nodes.py 47.2 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
8
import math
comfyanonymous's avatar
comfyanonymous committed
9
10
11
12
13

from PIL import Image
from PIL.PngImagePlugin import PngInfo
import numpy as np

sALTaccount's avatar
sALTaccount committed
14

comfyanonymous's avatar
comfyanonymous committed
15
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
16
17


comfyanonymous's avatar
comfyanonymous committed
18
import comfy.diffusers_convert
comfyanonymous's avatar
comfyanonymous committed
19
import comfy.samplers
20
import comfy.sample
comfyanonymous's avatar
comfyanonymous committed
21
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
22
23
import comfy.utils

24
import comfy.clip_vision
25

26
import comfy.model_management
27
import importlib
comfyanonymous's avatar
comfyanonymous committed
28

29
import folder_paths
30
31

def before_node_execution():
32
    comfy.model_management.throw_exception_if_processing_interrupted()
33

34
def interrupt_processing(value=True):
35
    comfy.model_management.interrupt_current_processing(value)
36

37
38
MAX_RESOLUTION=8192

comfyanonymous's avatar
comfyanonymous committed
39
40
41
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
42
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
43
44
45
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

46
47
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
48
    def encode(self, clip, text):
comfyanonymous's avatar
comfyanonymous committed
49
50
51
52
53
54
55
56
57
        return ([[clip.encode(text), {}]], )

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

58
59
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
60
61
62
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

FizzleDorf's avatar
FizzleDorf committed
63
64
65
class ConditioningAverage :
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
66
67
        return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
                              "conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
FizzleDorf's avatar
FizzleDorf committed
68
69
70
71
72
73
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "addWeighted"

    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
74
    def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
FizzleDorf's avatar
FizzleDorf committed
75
        out = []
comfyanonymous's avatar
comfyanonymous committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89

        if len(conditioning_from) > 1:
            print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

        cond_from = conditioning_from[0][0]

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
            t0 = cond_from[:,:t1.shape[1]]
            if t0.shape[1] < t1.shape[1]:
                t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)

            tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
            n = [tw, conditioning_to[i][1].copy()]
FizzleDorf's avatar
FizzleDorf committed
90
91
92
            out.append(n)
        return (out, )

comfyanonymous's avatar
comfyanonymous committed
93
94
95
96
class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
97
98
99
100
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
101
102
103
104
105
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

106
107
    CATEGORY = "conditioning"

108
    def append(self, conditioning, width, height, x, y, strength):
comfyanonymous's avatar
comfyanonymous committed
109
110
111
112
113
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
114
            n[1]['set_area_to_bounds'] = False
comfyanonymous's avatar
comfyanonymous committed
115
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
116
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
117

Jacob Segal's avatar
Jacob Segal committed
118
119
120
121
122
123
class ConditioningSetMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "mask": ("MASK", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
124
                              "set_cond_area": (["default", "mask bounds"],),
Jacob Segal's avatar
Jacob Segal committed
125
126
127
128
129
130
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

131
    def append(self, conditioning, mask, set_cond_area, strength):
Jacob Segal's avatar
Jacob Segal committed
132
        c = []
133
134
135
        set_area_to_bounds = False
        if set_cond_area != "default":
            set_area_to_bounds = True
Jacob Segal's avatar
Jacob Segal committed
136
137
138
139
140
141
        if len(mask.shape) < 3:
            mask = mask.unsqueeze(0)
        for t in conditioning:
            n = [t[0], t[1].copy()]
            _, h, w = mask.shape
            n[1]['mask'] = mask
Jacob Segal's avatar
Jacob Segal committed
142
            n[1]['set_area_to_bounds'] = set_area_to_bounds
143
            n[1]['mask_strength'] = strength
Jacob Segal's avatar
Jacob Segal committed
144
145
146
            c.append(n)
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
147
148
149
150
151
152
153
154
155
156
class VAEDecode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

157
158
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
159
    def decode(self, vae, samples):
160
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
class VAEDecodeTiled:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
177
178
179
180
181
182
183
184
185
186
class VAEEncode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

187
188
    CATEGORY = "latent"

189
190
191
192
    @staticmethod
    def vae_encode_crop_pixels(pixels):
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
193
        if pixels.shape[1] != x or pixels.shape[2] != y:
194
195
196
197
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
        return pixels
198

199
200
201
    def encode(self, vae, pixels):
        pixels = self.vae_encode_crop_pixels(pixels)
        t = vae.encode(pixels[:,:,:,:3])
202
        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
203

comfyanonymous's avatar
comfyanonymous committed
204
205
206
207
208
209
210
211
212
213
214
215
216
class VAEEncodeTiled:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

    def encode(self, vae, pixels):
217
        pixels = VAEEncode.vae_encode_crop_pixels(pixels)
comfyanonymous's avatar
comfyanonymous committed
218
219
        t = vae.encode_tiled(pixels[:,:,:,:3])
        return ({"samples":t}, )
220

221
222
223
224
225
226
class VAEEncodeForInpaint:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
227
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
228
229
230
231
232
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

233
    def encode(self, vae, pixels, mask, grow_mask_by=6):
234
235
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
236
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
237

238
        pixels = pixels.clone()
239
        if pixels.shape[1] != x or pixels.shape[2] != y:
240
241
242
243
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
244

245
        #grow mask by a few pixels to keep things seamless in latent space
246
247
248
249
250
251
252
253
        if grow_mask_by == 0:
            mask_erosion = mask
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)

254
        m = (1.0 - mask.round()).squeeze(1)
255
256
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
257
            pixels[:,:,:,i] *= m
258
259
260
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

261
        return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
262
263
264
265

class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
266
267
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
268
269
270
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

271
    CATEGORY = "advanced/loaders"
272

comfyanonymous's avatar
comfyanonymous committed
273
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
274
275
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
276
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
277

278
279
280
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
281
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
282
283
284
285
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

286
    CATEGORY = "loaders"
287

288
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
289
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
290
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
291
292
        return out

sALTaccount's avatar
sALTaccount committed
293
294
295
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
296
        paths = []
sALTaccount's avatar
sALTaccount committed
297
        for search_path in folder_paths.get_folder_paths("diffusers"):
298
            if os.path.exists(search_path):
sALTaccount's avatar
sALTaccount committed
299
                paths += next(os.walk(search_path))[1]
300
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
301
302
303
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

304
    CATEGORY = "advanced/loaders"
sALTaccount's avatar
sALTaccount committed
305
306

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
307
308
309
310
311
312
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
                paths = next(os.walk(search_path))[1]
                if model_path in paths:
                    model_path = os.path.join(search_path, model_path)
                    break
313

314
        return comfy.diffusers_convert.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
315
316


317
318
319
320
321
322
323
324
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

325
    CATEGORY = "loaders"
326
327
328
329
330
331

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

348
349
350
351
352
class LoraLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
353
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
354
355
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
356
357
358
359
360
361
362
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
363
        lora_path = folder_paths.get_full_path("loras", lora_name)
364
365
366
        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
        return (model_lora, clip_lora)

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
class TomePatchModel:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "_for_testing"

    def patch(self, model, ratio):
        m = model.clone()
        m.set_model_tomesd(ratio)
        return (m, )

comfyanonymous's avatar
comfyanonymous committed
383
384
385
class VAELoader:
    @classmethod
    def INPUT_TYPES(s):
386
        return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
comfyanonymous's avatar
comfyanonymous committed
387
388
389
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

390
391
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
392
393
    #TODO: scale factor?
    def load_vae(self, vae_name):
394
        vae_path = folder_paths.get_full_path("vae", vae_name)
comfyanonymous's avatar
comfyanonymous committed
395
396
397
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
398
399
400
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
401
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
402
403
404
405
406
407
408

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
409
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
comfyanonymous's avatar
comfyanonymous committed
410
411
412
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

413
414
415
416
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
417
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
418
419
420
421
422
423
424

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
425
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
426
427
428
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
429
430
431
432

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
433
434
435
436
437
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
438
439
440
441
442
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

443
    def apply_controlnet(self, conditioning, control_net, image, strength):
comfyanonymous's avatar
comfyanonymous committed
444
445
446
447
        c = []
        control_hint = image.movedim(-1,1)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
448
449
450
451
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
comfyanonymous's avatar
comfyanonymous committed
452
453
454
            c.append(n)
        return (c, )

455
456
457
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
458
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
459
460
461
462
463
464
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

465
    def load_clip(self, clip_name):
466
        clip_path = folder_paths.get_full_path("clip", clip_name)
comfyanonymous's avatar
comfyanonymous committed
467
        clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=folder_paths.get_folder_paths("embeddings"))
468
469
        return (clip,)

470
471
472
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
473
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
474
475
476
477
478
479
480
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
481
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
482
        clip_vision = comfy.clip_vision.load(clip_path)
483
484
485
486
487
488
489
490
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
491
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
492
493
    FUNCTION = "encode"

494
    CATEGORY = "conditioning"
495
496
497
498
499
500
501
502

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
503
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
504
505
506
507
508
509
510

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
511
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
512
513
514
515
516
517
518
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
519
520
521
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
522
523
524
525
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
526
    CATEGORY = "conditioning/style_model"
527

528
529
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
        cond = style_model.get_cond(clip_vision_output)
530
        c = []
531
532
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
533
534
535
            c.append(n)
        return (c, )

536
537
538
539
540
541
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
542
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
543
544
545
546
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

547
    CATEGORY = "conditioning"
548

549
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
550
551
552
        c = []
        for t in conditioning:
            o = t[1].copy()
553
            x = (clip_vision_output, strength, noise_augmentation)
554
555
556
557
558
559
560
561
            if "adm" in o:
                o["adm"] = o["adm"][:] + [x]
            else:
                o["adm"] = [x]
            n = [t[0], o]
            c.append(n)
        return (c, )

562
563
564
565
566
567
568
569
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
570
    CATEGORY = "loaders"
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
                              "text": ("STRING", {"multiline": True}),
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
592
    CATEGORY = "conditioning/gligen"
593
594
595
596
597
598
599
600
601
602
603
604
605
606

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
607

comfyanonymous's avatar
comfyanonymous committed
608
609
610
611
612
613
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
614
615
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
616
617
618
619
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

620
621
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
622
623
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
624
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
625

comfyanonymous's avatar
comfyanonymous committed
626

627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

    CATEGORY = "latent"

    def rotate(self, samples, batch_index):
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
        s["samples"] = s_in[batch_index:batch_index + 1].clone()
        s["batch_index"] = batch_index
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
645

comfyanonymous's avatar
comfyanonymous committed
646
647
class LatentUpscale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
648
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
649
650
651
652

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
653
654
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
655
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
656
657
658
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

659
660
    CATEGORY = "latent"

661
    def upscale(self, samples, upscale_method, width, height, crop):
662
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
663
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
664
665
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
666
667
668
669
670
671
672
673
674
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
675
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
676
677

    def rotate(self, samples, rotation):
678
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
679
680
681
682
683
684
685
686
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

687
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
688
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
689
690
691
692
693
694
695
696
697
698

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
699
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
700
701

    def flip(self, samples, flip_method):
702
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
703
        if flip_method.startswith("x"):
704
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
705
        elif flip_method.startswith("y"):
706
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
707
708

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
709
710
711
712

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
713
714
715
716
717
718
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
719
720
721
722
723
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
724
725
726
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
727
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
751

comfyanonymous's avatar
comfyanonymous committed
752
753
754
755
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
756
757
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
758
759
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
760
761
762
763
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
764
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
765
766

    def crop(self, samples, width, height, x, y):
767
768
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
769
770
771
772
773
774
775
776
777
778
779
780
781
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
782
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
783
784
        return (s,)

785
786
787
788
789
790
791
792
793
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

794
    CATEGORY = "latent/inpaint"
795
796
797
798
799
800

    def set_mask(self, samples, mask):
        s = samples.copy()
        s["noise_mask"] = mask
        return (s,)

801
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
802
    device = comfy.model_management.get_torch_device()
803
    latent_image = latent["samples"]
804

comfyanonymous's avatar
comfyanonymous committed
805
806
807
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
808
809
        skip = latent["batch_index"] if "batch_index" in latent else 0
        noise = comfy.sample.prepare_noise(latent_image, seed, skip)
comfyanonymous's avatar
comfyanonymous committed
810

811
    noise_mask = None
812
    if "noise_mask" in latent:
813
        noise_mask = latent["noise_mask"]
comfyanonymous's avatar
comfyanonymous committed
814

815
    pbar = comfy.utils.ProgressBar(steps)
816
817
    def callback(step, x0, x, total_steps):
        pbar.update_absolute(step + 1, total_steps)
818

819
820
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
821
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback)
822
823
824
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
825

comfyanonymous's avatar
comfyanonymous committed
826
827
828
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
829
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

845
846
    CATEGORY = "sampling"

comfyanonymous's avatar
comfyanonymous committed
847
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
848
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
849

comfyanonymous's avatar
comfyanonymous committed
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
873

comfyanonymous's avatar
comfyanonymous committed
874
875
876
877
878
879
880
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
881
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
882
883
884

class SaveImage:
    def __init__(self):
885
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
886
        self.type = "output"
comfyanonymous's avatar
comfyanonymous committed
887
888
889
890

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
891
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
892
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
893
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
894
895
896
897
898
899
900
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

901
902
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
903
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
904
        def map_filename(filename):
905
            prefix_len = len(os.path.basename(filename_prefix))
906
907
908
909
910
911
            prefix = filename[:prefix_len + 1]
            try:
                digits = int(filename[prefix_len + 1:].split('_')[0])
            except:
                digits = 0
            return (digits, prefix)
comfyanonymous's avatar
Style.  
comfyanonymous committed
912

913
914
915
916
        def compute_vars(input):
            input = input.replace("%width%", str(images[0].shape[1]))
            input = input.replace("%height%", str(images[0].shape[0]))
            return input
comfyanonymous's avatar
Style.  
comfyanonymous committed
917

918
        filename_prefix = compute_vars(filename_prefix)
comfyanonymous's avatar
comfyanonymous committed
919

m957ymj75urz's avatar
m957ymj75urz committed
920
921
922
        subfolder = os.path.dirname(os.path.normpath(filename_prefix))
        filename = os.path.basename(os.path.normpath(filename_prefix))

comfyanonymous's avatar
comfyanonymous committed
923
        full_output_folder = os.path.join(self.output_dir, subfolder)
924

925
        if os.path.commonpath((self.output_dir, os.path.abspath(full_output_folder))) != self.output_dir:
926
            print("Saving image outside the output folder is not allowed.")
comfyanonymous's avatar
comfyanonymous committed
927
928
            return {}

929
        try:
930
            counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1
931
932
        except ValueError:
            counter = 1
933
        except FileNotFoundError:
934
            os.makedirs(full_output_folder, exist_ok=True)
935
            counter = 1
pythongosssss's avatar
pythongosssss committed
936

m957ymj75urz's avatar
m957ymj75urz committed
937
        results = list()
comfyanonymous's avatar
comfyanonymous committed
938
939
        for image in images:
            i = 255. * image.cpu().numpy()
940
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
comfyanonymous's avatar
comfyanonymous committed
941
942
943
944
945
946
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
947

948
            file = f"{filename}_{counter:05}_.png"
949
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
950
951
952
953
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
954
            })
955
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
956

m957ymj75urz's avatar
m957ymj75urz committed
957
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
958

pythongosssss's avatar
pythongosssss committed
959
960
class PreviewImage(SaveImage):
    def __init__(self):
961
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
962
        self.type = "temp"
pythongosssss's avatar
pythongosssss committed
963
964
965

    @classmethod
    def INPUT_TYPES(s):
966
        return {"required":
pythongosssss's avatar
pythongosssss committed
967
968
969
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
970

971
972
973
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
974
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
975
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
976
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
977
                    {"image": (sorted(files), )},
978
                }
979
980

    CATEGORY = "image"
981

982
    RETURN_TYPES = ("IMAGE", "MASK")
983
984
    FUNCTION = "load_image"
    def load_image(self, image):
985
        image_path = folder_paths.get_annotated_filepath(image)
986
987
        i = Image.open(image_path)
        image = i.convert("RGB")
988
        image = np.array(image).astype(np.float32) / 255.0
989
        image = torch.from_numpy(image)[None,]
990
991
992
993
994
995
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)
996

997
998
    @classmethod
    def IS_CHANGED(s, image):
999
        image_path = folder_paths.get_annotated_filepath(image)
1000
1001
1002
1003
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1004

1005
1006
1007
1008
1009
1010
1011
    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

1012
class LoadImageMask:
1013
    _color_channels = ["alpha", "red", "green", "blue"]
1014
1015
    @classmethod
    def INPUT_TYPES(s):
1016
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1017
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1018
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1019
                    {"image": (sorted(files), ),
1020
                     "channel": (s._color_channels, ), }
1021
1022
                }

1023
    CATEGORY = "mask"
1024
1025
1026
1027

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
1028
        image_path = folder_paths.get_annotated_filepath(image)
1029
        i = Image.open(image_path)
1030
1031
        if i.getbands() != ("R", "G", "B", "A"):
            i = i.convert("RGBA")
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
1045
        image_path = folder_paths.get_annotated_filepath(image)
1046
1047
1048
1049
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1050

1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
    @classmethod
    def VALIDATE_INPUTS(s, image, channel):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        if channel not in s._color_channels:
            return "Invalid color channel: {}".format(channel)

        return True

comfyanonymous's avatar
comfyanonymous committed
1061
1062
1063
1064
1065
1066
1067
class ImageScale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1068
1069
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1070
1071
1072
1073
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1074
    CATEGORY = "image/upscaling"
1075

comfyanonymous's avatar
comfyanonymous committed
1076
1077
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
1078
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1079
1080
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1081

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


Guo Y.K's avatar
Guo Y.K committed
1098
1099
1100
1101
1102
1103
1104
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1105
1106
1107
1108
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1109
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1110
1111
1112
1113
1114
1115
1116
1117
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1118
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1131

1132
1133
1134
1135
1136
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1137
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1157

Guo Y.K's avatar
Guo Y.K committed
1158
1159
1160
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1161
1162
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1163
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1164
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1165
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1166
1167
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1168
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1169
1170
1171
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
1172
    "LatentFromBatch": LatentFromBatch,
comfyanonymous's avatar
comfyanonymous committed
1173
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1174
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1175
    "LoadImage": LoadImage,
1176
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1177
    "ImageScale": ImageScale,
1178
    "ImageInvert": ImageInvert,
Guo Y.K's avatar
Guo Y.K committed
1179
    "ImagePadForOutpaint": ImagePadForOutpaint,
FizzleDorf's avatar
FizzleDorf committed
1180
    "ConditioningAverage ": ConditioningAverage ,
comfyanonymous's avatar
comfyanonymous committed
1181
1182
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
Jacob Segal's avatar
Jacob Segal committed
1183
    "ConditioningSetMask": ConditioningSetMask,
comfyanonymous's avatar
comfyanonymous committed
1184
    "KSamplerAdvanced": KSamplerAdvanced,
1185
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1186
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
1187
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1188
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1189
    "LatentCrop": LatentCrop,
1190
    "LoraLoader": LoraLoader,
1191
    "CLIPLoader": CLIPLoader,
1192
    "CLIPVisionEncode": CLIPVisionEncode,
1193
    "StyleModelApply": StyleModelApply,
1194
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1195
1196
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
1197
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1198
1199
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1200
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1201
    "VAEEncodeTiled": VAEEncodeTiled,
1202
    "TomePatchModel": TomePatchModel,
1203
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1204
1205
1206
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,

1207
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1208
    "DiffusersLoader": DiffusersLoader,
comfyanonymous's avatar
comfyanonymous committed
1209
1210
}

City's avatar
City committed
1211
1212
1213
1214
1215
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1216
1217
    "CheckpointLoader": "Load Checkpoint (With Config)",
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
FizzleDorf's avatar
FizzleDorf committed
1232
    "ConditioningAverage ": "Conditioning (Average)",
City's avatar
City committed
1233
    "ConditioningSetArea": "Conditioning (Set Area)",
Jacob Segal's avatar
Jacob Segal committed
1234
    "ConditioningSetMask": "Conditioning (Set Mask)",
City's avatar
City committed
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
    "ControlNetApply": "Apply ControlNet",
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
    "LatentComposite": "Latent Composite",
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
def load_custom_node(module_path):
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
            NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
1276
1277
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1278
1279
1280
1281
1282
1283
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)

Hacker 17082006's avatar
Hacker 17082006 committed
1284
def load_custom_nodes():
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
    node_paths = folder_paths.get_folder_paths("custom_nodes")
    for custom_node_path in node_paths:
        possible_modules = os.listdir(custom_node_path)
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
            load_custom_node(module_path)
1295

1296
1297
def init_custom_nodes():
    load_custom_nodes()
1298
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_hypernetwork.py"))
1299
1300
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
1301
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))