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
1159
            })
1160
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
1161

m957ymj75urz's avatar
m957ymj75urz committed
1162
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
1163

pythongosssss's avatar
pythongosssss committed
1164
1165
class PreviewImage(SaveImage):
    def __init__(self):
1166
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1167
        self.type = "temp"
1168
        self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
pythongosssss's avatar
pythongosssss committed
1169
1170
1171

    @classmethod
    def INPUT_TYPES(s):
1172
        return {"required":
pythongosssss's avatar
pythongosssss committed
1173
1174
1175
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
1176

1177
1178
1179
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
1180
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1181
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1182
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1183
                    {"image": (sorted(files), )},
1184
                }
1185
1186

    CATEGORY = "image"
1187

1188
    RETURN_TYPES = ("IMAGE", "MASK")
1189
1190
    FUNCTION = "load_image"
    def load_image(self, image):
1191
        image_path = folder_paths.get_annotated_filepath(image)
1192
        i = Image.open(image_path)
1193
        i = ImageOps.exif_transpose(i)
1194
        image = i.convert("RGB")
1195
        image = np.array(image).astype(np.float32) / 255.0
1196
        image = torch.from_numpy(image)[None,]
1197
1198
1199
1200
1201
1202
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)
1203

1204
1205
    @classmethod
    def IS_CHANGED(s, image):
1206
        image_path = folder_paths.get_annotated_filepath(image)
1207
1208
1209
1210
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1211

1212
1213
1214
1215
1216
1217
1218
    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

1219
class LoadImageMask:
1220
    _color_channels = ["alpha", "red", "green", "blue"]
1221
1222
    @classmethod
    def INPUT_TYPES(s):
1223
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1224
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1225
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1226
                    {"image": (sorted(files), ),
1227
                     "channel": (s._color_channels, ), }
1228
1229
                }

1230
    CATEGORY = "mask"
1231
1232
1233
1234

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
1235
        image_path = folder_paths.get_annotated_filepath(image)
1236
        i = Image.open(image_path)
1237
        i = ImageOps.exif_transpose(i)
1238
1239
        if i.getbands() != ("R", "G", "B", "A"):
            i = i.convert("RGBA")
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
1253
        image_path = folder_paths.get_annotated_filepath(image)
1254
1255
1256
1257
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1258

1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
    @classmethod
    def VALIDATE_INPUTS(s, image, channel):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        if channel not in s._color_channels:
            return "Invalid color channel: {}".format(channel)

        return True

comfyanonymous's avatar
comfyanonymous committed
1269
class ImageScale:
comfyanonymous's avatar
comfyanonymous committed
1270
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic"]
comfyanonymous's avatar
comfyanonymous committed
1271
1272
1273
1274
1275
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1276
1277
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1278
1279
1280
1281
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1282
    CATEGORY = "image/upscaling"
1283

comfyanonymous's avatar
comfyanonymous committed
1284
1285
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
1286
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1287
1288
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1289

comfyanonymous's avatar
comfyanonymous committed
1290
class ImageScaleBy:
comfyanonymous's avatar
comfyanonymous committed
1291
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic"]
comfyanonymous's avatar
comfyanonymous committed
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

    CATEGORY = "image/upscaling"

    def upscale(self, image, upscale_method, scale_by):
        samples = image.movedim(-1,1)
        width = round(samples.shape[3] * scale_by)
        height = round(samples.shape[2] * scale_by)
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
        s = s.movedim(1,-1)
        return (s,)

1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


Guo Y.K's avatar
Guo Y.K committed
1326
1327
1328
1329
1330
1331
1332
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1333
1334
1335
1336
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1337
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1338
1339
1340
1341
1342
1343
1344
1345
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1346
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1359

1360
1361
1362
1363
1364
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1365
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1385

Guo Y.K's avatar
Guo Y.K committed
1386
1387
1388
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1389
1390
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1391
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1392
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1393
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1394
1395
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1396
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1397
1398
1399
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
comfyanonymous's avatar
comfyanonymous committed
1400
    "LatentUpscaleBy": LatentUpscaleBy,
1401
    "LatentFromBatch": LatentFromBatch,
1402
    "RepeatLatentBatch": RepeatLatentBatch,
comfyanonymous's avatar
comfyanonymous committed
1403
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1404
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1405
    "LoadImage": LoadImage,
1406
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1407
    "ImageScale": ImageScale,
comfyanonymous's avatar
comfyanonymous committed
1408
    "ImageScaleBy": ImageScaleBy,
1409
    "ImageInvert": ImageInvert,
Guo Y.K's avatar
Guo Y.K committed
1410
    "ImagePadForOutpaint": ImagePadForOutpaint,
FizzleDorf's avatar
FizzleDorf committed
1411
    "ConditioningAverage ": ConditioningAverage ,
comfyanonymous's avatar
comfyanonymous committed
1412
    "ConditioningCombine": ConditioningCombine,
1413
    "ConditioningConcat": ConditioningConcat,
comfyanonymous's avatar
comfyanonymous committed
1414
    "ConditioningSetArea": ConditioningSetArea,
Jacob Segal's avatar
Jacob Segal committed
1415
    "ConditioningSetMask": ConditioningSetMask,
comfyanonymous's avatar
comfyanonymous committed
1416
    "KSamplerAdvanced": KSamplerAdvanced,
1417
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1418
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
1419
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1420
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1421
    "LatentCrop": LatentCrop,
1422
    "LoraLoader": LoraLoader,
1423
    "CLIPLoader": CLIPLoader,
1424
    "UNETLoader": UNETLoader,
1425
    "DualCLIPLoader": DualCLIPLoader,
1426
    "CLIPVisionEncode": CLIPVisionEncode,
1427
    "StyleModelApply": StyleModelApply,
1428
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1429
1430
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
1431
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1432
1433
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1434
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1435
    "VAEEncodeTiled": VAEEncodeTiled,
1436
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1437
1438
1439
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,

1440
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1441
    "DiffusersLoader": DiffusersLoader,
Dr.Lt.Data's avatar
Dr.Lt.Data committed
1442
1443

    "LoadLatent": LoadLatent,
1444
    "SaveLatent": SaveLatent,
1445
1446

    "ConditioningZeroOut": ConditioningZeroOut,
comfyanonymous's avatar
comfyanonymous committed
1447
1448
}

City's avatar
City committed
1449
1450
1451
1452
1453
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1454
1455
    "CheckpointLoader": "Load Checkpoint (With Config)",
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
FizzleDorf's avatar
FizzleDorf committed
1470
    "ConditioningAverage ": "Conditioning (Average)",
1471
    "ConditioningConcat": "Conditioning (Concat)",
City's avatar
City committed
1472
    "ConditioningSetArea": "Conditioning (Set Area)",
Jacob Segal's avatar
Jacob Segal committed
1473
    "ConditioningSetMask": "Conditioning (Set Mask)",
City's avatar
City committed
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
    "ControlNetApply": "Apply ControlNet",
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
comfyanonymous's avatar
comfyanonymous committed
1485
    "LatentUpscaleBy": "Upscale Latent By",
City's avatar
City committed
1486
    "LatentComposite": "Latent Composite",
1487
1488
    "LatentFromBatch" : "Latent From Batch",
    "RepeatLatentBatch": "Repeat Latent Batch",
City's avatar
City committed
1489
1490
1491
1492
1493
1494
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
comfyanonymous's avatar
comfyanonymous committed
1495
    "ImageScaleBy": "Upscale Image By",
City's avatar
City committed
1496
1497
1498
1499
1500
1501
1502
1503
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1504
def load_custom_node(module_path, ignore=set()):
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
1518
1519
1520
            for name in module.NODE_CLASS_MAPPINGS:
                if name not in ignore:
                    NODE_CLASS_MAPPINGS[name] = module.NODE_CLASS_MAPPINGS[name]
1521
1522
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1523
            return True
1524
1525
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
1526
            return False
1527
1528
1529
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)
1530
        return False
1531

Hacker 17082006's avatar
Hacker 17082006 committed
1532
def load_custom_nodes():
1533
    base_node_names = set(NODE_CLASS_MAPPINGS.keys())
1534
    node_paths = folder_paths.get_folder_paths("custom_nodes")
1535
    node_import_times = []
1536
1537
1538
1539
1540
1541
1542
1543
    for custom_node_path in node_paths:
        possible_modules = os.listdir(custom_node_path)
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1544
            if module_path.endswith(".disabled"): continue
1545
            time_before = time.perf_counter()
1546
            success = load_custom_node(module_path, base_node_names)
1547
            node_import_times.append((time.perf_counter() - time_before, module_path, success))
1548

1549
    if len(node_import_times) > 0:
comfyanonymous's avatar
comfyanonymous committed
1550
        print("\nImport times for custom nodes:")
1551
        for n in sorted(node_import_times):
1552
1553
1554
1555
1556
            if n[2]:
                import_message = ""
            else:
                import_message = " (IMPORT FAILED)"
            print("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
1557
        print()
1558

1559
def init_custom_nodes():
1560
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_hypernetwork.py"))
1561
1562
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
1563
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))
1564
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_rebatch.py"))
1565
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_model_merging.py"))
1566
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_tomesd.py"))
1567
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_clip_sdxl.py"))
1568
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_canny.py"))
1569
    load_custom_nodes()