nodes.py 75.7 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
8
import math
9
import time
10
import random
11
import logging
comfyanonymous's avatar
comfyanonymous committed
12

13
from PIL import Image, ImageOps, ImageSequence, ImageFile
comfyanonymous's avatar
comfyanonymous committed
14
from PIL.PngImagePlugin import PngInfo
15

comfyanonymous's avatar
comfyanonymous committed
16
import numpy as np
17
import safetensors.torch
comfyanonymous's avatar
comfyanonymous committed
18

19
20
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))

21
import comfy.diffusers_load
comfyanonymous's avatar
comfyanonymous committed
22
import comfy.samplers
23
import comfy.sample
comfyanonymous's avatar
comfyanonymous committed
24
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
25
import comfy.utils
26
import comfy.controlnet
comfyanonymous's avatar
comfyanonymous committed
27

28
import comfy.clip_vision
29

30
import comfy.model_management
31
32
from comfy.cli_args import args

33
import importlib
comfyanonymous's avatar
comfyanonymous committed
34

35
import folder_paths
36
import latent_preview
37
import node_helpers
space-nuko's avatar
space-nuko committed
38

39
def before_node_execution():
40
    comfy.model_management.throw_exception_if_processing_interrupted()
41

42
def interrupt_processing(value=True):
43
    comfy.model_management.interrupt_current_processing(value)
44

comfyanonymous's avatar
comfyanonymous committed
45
MAX_RESOLUTION=16384
46

comfyanonymous's avatar
comfyanonymous committed
47
48
49
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
50
        return {"required": {"text": ("STRING", {"multiline": True, "dynamicPrompts": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
51
52
53
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

54
55
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
56
    def encode(self, clip, text):
57
58
59
        tokens = clip.tokenize(text)
        cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
        return ([[cond, {"pooled_output": pooled}]], )
comfyanonymous's avatar
comfyanonymous committed
60
61
62
63
64
65
66
67

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

68
69
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
70
71
72
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

FizzleDorf's avatar
FizzleDorf committed
73
74
75
class ConditioningAverage :
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
76
77
        return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
                              "conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
FizzleDorf's avatar
FizzleDorf committed
78
79
80
81
82
83
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "addWeighted"

    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
84
    def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
FizzleDorf's avatar
FizzleDorf committed
85
        out = []
comfyanonymous's avatar
comfyanonymous committed
86
87

        if len(conditioning_from) > 1:
88
            logging.warning("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
comfyanonymous's avatar
comfyanonymous committed
89
90

        cond_from = conditioning_from[0][0]
91
        pooled_output_from = conditioning_from[0][1].get("pooled_output", None)
comfyanonymous's avatar
comfyanonymous committed
92
93
94

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
95
            pooled_output_to = conditioning_to[i][1].get("pooled_output", pooled_output_from)
comfyanonymous's avatar
comfyanonymous committed
96
97
98
99
100
            t0 = cond_from[:,:t1.shape[1]]
            if t0.shape[1] < t1.shape[1]:
                t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)

            tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
101
102
103
104
105
106
107
            t_to = conditioning_to[i][1].copy()
            if pooled_output_from is not None and pooled_output_to is not None:
                t_to["pooled_output"] = torch.mul(pooled_output_to, conditioning_to_strength) + torch.mul(pooled_output_from, (1.0 - conditioning_to_strength))
            elif pooled_output_from is not None:
                t_to["pooled_output"] = pooled_output_from

            n = [tw, t_to]
FizzleDorf's avatar
FizzleDorf committed
108
109
110
            out.append(n)
        return (out, )

111
112
113
114
115
116
117
118
119
120
class ConditioningConcat:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "conditioning_to": ("CONDITIONING",),
            "conditioning_from": ("CONDITIONING",),
            }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "concat"

121
    CATEGORY = "conditioning"
122
123
124
125
126

    def concat(self, conditioning_to, conditioning_from):
        out = []

        if len(conditioning_from) > 1:
127
            logging.warning("Warning: ConditioningConcat conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
128
129
130
131
132
133
134
135
136
137
138

        cond_from = conditioning_from[0][0]

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
            tw = torch.cat((t1, cond_from),1)
            n = [tw, conditioning_to[i][1].copy()]
            out.append(n)

        return (out, )

comfyanonymous's avatar
comfyanonymous committed
139
140
141
142
class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
143
144
145
146
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
147
148
149
150
151
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

152
153
    CATEGORY = "conditioning"

154
    def append(self, conditioning, width, height, x, y, strength):
155
156
157
        c = node_helpers.conditioning_set_values(conditioning, {"area": (height // 8, width // 8, y // 8, x // 8),
                                                                "strength": strength,
                                                                "set_area_to_bounds": False})
comfyanonymous's avatar
comfyanonymous committed
158
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
class ConditioningSetAreaPercentage:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "width": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
                              "height": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
                              "x": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
                              "y": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

    def append(self, conditioning, width, height, x, y, strength):
176
177
178
        c = node_helpers.conditioning_set_values(conditioning, {"area": ("percentage", height, width, y, x),
                                                                "strength": strength,
                                                                "set_area_to_bounds": False})
179
180
        return (c, )

181
182
183
184
185
186
187
188
189
190
191
192
class ConditioningSetAreaStrength:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

    def append(self, conditioning, strength):
193
        c = node_helpers.conditioning_set_values(conditioning, {"strength": strength})
194
195
196
        return (c, )


Jacob Segal's avatar
Jacob Segal committed
197
198
199
200
201
202
class ConditioningSetMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "mask": ("MASK", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
203
                              "set_cond_area": (["default", "mask bounds"],),
Jacob Segal's avatar
Jacob Segal committed
204
205
206
207
208
209
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

210
211
212
213
    def append(self, conditioning, mask, set_cond_area, strength):
        set_area_to_bounds = False
        if set_cond_area != "default":
            set_area_to_bounds = True
Jacob Segal's avatar
Jacob Segal committed
214
215
        if len(mask.shape) < 3:
            mask = mask.unsqueeze(0)
216
217
218
219

        c = node_helpers.conditioning_set_values(conditioning, {"mask": mask,
                                                                "set_area_to_bounds": set_area_to_bounds,
                                                                "mask_strength": strength})
Jacob Segal's avatar
Jacob Segal committed
220
221
        return (c, )

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
class ConditioningZeroOut:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "zero_out"

    CATEGORY = "advanced/conditioning"

    def zero_out(self, conditioning):
        c = []
        for t in conditioning:
            d = t[1].copy()
            if "pooled_output" in d:
                d["pooled_output"] = torch.zeros_like(d["pooled_output"])
            n = [torch.zeros_like(t[0]), d]
            c.append(n)
        return (c, )

241
242
243
244
class ConditioningSetTimestepRange:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
245
246
                             "start": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                             "end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
247
248
249
250
251
252
253
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "set_range"

    CATEGORY = "advanced/conditioning"

    def set_range(self, conditioning, start, end):
254
255
        c = node_helpers.conditioning_set_values(conditioning, {"start_percent": start,
                                                                "end_percent": end})
256
257
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
258
259
260
261
262
263
264
class VAEDecode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

265
266
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
267
    def decode(self, vae, samples):
268
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
269

270
271
272
class VAEDecodeTiled:
    @classmethod
    def INPUT_TYPES(s):
273
        return {"required": {"samples": ("LATENT", ), "vae": ("VAE", ),
comfyanonymous's avatar
comfyanonymous committed
274
                             "tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64})
275
                            }}
276
277
278
279
280
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

281
    def decode(self, vae, samples, tile_size):
282
        return (vae.decode_tiled(samples["samples"], tile_x=tile_size // 8, tile_y=tile_size // 8, ), )
283

comfyanonymous's avatar
comfyanonymous committed
284
285
286
287
288
289
290
class VAEEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

291
292
    CATEGORY = "latent"

293
294
    def encode(self, vae, pixels):
        t = vae.encode(pixels[:,:,:,:3])
295
        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
296

comfyanonymous's avatar
comfyanonymous committed
297
298
299
class VAEEncodeTiled:
    @classmethod
    def INPUT_TYPES(s):
300
        return {"required": {"pixels": ("IMAGE", ), "vae": ("VAE", ),
301
                             "tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64})
302
                            }}
comfyanonymous's avatar
comfyanonymous committed
303
304
305
306
307
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

308
309
    def encode(self, vae, pixels, tile_size):
        t = vae.encode_tiled(pixels[:,:,:,:3], tile_x=tile_size, tile_y=tile_size, )
comfyanonymous's avatar
comfyanonymous committed
310
        return ({"samples":t}, )
311

312
313
314
class VAEEncodeForInpaint:
    @classmethod
    def INPUT_TYPES(s):
315
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
316
317
318
319
320
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

321
    def encode(self, vae, pixels, mask, grow_mask_by=6):
322
323
        x = (pixels.shape[1] // vae.downscale_ratio) * vae.downscale_ratio
        y = (pixels.shape[2] // vae.downscale_ratio) * vae.downscale_ratio
324
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
325

326
        pixels = pixels.clone()
327
        if pixels.shape[1] != x or pixels.shape[2] != y:
328
329
            x_offset = (pixels.shape[1] % vae.downscale_ratio) // 2
            y_offset = (pixels.shape[2] % vae.downscale_ratio) // 2
330
331
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
332

333
        #grow mask by a few pixels to keep things seamless in latent space
334
335
336
337
338
339
340
341
        if grow_mask_by == 0:
            mask_erosion = mask
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)

342
        m = (1.0 - mask.round()).squeeze(1)
343
344
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
345
            pixels[:,:,:,i] *= m
346
347
348
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

349
        return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
350

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

class InpaintModelConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"positive": ("CONDITIONING", ),
                             "negative": ("CONDITIONING", ),
                             "vae": ("VAE", ),
                             "pixels": ("IMAGE", ),
                             "mask": ("MASK", ),
                             }}

    RETURN_TYPES = ("CONDITIONING","CONDITIONING","LATENT")
    RETURN_NAMES = ("positive", "negative", "latent")
    FUNCTION = "encode"

    CATEGORY = "conditioning/inpaint"

    def encode(self, positive, negative, pixels, vae, mask):
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")

        orig_pixels = pixels
        pixels = orig_pixels.clone()
        if pixels.shape[1] != x or pixels.shape[2] != y:
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]

        m = (1.0 - mask.round()).squeeze(1)
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
            pixels[:,:,:,i] *= m
            pixels[:,:,:,i] += 0.5
        concat_latent = vae.encode(pixels)
        orig_latent = vae.encode(orig_pixels)

        out_latent = {}

        out_latent["samples"] = orig_latent
        out_latent["noise_mask"] = mask

        out = []
        for conditioning in [positive, negative]:
396
397
            c = node_helpers.conditioning_set_values(conditioning, {"concat_latent_image": concat_latent,
                                                                    "concat_mask": mask})
398
399
400
401
            out.append(c)
        return (out[0], out[1], out_latent)


Dr.Lt.Data's avatar
Dr.Lt.Data committed
402
403
class SaveLatent:
    def __init__(self):
404
        self.output_dir = folder_paths.get_output_directory()
Dr.Lt.Data's avatar
Dr.Lt.Data committed
405
406
407
408

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ),
409
                              "filename_prefix": ("STRING", {"default": "latents/ComfyUI"})},
Dr.Lt.Data's avatar
Dr.Lt.Data committed
410
411
412
413
414
415
416
417
418
419
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
    RETURN_TYPES = ()
    FUNCTION = "save"

    OUTPUT_NODE = True

    CATEGORY = "_for_testing"

    def save(self, samples, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
420
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
421
422
423
424
425
426

        # support save metadata for latent sharing
        prompt_info = ""
        if prompt is not None:
            prompt_info = json.dumps(prompt)

427
428
429
430
431
432
        metadata = None
        if not args.disable_metadata:
            metadata = {"prompt": prompt_info}
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata[x] = json.dumps(extra_pnginfo[x])
Dr.Lt.Data's avatar
Dr.Lt.Data committed
433
434

        file = f"{filename}_{counter:05}_.latent"
435
436
437
438
439
440
441
442

        results = list()
        results.append({
            "filename": file,
            "subfolder": subfolder,
            "type": "output"
        })

Dr.Lt.Data's avatar
Dr.Lt.Data committed
443
444
        file = os.path.join(full_output_folder, file)

445
446
        output = {}
        output["latent_tensor"] = samples["samples"]
447
        output["latent_format_version_0"] = torch.tensor([])
448

449
        comfy.utils.save_torch_file(output, file, metadata=metadata)
450
        return { "ui": { "latents": results } }
Dr.Lt.Data's avatar
Dr.Lt.Data committed
451
452
453
454
455


class LoadLatent:
    @classmethod
    def INPUT_TYPES(s):
456
457
        input_dir = folder_paths.get_input_directory()
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.endswith(".latent")]
Dr.Lt.Data's avatar
Dr.Lt.Data committed
458
459
460
461
462
463
464
465
        return {"required": {"latent": [sorted(files), ]}, }

    CATEGORY = "_for_testing"

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "load"

    def load(self, latent):
466
467
        latent_path = folder_paths.get_annotated_filepath(latent)
        latent = safetensors.torch.load_file(latent_path, device="cpu")
468
469
470
471
        multiplier = 1.0
        if "latent_format_version_0" not in latent:
            multiplier = 1.0 / 0.18215
        samples = {"samples": latent["latent_tensor"].float() * multiplier}
472
        return (samples, )
Dr.Lt.Data's avatar
Dr.Lt.Data committed
473

474
475
476
477
478
479
480
481
482
483
484
485
486
487
    @classmethod
    def IS_CHANGED(s, latent):
        image_path = folder_paths.get_annotated_filepath(latent)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

    @classmethod
    def VALIDATE_INPUTS(s, latent):
        if not folder_paths.exists_annotated_filepath(latent):
            return "Invalid latent file: {}".format(latent)
        return True

Dr.Lt.Data's avatar
Dr.Lt.Data committed
488

comfyanonymous's avatar
comfyanonymous committed
489
490
491
class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
492
493
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
494
495
496
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

497
    CATEGORY = "advanced/loaders"
498

499
    def load_checkpoint(self, config_name, ckpt_name):
500
501
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
502
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
503

504
505
506
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
507
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
508
509
510
511
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

512
    CATEGORY = "loaders"
513

514
    def load_checkpoint(self, ckpt_name):
515
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
516
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
517
        return out[:3]
518

sALTaccount's avatar
sALTaccount committed
519
520
521
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
522
        paths = []
sALTaccount's avatar
sALTaccount committed
523
        for search_path in folder_paths.get_folder_paths("diffusers"):
524
            if os.path.exists(search_path):
525
526
527
528
                for root, subdir, files in os.walk(search_path, followlinks=True):
                    if "model_index.json" in files:
                        paths.append(os.path.relpath(root, start=search_path))

529
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
530
531
532
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

533
    CATEGORY = "advanced/loaders/deprecated"
sALTaccount's avatar
sALTaccount committed
534
535

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
536
537
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
538
539
540
                path = os.path.join(search_path, model_path)
                if os.path.exists(path):
                    model_path = path
sALTaccount's avatar
sALTaccount committed
541
                    break
542

543
        return comfy.diffusers_load.load_diffusers(model_path, output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
544
545


546
547
548
549
550
551
552
553
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

554
    CATEGORY = "loaders"
555
556
557
558
559
560

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

577
class LoraLoader:
578
579
580
    def __init__(self):
        self.loaded_lora = None

581
582
583
584
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
585
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
586
587
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01}),
588
589
590
591
592
593
594
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
595
596
597
        if strength_model == 0 and strength_clip == 0:
            return (model, clip)

598
        lora_path = folder_paths.get_full_path("loras", lora_name)
599
600
601
602
603
        lora = None
        if self.loaded_lora is not None:
            if self.loaded_lora[0] == lora_path:
                lora = self.loaded_lora[1]
            else:
604
605
606
                temp = self.loaded_lora
                self.loaded_lora = None
                del temp
607
608
609
610
611
612

        if lora is None:
            lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
            self.loaded_lora = (lora_path, lora)

        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
613
614
        return (model_lora, clip_lora)

615
616
617
618
619
class LoraLoaderModelOnly(LoraLoader):
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
620
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01}),
621
622
623
624
625
626
627
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "load_lora_model_only"

    def load_lora_model_only(self, model, lora_name, strength_model):
        return (self.load_lora(model, None, lora_name, strength_model, 0)[0],)

comfyanonymous's avatar
comfyanonymous committed
628
class VAELoader:
629
630
631
632
633
634
635
636
    @staticmethod
    def vae_list():
        vaes = folder_paths.get_filename_list("vae")
        approx_vaes = folder_paths.get_filename_list("vae_approx")
        sdxl_taesd_enc = False
        sdxl_taesd_dec = False
        sd1_taesd_enc = False
        sd1_taesd_dec = False
Dr.Lt.Data's avatar
Dr.Lt.Data committed
637
638
        sd3_taesd_enc = False
        sd3_taesd_dec = False
639
640
641
642
643
644
645
646
647
648

        for v in approx_vaes:
            if v.startswith("taesd_decoder."):
                sd1_taesd_dec = True
            elif v.startswith("taesd_encoder."):
                sd1_taesd_enc = True
            elif v.startswith("taesdxl_decoder."):
                sdxl_taesd_dec = True
            elif v.startswith("taesdxl_encoder."):
                sdxl_taesd_enc = True
Dr.Lt.Data's avatar
Dr.Lt.Data committed
649
650
651
652
            elif v.startswith("taesd3_decoder."):
                sd3_taesd_dec = True
            elif v.startswith("taesd3_encoder."):
                sd3_taesd_enc = True
653
654
655
656
        if sd1_taesd_dec and sd1_taesd_enc:
            vaes.append("taesd")
        if sdxl_taesd_dec and sdxl_taesd_enc:
            vaes.append("taesdxl")
Dr.Lt.Data's avatar
Dr.Lt.Data committed
657
658
        if sd3_taesd_dec and sd3_taesd_enc:
            vaes.append("taesd3")
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
        return vaes

    @staticmethod
    def load_taesd(name):
        sd = {}
        approx_vaes = folder_paths.get_filename_list("vae_approx")

        encoder = next(filter(lambda a: a.startswith("{}_encoder.".format(name)), approx_vaes))
        decoder = next(filter(lambda a: a.startswith("{}_decoder.".format(name)), approx_vaes))

        enc = comfy.utils.load_torch_file(folder_paths.get_full_path("vae_approx", encoder))
        for k in enc:
            sd["taesd_encoder.{}".format(k)] = enc[k]

        dec = comfy.utils.load_torch_file(folder_paths.get_full_path("vae_approx", decoder))
        for k in dec:
            sd["taesd_decoder.{}".format(k)] = dec[k]

        if name == "taesd":
            sd["vae_scale"] = torch.tensor(0.18215)
679
            sd["vae_shift"] = torch.tensor(0.0)
680
681
        elif name == "taesdxl":
            sd["vae_scale"] = torch.tensor(0.13025)
682
            sd["vae_shift"] = torch.tensor(0.0)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
683
684
        elif name == "taesd3":
            sd["vae_scale"] = torch.tensor(1.5305)
685
            sd["vae_shift"] = torch.tensor(0.0609)
686
687
        return sd

comfyanonymous's avatar
comfyanonymous committed
688
689
    @classmethod
    def INPUT_TYPES(s):
690
        return {"required": { "vae_name": (s.vae_list(), )}}
comfyanonymous's avatar
comfyanonymous committed
691
692
693
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

694
695
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
696
697
    #TODO: scale factor?
    def load_vae(self, vae_name):
Dr.Lt.Data's avatar
Dr.Lt.Data committed
698
        if vae_name in ["taesd", "taesdxl", "taesd3"]:
699
700
701
702
            sd = self.load_taesd(vae_name)
        else:
            vae_path = folder_paths.get_full_path("vae", vae_name)
            sd = comfy.utils.load_torch_file(vae_path)
703
        vae = comfy.sd.VAE(sd=sd)
comfyanonymous's avatar
comfyanonymous committed
704
705
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
706
707
708
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
709
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
710
711
712
713
714
715
716

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
717
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
718
        controlnet = comfy.controlnet.load_controlnet(controlnet_path)
comfyanonymous's avatar
comfyanonymous committed
719
720
        return (controlnet,)

721
722
723
724
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
725
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
726
727
728
729
730
731
732

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
733
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
734
        controlnet = comfy.controlnet.load_controlnet(controlnet_path, model)
735
736
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
737
738
739
740

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
741
742
743
744
745
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
746
747
748
749
750
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

751
    def apply_controlnet(self, conditioning, control_net, image, strength):
752
753
754
        if strength == 0:
            return (conditioning, )

comfyanonymous's avatar
comfyanonymous committed
755
756
757
758
        c = []
        control_hint = image.movedim(-1,1)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
759
760
761
762
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
763
            n[1]['control_apply_to_uncond'] = True
comfyanonymous's avatar
comfyanonymous committed
764
765
766
            c.append(n)
        return (c, )

767
768
769
770
771
772
773
774
775

class ControlNetApplyAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"positive": ("CONDITIONING", ),
                             "negative": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
776
777
                             "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                             "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
778
779
780
781
782
783
784
785
                             }}

    RETURN_TYPES = ("CONDITIONING","CONDITIONING")
    RETURN_NAMES = ("positive", "negative")
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

786
    def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent, vae=None):
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
        if strength == 0:
            return (positive, negative)

        control_hint = image.movedim(-1,1)
        cnets = {}

        out = []
        for conditioning in [positive, negative]:
            c = []
            for t in conditioning:
                d = t[1].copy()

                prev_cnet = d.get('control', None)
                if prev_cnet in cnets:
                    c_net = cnets[prev_cnet]
                else:
803
                    c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_percent, end_percent), vae)
804
805
806
807
808
809
810
811
812
813
814
                    c_net.set_previous_controlnet(prev_cnet)
                    cnets[prev_cnet] = c_net

                d['control'] = c_net
                d['control_apply_to_uncond'] = False
                n = [t[0], d]
                c.append(n)
            out.append(c)
        return (out[0], out[1])


815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
class UNETLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "unet_name": (folder_paths.get_filename_list("unet"), ),
                             }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "load_unet"

    CATEGORY = "advanced/loaders"

    def load_unet(self, unet_name):
        unet_path = folder_paths.get_full_path("unet", unet_name)
        model = comfy.sd.load_unet(unet_path)
        return (model,)

830
831
832
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
833
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
834
                              "type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio"], ),
835
836
837
838
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

839
    CATEGORY = "advanced/loaders"
840

841
842
843
    def load_clip(self, clip_name, type="stable_diffusion"):
        if type == "stable_cascade":
            clip_type = comfy.sd.CLIPType.STABLE_CASCADE
844
845
        elif type == "sd3":
            clip_type = comfy.sd.CLIPType.SD3
846
847
848
849
        elif type == "stable_audio":
            clip_type = comfy.sd.CLIPType.STABLE_AUDIO
        else:
            clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION
850

851
        clip_path = folder_paths.get_full_path("clip", clip_name)
852
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type)
853
854
855
856
857
        return (clip,)

class DualCLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
858
859
860
        return {"required": { "clip_name1": (folder_paths.get_filename_list("clip"), ),
                              "clip_name2": (folder_paths.get_filename_list("clip"), ),
                              "type": (["sdxl", "sd3"], ),
861
862
863
864
865
866
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "advanced/loaders"

867
    def load_clip(self, clip_name1, clip_name2, type):
868
869
        clip_path1 = folder_paths.get_full_path("clip", clip_name1)
        clip_path2 = folder_paths.get_full_path("clip", clip_name2)
870
871
872
873
874
875
        if type == "sdxl":
            clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION
        elif type == "sd3":
            clip_type = comfy.sd.CLIPType.SD3

        clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type)
876
877
        return (clip,)

878
879
880
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
881
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
882
883
884
885
886
887
888
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
889
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
890
        clip_vision = comfy.clip_vision.load(clip_path)
891
892
893
894
895
896
897
898
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
899
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
900
901
    FUNCTION = "encode"

902
    CATEGORY = "conditioning"
903
904
905
906
907
908
909
910

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
911
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
912
913
914
915
916
917
918

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
919
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
920
921
922
923
924
925
926
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
927
928
929
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
930
931
932
933
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
934
    CATEGORY = "conditioning/style_model"
935

936
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
937
        cond = style_model.get_cond(clip_vision_output).flatten(start_dim=0, end_dim=1).unsqueeze(dim=0)
938
        c = []
939
940
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
941
942
943
            c.append(n)
        return (c, )

944
945
946
947
948
949
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
950
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
951
952
953
954
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

955
    CATEGORY = "conditioning"
956

957
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
958
959
960
        if strength == 0:
            return (conditioning, )

961
962
963
        c = []
        for t in conditioning:
            o = t[1].copy()
964
965
966
            x = {"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation}
            if "unclip_conditioning" in o:
                o["unclip_conditioning"] = o["unclip_conditioning"][:] + [x]
967
            else:
968
                o["unclip_conditioning"] = [x]
969
970
971
972
            n = [t[0], o]
            c.append(n)
        return (c, )

973
974
975
976
977
978
979
980
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
981
    CATEGORY = "loaders"
982
983
984
985
986
987
988
989
990
991
992
993

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
994
                              "text": ("STRING", {"multiline": True, "dynamicPrompts": True}),
995
996
997
998
999
1000
1001
1002
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
1003
    CATEGORY = "conditioning/gligen"
1004
1005
1006

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
1007
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled="unprojected")
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
1018

comfyanonymous's avatar
comfyanonymous committed
1019
class EmptyLatentImage:
1020
1021
    def __init__(self):
        self.device = comfy.model_management.intermediate_device()
comfyanonymous's avatar
comfyanonymous committed
1022
1023
1024

    @classmethod
    def INPUT_TYPES(s):
1025
1026
        return {"required": { "width": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
1027
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}}
comfyanonymous's avatar
comfyanonymous committed
1028
1029
1030
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

1031
1032
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
1033
    def generate(self, width, height, batch_size=1):
1034
        latent = torch.zeros([batch_size, 4, height // 8, width // 8], device=self.device)
1035
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
1036

comfyanonymous's avatar
comfyanonymous committed
1037

1038
1039
1040
1041
1042
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
1043
                              "length": ("INT", {"default": 1, "min": 1, "max": 64}),
1044
1045
                              }}
    RETURN_TYPES = ("LATENT",)
1046
    FUNCTION = "frombatch"
1047

1048
    CATEGORY = "latent/batch"
1049

1050
    def frombatch(self, samples, batch_index, length):
1051
1052
1053
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
        length = min(s_in.shape[0] - batch_index, length)
        s["samples"] = s_in[batch_index:batch_index + length].clone()
        if "noise_mask" in samples:
            masks = samples["noise_mask"]
            if masks.shape[0] == 1:
                s["noise_mask"] = masks.clone()
            else:
                if masks.shape[0] < s_in.shape[0]:
                    masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
                s["noise_mask"] = masks[batch_index:batch_index + length].clone()
        if "batch_index" not in s:
            s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
        else:
            s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
        return (s,)
    
class RepeatLatentBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "amount": ("INT", {"default": 1, "min": 1, "max": 64}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "repeat"

    CATEGORY = "latent/batch"

    def repeat(self, samples, amount):
        s = samples.copy()
        s_in = samples["samples"]
        
        s["samples"] = s_in.repeat((amount, 1,1,1))
        if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
            masks = samples["noise_mask"]
            if masks.shape[0] < s_in.shape[0]:
                masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
            s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
        if "batch_index" in s:
            offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
            s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
1094
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1095

comfyanonymous's avatar
comfyanonymous committed
1096
class LatentUpscale:
comfyanonymous's avatar
comfyanonymous committed
1097
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
1098
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
1099
1100
1101
1102

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
1103
1104
                              "width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1105
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
1106
1107
1108
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

1109
1110
    CATEGORY = "latent"

1111
    def upscale(self, samples, upscale_method, width, height, crop):
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
        if width == 0 and height == 0:
            s = samples
        else:
            s = samples.copy()

            if width == 0:
                height = max(64, height)
                width = max(64, round(samples["samples"].shape[3] * height / samples["samples"].shape[2]))
            elif height == 0:
                width = max(64, width)
                height = max(64, round(samples["samples"].shape[2] * width / samples["samples"].shape[3]))
            else:
                width = max(64, width)
                height = max(64, height)

            s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1128
1129
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
1130
class LatentUpscaleBy:
comfyanonymous's avatar
comfyanonymous committed
1131
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
comfyanonymous's avatar
comfyanonymous committed
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.5, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

    CATEGORY = "latent"

    def upscale(self, samples, upscale_method, scale_by):
        s = samples.copy()
        width = round(samples["samples"].shape[3] * scale_by)
        height = round(samples["samples"].shape[2] * scale_by)
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled")
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
1149
1150
1151
1152
1153
1154
1155
1156
1157
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
1158
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
1159
1160

    def rotate(self, samples, rotation):
1161
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
1162
1163
1164
1165
1166
1167
1168
1169
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

1170
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
1171
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
1182
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
1183
1184

    def flip(self, samples, flip_method):
1185
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
1186
        if flip_method.startswith("x"):
1187
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
1188
        elif flip_method.startswith("y"):
1189
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
1190
1191

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1192
1193
1194
1195

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
1196
1197
1198
1199
1200
1201
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
1202
1203
1204
1205
1206
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
1207
1208
1209
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
1210
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
1234

1235
1236
1237
1238
class LatentBlend:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
1239
1240
            "samples1": ("LATENT",),
            "samples2": ("LATENT",),
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
            "blend_factor": ("FLOAT", {
                "default": 0.5,
                "min": 0,
                "max": 1,
                "step": 0.01
            }),
        }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "blend"

    CATEGORY = "_for_testing"

1254
    def blend(self, samples1, samples2, blend_factor:float, blend_mode: str="normal"):
1255

1256
1257
1258
        samples_out = samples1.copy()
        samples1 = samples1["samples"]
        samples2 = samples2["samples"]
1259

1260
1261
1262
1263
        if samples1.shape != samples2.shape:
            samples2.permute(0, 3, 1, 2)
            samples2 = comfy.utils.common_upscale(samples2, samples1.shape[3], samples1.shape[2], 'bicubic', crop='center')
            samples2.permute(0, 2, 3, 1)
1264

1265
1266
        samples_blended = self.blend_mode(samples1, samples2, blend_mode)
        samples_blended = samples1 * blend_factor + samples_blended * (1 - blend_factor)
1267
1268
1269
1270
1271
1272
1273
1274
1275
        samples_out["samples"] = samples_blended
        return (samples_out,)

    def blend_mode(self, img1, img2, mode):
        if mode == "normal":
            return img2
        else:
            raise ValueError(f"Unsupported blend mode: {mode}")

comfyanonymous's avatar
comfyanonymous committed
1276
1277
1278
1279
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
1280
1281
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
1282
1283
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
1284
1285
1286
1287
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
1288
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
1289
1290

    def crop(self, samples, width, height, x, y):
1291
1292
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
1306
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
1307
1308
        return (s,)

1309
1310
1311
1312
1313
1314
1315
1316
1317
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

1318
    CATEGORY = "latent/inpaint"
1319
1320
1321

    def set_mask(self, samples, mask):
        s = samples.copy()
1322
        s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
1323
1324
        return (s,)

space-nuko's avatar
space-nuko committed
1325
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
1326
    latent_image = latent["samples"]
1327
1328
    latent_image = comfy.sample.fix_empty_latent_channels(model, latent_image)

comfyanonymous's avatar
comfyanonymous committed
1329
1330
1331
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
1332
1333
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
comfyanonymous's avatar
comfyanonymous committed
1334

1335
    noise_mask = None
1336
    if "noise_mask" in latent:
1337
        noise_mask = latent["noise_mask"]
comfyanonymous's avatar
comfyanonymous committed
1338

1339
    callback = latent_preview.prepare_callback(model, steps)
1340
    disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
1341
1342
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
comfyanonymous's avatar
comfyanonymous committed
1343
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
1344
1345
1346
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
1347

comfyanonymous's avatar
comfyanonymous committed
1348
1349
1350
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
1351
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1352
1353
1354
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
1355
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
comfyanonymous's avatar
comfyanonymous committed
1356
1357
1358
1359
1360
1361
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
space-nuko's avatar
space-nuko committed
1362
1363
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1364
1365
1366
1367

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

1368
1369
    CATEGORY = "sampling"

space-nuko's avatar
space-nuko committed
1370
1371
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
1372

comfyanonymous's avatar
comfyanonymous committed
1373
1374
1375
1376
1377
1378
1379
1380
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
1381
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
comfyanonymous's avatar
comfyanonymous committed
1382
1383
1384
1385
1386
1387
1388
1389
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
space-nuko's avatar
space-nuko committed
1390
1391
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1392
1393
1394
1395
1396

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
1397

space-nuko's avatar
space-nuko committed
1398
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
comfyanonymous's avatar
comfyanonymous committed
1399
1400
1401
1402
1403
1404
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
space-nuko's avatar
space-nuko committed
1405
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
1406
1407
1408

class SaveImage:
    def __init__(self):
1409
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1410
        self.type = "output"
1411
        self.prefix_append = ""
1412
        self.compress_level = 4
comfyanonymous's avatar
comfyanonymous committed
1413
1414
1415
1416

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
1417
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
1418
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
1419
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
1420
1421
1422
1423
1424
1425
1426
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

1427
1428
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
1429
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
1430
        filename_prefix += self.prefix_append
1431
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
m957ymj75urz's avatar
m957ymj75urz committed
1432
        results = list()
1433
        for (batch_number, image) in enumerate(images):
comfyanonymous's avatar
comfyanonymous committed
1434
            i = 255. * image.cpu().numpy()
1435
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
1436
1437
1438
1439
1440
1441
1442
1443
            metadata = None
            if not args.disable_metadata:
                metadata = PngInfo()
                if prompt is not None:
                    metadata.add_text("prompt", json.dumps(prompt))
                if extra_pnginfo is not None:
                    for x in extra_pnginfo:
                        metadata.add_text(x, json.dumps(extra_pnginfo[x]))
1444

1445
1446
            filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
            file = f"{filename_with_batch_num}_{counter:05}_.png"
1447
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=self.compress_level)
m957ymj75urz's avatar
m957ymj75urz committed
1448
1449
1450
1451
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
1452
            })
1453
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
1454

m957ymj75urz's avatar
m957ymj75urz committed
1455
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
1456

pythongosssss's avatar
pythongosssss committed
1457
1458
class PreviewImage(SaveImage):
    def __init__(self):
1459
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1460
        self.type = "temp"
1461
        self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
1462
        self.compress_level = 1
pythongosssss's avatar
pythongosssss committed
1463
1464
1465

    @classmethod
    def INPUT_TYPES(s):
1466
        return {"required":
pythongosssss's avatar
pythongosssss committed
1467
1468
1469
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
1470

1471
1472
1473
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
1474
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1475
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1476
        return {"required":
1477
                    {"image": (sorted(files), {"image_upload": True})},
1478
                }
1479
1480

    CATEGORY = "image"
1481

1482
    RETURN_TYPES = ("IMAGE", "MASK")
1483
1484
    FUNCTION = "load_image"
    def load_image(self, image):
1485
        image_path = folder_paths.get_annotated_filepath(image)
1486
        
1487
        img = node_helpers.pillow(Image.open, image_path)
1488
        
1489
1490
        output_images = []
        output_masks = []
1491
1492
1493
1494
        w, h = None, None

        excluded_formats = ['MPO']
        
1495
        for i in ImageSequence.Iterator(img):
1496
            i = node_helpers.pillow(ImageOps.exif_transpose, i)
1497

1498
1499
            if i.mode == 'I':
                i = i.point(lambda i: i * (1 / 255))
1500
            image = i.convert("RGB")
1501
1502
1503
1504
1505
1506
1507
1508

            if len(output_images) == 0:
                w = image.size[0]
                h = image.size[1]
            
            if image.size[0] != w or image.size[1] != h:
                continue
            
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
            image = np.array(image).astype(np.float32) / 255.0
            image = torch.from_numpy(image)[None,]
            if 'A' in i.getbands():
                mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
                mask = 1. - torch.from_numpy(mask)
            else:
                mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
            output_images.append(image)
            output_masks.append(mask.unsqueeze(0))

1519
        if len(output_images) > 1 and img.format not in excluded_formats:
1520
1521
            output_image = torch.cat(output_images, dim=0)
            output_mask = torch.cat(output_masks, dim=0)
1522
        else:
1523
1524
1525
1526
            output_image = output_images[0]
            output_mask = output_masks[0]

        return (output_image, output_mask)
1527

1528
1529
    @classmethod
    def IS_CHANGED(s, image):
1530
        image_path = folder_paths.get_annotated_filepath(image)
1531
1532
1533
1534
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1535

1536
1537
1538
1539
1540
1541
1542
    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

1543
class LoadImageMask:
1544
    _color_channels = ["alpha", "red", "green", "blue"]
1545
1546
    @classmethod
    def INPUT_TYPES(s):
1547
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1548
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1549
        return {"required":
1550
                    {"image": (sorted(files), {"image_upload": True}),
1551
                     "channel": (s._color_channels, ), }
1552
1553
                }

1554
    CATEGORY = "mask"
1555
1556
1557
1558

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
1559
        image_path = folder_paths.get_annotated_filepath(image)
1560
1561
        i = node_helpers.pillow(Image.open, image_path)
        i = node_helpers.pillow(ImageOps.exif_transpose, i)
1562
        if i.getbands() != ("R", "G", "B", "A"):
1563
1564
            if i.mode == 'I':
                i = i.point(lambda i: i * (1 / 255))
1565
            i = i.convert("RGBA")
1566
1567
1568
1569
1570
1571
1572
1573
1574
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
1575
        return (mask.unsqueeze(0),)
1576
1577
1578

    @classmethod
    def IS_CHANGED(s, image, channel):
1579
        image_path = folder_paths.get_annotated_filepath(image)
1580
1581
1582
1583
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1584

1585
    @classmethod
1586
    def VALIDATE_INPUTS(s, image):
1587
1588
1589
1590
1591
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

comfyanonymous's avatar
comfyanonymous committed
1592
class ImageScale:
1593
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
comfyanonymous's avatar
comfyanonymous committed
1594
1595
1596
1597
1598
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1599
1600
                              "width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1601
1602
1603
1604
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1605
    CATEGORY = "image/upscaling"
1606

comfyanonymous's avatar
comfyanonymous committed
1607
    def upscale(self, image, upscale_method, width, height, crop):
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
        if width == 0 and height == 0:
            s = image
        else:
            samples = image.movedim(-1,1)

            if width == 0:
                width = max(1, round(samples.shape[3] * height / samples.shape[2]))
            elif height == 0:
                height = max(1, round(samples.shape[2] * width / samples.shape[3]))

            s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
            s = s.movedim(1,-1)
comfyanonymous's avatar
comfyanonymous committed
1620
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1621

comfyanonymous's avatar
comfyanonymous committed
1622
class ImageScaleBy:
1623
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
comfyanonymous's avatar
comfyanonymous committed
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

    CATEGORY = "image/upscaling"

    def upscale(self, image, upscale_method, scale_by):
        samples = image.movedim(-1,1)
        width = round(samples.shape[3] * scale_by)
        height = round(samples.shape[2] * scale_by)
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
        s = s.movedim(1,-1)
        return (s,)

1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)

1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
class ImageBatch:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image1": ("IMAGE",), "image2": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "batch"

    CATEGORY = "image"

    def batch(self, image1, image2):
        if image1.shape[1:] != image2.shape[1:]:
            image2 = comfy.utils.common_upscale(image2.movedim(-1,1), image1.shape[2], image1.shape[1], "bilinear", "center").movedim(1,-1)
        s = torch.cat((image1, image2), dim=0)
        return (s,)
1673

comfyanonymous's avatar
comfyanonymous committed
1674
1675
1676
1677
1678
1679
1680
1681
class EmptyImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1682
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
comfyanonymous's avatar
comfyanonymous committed
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
                              "color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}),
                              }}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "generate"

    CATEGORY = "image"

    def generate(self, width, height, batch_size=1, color=0):
        r = torch.full([batch_size, height, width, 1], ((color >> 16) & 0xFF) / 0xFF)
        g = torch.full([batch_size, height, width, 1], ((color >> 8) & 0xFF) / 0xFF)
        b = torch.full([batch_size, height, width, 1], ((color) & 0xFF) / 0xFF)
        return (torch.cat((r, g, b), dim=-1), )

Guo Y.K's avatar
Guo Y.K committed
1696
1697
1698
1699
1700
1701
1702
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1703
1704
1705
1706
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1707
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1708
1709
1710
1711
1712
1713
1714
1715
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1716
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1717
1718
        d1, d2, d3, d4 = image.size()

1719
        new_image = torch.ones(
Guo Y.K's avatar
Guo Y.K committed
1720
1721
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
1722
1723
        ) * 0.5

Guo Y.K's avatar
Guo Y.K committed
1724
1725
1726
1727
1728
1729
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1730

1731
1732
1733
1734
1735
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1736
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1756

Guo Y.K's avatar
Guo Y.K committed
1757
1758
1759
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1760
1761
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1762
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1763
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1764
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1765
1766
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1767
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1768
1769
1770
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
comfyanonymous's avatar
comfyanonymous committed
1771
    "LatentUpscaleBy": LatentUpscaleBy,
1772
    "LatentFromBatch": LatentFromBatch,
1773
    "RepeatLatentBatch": RepeatLatentBatch,
comfyanonymous's avatar
comfyanonymous committed
1774
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1775
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1776
    "LoadImage": LoadImage,
1777
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1778
    "ImageScale": ImageScale,
comfyanonymous's avatar
comfyanonymous committed
1779
    "ImageScaleBy": ImageScaleBy,
1780
    "ImageInvert": ImageInvert,
1781
    "ImageBatch": ImageBatch,
Guo Y.K's avatar
Guo Y.K committed
1782
    "ImagePadForOutpaint": ImagePadForOutpaint,
comfyanonymous's avatar
comfyanonymous committed
1783
    "EmptyImage": EmptyImage,
comfyanonymous's avatar
comfyanonymous committed
1784
    "ConditioningAverage": ConditioningAverage ,
comfyanonymous's avatar
comfyanonymous committed
1785
    "ConditioningCombine": ConditioningCombine,
1786
    "ConditioningConcat": ConditioningConcat,
comfyanonymous's avatar
comfyanonymous committed
1787
    "ConditioningSetArea": ConditioningSetArea,
1788
    "ConditioningSetAreaPercentage": ConditioningSetAreaPercentage,
1789
    "ConditioningSetAreaStrength": ConditioningSetAreaStrength,
Jacob Segal's avatar
Jacob Segal committed
1790
    "ConditioningSetMask": ConditioningSetMask,
comfyanonymous's avatar
comfyanonymous committed
1791
    "KSamplerAdvanced": KSamplerAdvanced,
1792
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1793
    "LatentComposite": LatentComposite,
1794
    "LatentBlend": LatentBlend,
comfyanonymous's avatar
comfyanonymous committed
1795
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1796
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1797
    "LatentCrop": LatentCrop,
1798
    "LoraLoader": LoraLoader,
1799
    "CLIPLoader": CLIPLoader,
1800
    "UNETLoader": UNETLoader,
1801
    "DualCLIPLoader": DualCLIPLoader,
1802
    "CLIPVisionEncode": CLIPVisionEncode,
1803
    "StyleModelApply": StyleModelApply,
1804
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1805
    "ControlNetApply": ControlNetApply,
1806
    "ControlNetApplyAdvanced": ControlNetApplyAdvanced,
comfyanonymous's avatar
comfyanonymous committed
1807
    "ControlNetLoader": ControlNetLoader,
1808
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1809
1810
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1811
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1812
    "VAEEncodeTiled": VAEEncodeTiled,
1813
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1814
1815
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,
1816
    "InpaintModelConditioning": InpaintModelConditioning,
1817

1818
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1819
    "DiffusersLoader": DiffusersLoader,
Dr.Lt.Data's avatar
Dr.Lt.Data committed
1820
1821

    "LoadLatent": LoadLatent,
1822
    "SaveLatent": SaveLatent,
1823
1824

    "ConditioningZeroOut": ConditioningZeroOut,
1825
    "ConditioningSetTimestepRange": ConditioningSetTimestepRange,
1826
    "LoraLoaderModelOnly": LoraLoaderModelOnly,
comfyanonymous's avatar
comfyanonymous committed
1827
1828
}

City's avatar
City committed
1829
1830
1831
1832
1833
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
1834
    "CheckpointLoader": "Load Checkpoint With Config (DEPRECATED)",
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1835
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
FizzleDorf's avatar
FizzleDorf committed
1850
    "ConditioningAverage ": "Conditioning (Average)",
1851
    "ConditioningConcat": "Conditioning (Concat)",
City's avatar
City committed
1852
    "ConditioningSetArea": "Conditioning (Set Area)",
1853
    "ConditioningSetAreaPercentage": "Conditioning (Set Area with Percentage)",
Jacob Segal's avatar
Jacob Segal committed
1854
    "ConditioningSetMask": "Conditioning (Set Mask)",
City's avatar
City committed
1855
    "ControlNetApply": "Apply ControlNet",
1856
    "ControlNetApplyAdvanced": "Apply ControlNet (Advanced)",
City's avatar
City committed
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
comfyanonymous's avatar
comfyanonymous committed
1867
    "LatentUpscaleBy": "Upscale Latent By",
City's avatar
City committed
1868
    "LatentComposite": "Latent Composite",
1869
    "LatentBlend": "Latent Blend",
1870
1871
    "LatentFromBatch" : "Latent From Batch",
    "RepeatLatentBatch": "Repeat Latent Batch",
City's avatar
City committed
1872
1873
1874
1875
1876
1877
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
comfyanonymous's avatar
comfyanonymous committed
1878
    "ImageScaleBy": "Upscale Image By",
City's avatar
City committed
1879
1880
1881
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
1882
    "ImageBatch": "Batch Images",
City's avatar
City committed
1883
1884
1885
1886
1887
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1888
1889
EXTENSION_WEB_DIRS = {}

1890
1891

def load_custom_node(module_path, ignore=set()):
comfyanonymous's avatar
comfyanonymous committed
1892
    module_name = os.path.basename(module_path)
1893
    try:
1894
        logging.debug("Trying to load custom node {}".format(module_path))
1895
1896
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
1897
            module_dir = os.path.split(module_path)[0]
1898
1899
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
1900
1901
            module_dir = module_path

1902
1903
1904
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
1905
1906
1907
1908
1909
1910

        if hasattr(module, "WEB_DIRECTORY") and getattr(module, "WEB_DIRECTORY") is not None:
            web_dir = os.path.abspath(os.path.join(module_dir, getattr(module, "WEB_DIRECTORY")))
            if os.path.isdir(web_dir):
                EXTENSION_WEB_DIRS[module_name] = web_dir

1911
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
1912
1913
1914
            for name in module.NODE_CLASS_MAPPINGS:
                if name not in ignore:
                    NODE_CLASS_MAPPINGS[name] = module.NODE_CLASS_MAPPINGS[name]
1915
1916
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1917
            return True
1918
        else:
1919
            logging.warning(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
1920
            return False
1921
    except Exception as e:
1922
        logging.warning(traceback.format_exc())
1923
        logging.warning(f"Cannot import {module_path} module for custom nodes: {e}")
1924
        return False
1925

1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
def init_external_custom_nodes():
    """
    Initializes the external custom nodes.

    This function loads custom nodes from the specified folder paths and imports them into the application.
    It measures the import times for each custom node and logs the results.

    Returns:
        None
    """
1936
    base_node_names = set(NODE_CLASS_MAPPINGS.keys())
1937
    node_paths = folder_paths.get_folder_paths("custom_nodes")
1938
    node_import_times = []
1939
    for custom_node_path in node_paths:
Enrico Fasoli's avatar
Enrico Fasoli committed
1940
        possible_modules = os.listdir(os.path.realpath(custom_node_path))
1941
1942
1943
1944
1945
1946
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1947
            if module_path.endswith(".disabled"): continue
1948
            time_before = time.perf_counter()
1949
            success = load_custom_node(module_path, base_node_names)
1950
            node_import_times.append((time.perf_counter() - time_before, module_path, success))
1951

1952
    if len(node_import_times) > 0:
comfyanonymous's avatar
comfyanonymous committed
1953
        logging.info("\nImport times for custom nodes:")
1954
        for n in sorted(node_import_times):
1955
1956
1957
1958
            if n[2]:
                import_message = ""
            else:
                import_message = " (IMPORT FAILED)"
comfyanonymous's avatar
comfyanonymous committed
1959
1960
            logging.info("{:6.1f} seconds{}: {}".format(n[0], import_message, n[1]))
        logging.info("")
1961

1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
def init_builtin_extra_nodes():
    """
    Initializes the built-in extra nodes in ComfyUI.

    This function loads the extra node files located in the "comfy_extras" directory and imports them into ComfyUI.
    If any of the extra node files fail to import, a warning message is logged.

    Returns:
        None
    """
1972
1973
1974
1975
1976
1977
1978
    extras_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras")
    extras_files = [
        "nodes_latent.py",
        "nodes_hypernetwork.py",
        "nodes_upscale_model.py",
        "nodes_post_processing.py",
        "nodes_mask.py",
1979
        "nodes_compositing.py",
1980
1981
1982
1983
1984
1985
        "nodes_rebatch.py",
        "nodes_model_merging.py",
        "nodes_tomesd.py",
        "nodes_clip_sdxl.py",
        "nodes_canny.py",
        "nodes_freelunch.py",
1986
1987
        "nodes_custom_sampler.py",
        "nodes_hypertile.py",
1988
        "nodes_model_advanced.py",
1989
        "nodes_model_downscale.py",
comfyanonymous's avatar
comfyanonymous committed
1990
        "nodes_images.py",
1991
        "nodes_video_model.py",
1992
        "nodes_sag.py",
Hari's avatar
Hari committed
1993
        "nodes_perpneg.py",
1994
        "nodes_stable3d.py",
1995
        "nodes_sdupscale.py",
1996
        "nodes_photomaker.py",
1997
        "nodes_cond.py",
1998
        "nodes_morphology.py",
comfyanonymous's avatar
comfyanonymous committed
1999
        "nodes_stable_cascade.py",
2000
        "nodes_differential_diffusion.py",
2001
        "nodes_ip2p.py",
2002
        "nodes_model_merging_model_specific.py",
comfyanonymous's avatar
comfyanonymous committed
2003
        "nodes_pag.py",
2004
        "nodes_align_your_steps.py",
2005
        "nodes_attention_multiply.py",
comfyanonymous's avatar
comfyanonymous committed
2006
        "nodes_advanced_samplers.py",
pythongosssss's avatar
pythongosssss committed
2007
        "nodes_webcam.py",
2008
        "nodes_audio.py",
comfyanonymous's avatar
comfyanonymous committed
2009
        "nodes_sd3.py",
Zhenyu Zhou's avatar
Zhenyu Zhou committed
2010
        "nodes_gits.py",
2011
2012
    ]

2013
    import_failed = []
2014
    for node_file in extras_files:
2015
2016
        if not load_custom_node(os.path.join(extras_dir, node_file)):
            import_failed.append(node_file)
2017

2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
    return import_failed


def init_extra_nodes(init_custom_nodes=True):
    import_failed = init_external_custom_nodes()

    if init_custom_nodes:
        init_external_custom_nodes()
    else:
        logging.info("Skipping loading of custom nodes")

2029
    if len(import_failed) > 0:
2030
        logging.warning("WARNING: some comfy_extras/ nodes did not import correctly. This may be because they are missing some dependencies.\n")
2031
        for node in import_failed:
2032
2033
            logging.warning("IMPORT FAILED: {}".format(node))
        logging.warning("\nThis issue might be caused by new missing dependencies added the last time you updated ComfyUI.")
2034
        if args.windows_standalone_build:
2035
            logging.warning("Please run the update script: update/update_comfyui.bat")
2036
        else:
2037
2038
            logging.warning("Please do a: pip install -r requirements.txt")
        logging.warning("")