nodes.py 57.9 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
8
import math
9
import time
10
import random
comfyanonymous's avatar
comfyanonymous committed
11

12
from PIL import Image, ImageOps
comfyanonymous's avatar
comfyanonymous committed
13
14
from PIL.PngImagePlugin import PngInfo
import numpy as np
15
import safetensors.torch
comfyanonymous's avatar
comfyanonymous committed
16

comfyanonymous's avatar
comfyanonymous committed
17
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
18
19


20
import comfy.diffusers_load
comfyanonymous's avatar
comfyanonymous committed
21
import comfy.samplers
22
import comfy.sample
comfyanonymous's avatar
comfyanonymous committed
23
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
24
25
import comfy.utils

26
import comfy.clip_vision
27

28
import comfy.model_management
29
import importlib
comfyanonymous's avatar
comfyanonymous committed
30

31
import folder_paths
32
import latent_preview
space-nuko's avatar
space-nuko committed
33

34
def before_node_execution():
35
    comfy.model_management.throw_exception_if_processing_interrupted()
36

37
def interrupt_processing(value=True):
38
    comfy.model_management.interrupt_current_processing(value)
39

40
41
MAX_RESOLUTION=8192

comfyanonymous's avatar
comfyanonymous committed
42
43
44
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
45
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
46
47
48
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

49
50
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
51
    def encode(self, clip, text):
52
53
54
        tokens = clip.tokenize(text)
        cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
        return ([[cond, {"pooled_output": pooled}]], )
comfyanonymous's avatar
comfyanonymous committed
55
56
57
58
59
60
61
62

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

63
64
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
65
66
67
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

FizzleDorf's avatar
FizzleDorf committed
68
69
70
class ConditioningAverage :
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
71
72
        return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
                              "conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
FizzleDorf's avatar
FizzleDorf committed
73
74
75
76
77
78
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "addWeighted"

    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
79
    def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
FizzleDorf's avatar
FizzleDorf committed
80
        out = []
comfyanonymous's avatar
comfyanonymous committed
81
82
83
84
85

        if len(conditioning_from) > 1:
            print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

        cond_from = conditioning_from[0][0]
86
        pooled_output_from = conditioning_from[0][1].get("pooled_output", None)
comfyanonymous's avatar
comfyanonymous committed
87
88
89

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
90
            pooled_output_to = conditioning_to[i][1].get("pooled_output", pooled_output_from)
comfyanonymous's avatar
comfyanonymous committed
91
92
93
94
95
            t0 = cond_from[:,:t1.shape[1]]
            if t0.shape[1] < t1.shape[1]:
                t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)

            tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
96
97
98
99
100
101
102
            t_to = conditioning_to[i][1].copy()
            if pooled_output_from is not None and pooled_output_to is not None:
                t_to["pooled_output"] = torch.mul(pooled_output_to, conditioning_to_strength) + torch.mul(pooled_output_from, (1.0 - conditioning_to_strength))
            elif pooled_output_from is not None:
                t_to["pooled_output"] = pooled_output_from

            n = [tw, t_to]
FizzleDorf's avatar
FizzleDorf committed
103
104
105
            out.append(n)
        return (out, )

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
class ConditioningConcat:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "conditioning_to": ("CONDITIONING",),
            "conditioning_from": ("CONDITIONING",),
            }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "concat"

    CATEGORY = "advanced/conditioning"

    def concat(self, conditioning_to, conditioning_from):
        out = []

        if len(conditioning_from) > 1:
            print("Warning: ConditioningConcat conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

        cond_from = conditioning_from[0][0]

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
            tw = torch.cat((t1, cond_from),1)
            n = [tw, conditioning_to[i][1].copy()]
            out.append(n)

        return (out, )

comfyanonymous's avatar
comfyanonymous committed
134
135
136
137
class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
138
139
140
141
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
142
143
144
145
146
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

147
148
    CATEGORY = "conditioning"

149
    def append(self, conditioning, width, height, x, y, strength):
comfyanonymous's avatar
comfyanonymous committed
150
151
152
153
154
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
155
            n[1]['set_area_to_bounds'] = False
comfyanonymous's avatar
comfyanonymous committed
156
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
157
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
158

Jacob Segal's avatar
Jacob Segal committed
159
160
161
162
163
164
class ConditioningSetMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "mask": ("MASK", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
165
                              "set_cond_area": (["default", "mask bounds"],),
Jacob Segal's avatar
Jacob Segal committed
166
167
168
169
170
171
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

172
    def append(self, conditioning, mask, set_cond_area, strength):
Jacob Segal's avatar
Jacob Segal committed
173
        c = []
174
175
176
        set_area_to_bounds = False
        if set_cond_area != "default":
            set_area_to_bounds = True
Jacob Segal's avatar
Jacob Segal committed
177
178
179
180
181
182
        if len(mask.shape) < 3:
            mask = mask.unsqueeze(0)
        for t in conditioning:
            n = [t[0], t[1].copy()]
            _, h, w = mask.shape
            n[1]['mask'] = mask
Jacob Segal's avatar
Jacob Segal committed
183
            n[1]['set_area_to_bounds'] = set_area_to_bounds
184
            n[1]['mask_strength'] = strength
Jacob Segal's avatar
Jacob Segal committed
185
186
187
            c.append(n)
        return (c, )

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
class ConditioningZeroOut:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "zero_out"

    CATEGORY = "advanced/conditioning"

    def zero_out(self, conditioning):
        c = []
        for t in conditioning:
            d = t[1].copy()
            if "pooled_output" in d:
                d["pooled_output"] = torch.zeros_like(d["pooled_output"])
            n = [torch.zeros_like(t[0]), d]
            c.append(n)
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
207
208
209
210
211
212
213
class VAEDecode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

214
215
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
216
    def decode(self, vae, samples):
217
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
218

219
220
221
222
223
224
225
226
227
228
229
230
class VAEDecodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
231
232
233
234
235
236
237
class VAEEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

238
239
    CATEGORY = "latent"

240
241
242
243
    @staticmethod
    def vae_encode_crop_pixels(pixels):
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
244
        if pixels.shape[1] != x or pixels.shape[2] != y:
245
246
247
248
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
        return pixels
249

250
251
252
    def encode(self, vae, pixels):
        pixels = self.vae_encode_crop_pixels(pixels)
        t = vae.encode(pixels[:,:,:,:3])
253
        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
254

comfyanonymous's avatar
comfyanonymous committed
255
256
257
258
259
260
261
262
263
264
class VAEEncodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

    def encode(self, vae, pixels):
265
        pixels = VAEEncode.vae_encode_crop_pixels(pixels)
comfyanonymous's avatar
comfyanonymous committed
266
267
        t = vae.encode_tiled(pixels[:,:,:,:3])
        return ({"samples":t}, )
268

269
270
271
class VAEEncodeForInpaint:
    @classmethod
    def INPUT_TYPES(s):
272
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
273
274
275
276
277
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

278
    def encode(self, vae, pixels, mask, grow_mask_by=6):
279
280
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
281
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
282

283
        pixels = pixels.clone()
284
        if pixels.shape[1] != x or pixels.shape[2] != y:
285
286
287
288
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
289

290
        #grow mask by a few pixels to keep things seamless in latent space
291
292
293
294
295
296
297
298
        if grow_mask_by == 0:
            mask_erosion = mask
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)

299
        m = (1.0 - mask.round()).squeeze(1)
300
301
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
302
            pixels[:,:,:,i] *= m
303
304
305
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

306
        return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
307

Dr.Lt.Data's avatar
Dr.Lt.Data committed
308
309
class SaveLatent:
    def __init__(self):
310
        self.output_dir = folder_paths.get_output_directory()
Dr.Lt.Data's avatar
Dr.Lt.Data committed
311
312
313
314

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ),
315
                              "filename_prefix": ("STRING", {"default": "latents/ComfyUI"})},
Dr.Lt.Data's avatar
Dr.Lt.Data committed
316
317
318
319
320
321
322
323
324
325
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
    RETURN_TYPES = ()
    FUNCTION = "save"

    OUTPUT_NODE = True

    CATEGORY = "_for_testing"

    def save(self, samples, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
326
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
327
328
329
330
331
332

        # support save metadata for latent sharing
        prompt_info = ""
        if prompt is not None:
            prompt_info = json.dumps(prompt)

333
        metadata = {"prompt": prompt_info}
Dr.Lt.Data's avatar
Dr.Lt.Data committed
334
335
336
337
338
339
340
        if extra_pnginfo is not None:
            for x in extra_pnginfo:
                metadata[x] = json.dumps(extra_pnginfo[x])

        file = f"{filename}_{counter:05}_.latent"
        file = os.path.join(full_output_folder, file)

341
342
        output = {}
        output["latent_tensor"] = samples["samples"]
343
        output["latent_format_version_0"] = torch.tensor([])
344

345
        comfy.utils.save_torch_file(output, file, metadata=metadata)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
346
347
348
349
350
351
        return {}


class LoadLatent:
    @classmethod
    def INPUT_TYPES(s):
352
353
        input_dir = folder_paths.get_input_directory()
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.endswith(".latent")]
Dr.Lt.Data's avatar
Dr.Lt.Data committed
354
355
356
357
358
359
360
361
        return {"required": {"latent": [sorted(files), ]}, }

    CATEGORY = "_for_testing"

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "load"

    def load(self, latent):
362
363
        latent_path = folder_paths.get_annotated_filepath(latent)
        latent = safetensors.torch.load_file(latent_path, device="cpu")
364
365
366
367
        multiplier = 1.0
        if "latent_format_version_0" not in latent:
            multiplier = 1.0 / 0.18215
        samples = {"samples": latent["latent_tensor"].float() * multiplier}
368
        return (samples, )
Dr.Lt.Data's avatar
Dr.Lt.Data committed
369

370
371
372
373
374
375
376
377
378
379
380
381
382
383
    @classmethod
    def IS_CHANGED(s, latent):
        image_path = folder_paths.get_annotated_filepath(latent)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

    @classmethod
    def VALIDATE_INPUTS(s, latent):
        if not folder_paths.exists_annotated_filepath(latent):
            return "Invalid latent file: {}".format(latent)
        return True

Dr.Lt.Data's avatar
Dr.Lt.Data committed
384

comfyanonymous's avatar
comfyanonymous committed
385
386
387
class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
388
389
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
390
391
392
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

393
    CATEGORY = "advanced/loaders"
394

comfyanonymous's avatar
comfyanonymous committed
395
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
396
397
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
398
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
399

400
401
402
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
403
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
404
405
406
407
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

408
    CATEGORY = "loaders"
409

410
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
411
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
412
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
413
414
        return out

sALTaccount's avatar
sALTaccount committed
415
416
417
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
418
        paths = []
sALTaccount's avatar
sALTaccount committed
419
        for search_path in folder_paths.get_folder_paths("diffusers"):
420
            if os.path.exists(search_path):
421
422
423
424
                for root, subdir, files in os.walk(search_path, followlinks=True):
                    if "model_index.json" in files:
                        paths.append(os.path.relpath(root, start=search_path))

425
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
426
427
428
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

429
    CATEGORY = "advanced/loaders/deprecated"
sALTaccount's avatar
sALTaccount committed
430
431

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
432
433
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
434
435
436
                path = os.path.join(search_path, model_path)
                if os.path.exists(path):
                    model_path = path
sALTaccount's avatar
sALTaccount committed
437
                    break
438

439
        return comfy.diffusers_load.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
440
441


442
443
444
445
446
447
448
449
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

450
    CATEGORY = "loaders"
451
452
453
454
455
456

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

473
class LoraLoader:
474
475
476
    def __init__(self):
        self.loaded_lora = None

477
478
479
480
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
481
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
482
483
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
484
485
486
487
488
489
490
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
491
492
493
        if strength_model == 0 and strength_clip == 0:
            return (model, clip)

494
        lora_path = folder_paths.get_full_path("loras", lora_name)
495
496
497
498
499
500
501
502
503
504
505
506
        lora = None
        if self.loaded_lora is not None:
            if self.loaded_lora[0] == lora_path:
                lora = self.loaded_lora[1]
            else:
                del self.loaded_lora

        if lora is None:
            lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
            self.loaded_lora = (lora_path, lora)

        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
507
508
        return (model_lora, clip_lora)

comfyanonymous's avatar
comfyanonymous committed
509
510
511
class VAELoader:
    @classmethod
    def INPUT_TYPES(s):
512
        return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
comfyanonymous's avatar
comfyanonymous committed
513
514
515
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

516
517
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
518
519
    #TODO: scale factor?
    def load_vae(self, vae_name):
520
        vae_path = folder_paths.get_full_path("vae", vae_name)
comfyanonymous's avatar
comfyanonymous committed
521
522
523
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
524
525
526
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
527
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
528
529
530
531
532
533
534

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
535
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
comfyanonymous's avatar
comfyanonymous committed
536
537
538
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

539
540
541
542
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
543
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
544
545
546
547
548
549
550

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
551
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
552
553
554
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
555
556
557
558

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
559
560
561
562
563
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
564
565
566
567
568
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

569
    def apply_controlnet(self, conditioning, control_net, image, strength):
570
571
572
        if strength == 0:
            return (conditioning, )

comfyanonymous's avatar
comfyanonymous committed
573
574
575
576
        c = []
        control_hint = image.movedim(-1,1)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
577
578
579
580
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
comfyanonymous's avatar
comfyanonymous committed
581
582
583
            c.append(n)
        return (c, )

584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
class UNETLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "unet_name": (folder_paths.get_filename_list("unet"), ),
                             }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "load_unet"

    CATEGORY = "advanced/loaders"

    def load_unet(self, unet_name):
        unet_path = folder_paths.get_full_path("unet", unet_name)
        model = comfy.sd.load_unet(unet_path)
        return (model,)

599
600
601
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
602
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
603
604
605
606
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

607
    CATEGORY = "advanced/loaders"
608

609
    def load_clip(self, clip_name):
610
        clip_path = folder_paths.get_full_path("clip", clip_name)
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return (clip,)

class DualCLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_name1": (folder_paths.get_filename_list("clip"), ), "clip_name2": (folder_paths.get_filename_list("clip"), ),
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "advanced/loaders"

    def load_clip(self, clip_name1, clip_name2):
        clip_path1 = folder_paths.get_full_path("clip", clip_name1)
        clip_path2 = folder_paths.get_full_path("clip", clip_name2)
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"))
628
629
        return (clip,)

630
631
632
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
633
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
634
635
636
637
638
639
640
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
641
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
642
        clip_vision = comfy.clip_vision.load(clip_path)
643
644
645
646
647
648
649
650
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
651
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
652
653
    FUNCTION = "encode"

654
    CATEGORY = "conditioning"
655
656
657
658
659
660
661
662

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
663
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
664
665
666
667
668
669
670

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
671
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
672
673
674
675
676
677
678
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
679
680
681
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
682
683
684
685
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
686
    CATEGORY = "conditioning/style_model"
687

688
689
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
        cond = style_model.get_cond(clip_vision_output)
690
        c = []
691
692
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
693
694
695
            c.append(n)
        return (c, )

696
697
698
699
700
701
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
702
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
703
704
705
706
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

707
    CATEGORY = "conditioning"
708

709
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
710
711
712
        if strength == 0:
            return (conditioning, )

713
714
715
        c = []
        for t in conditioning:
            o = t[1].copy()
716
717
718
            x = {"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation}
            if "unclip_conditioning" in o:
                o["unclip_conditioning"] = o["unclip_conditioning"][:] + [x]
719
            else:
720
                o["unclip_conditioning"] = [x]
721
722
723
724
            n = [t[0], o]
            c.append(n)
        return (c, )

725
726
727
728
729
730
731
732
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
733
    CATEGORY = "loaders"
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
                              "text": ("STRING", {"multiline": True}),
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
755
    CATEGORY = "conditioning/gligen"
756
757
758
759
760
761
762
763
764
765
766
767
768
769

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
770

comfyanonymous's avatar
comfyanonymous committed
771
772
773
774
775
776
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
777
778
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
779
780
781
782
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

783
784
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
785
786
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
787
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
788

comfyanonymous's avatar
comfyanonymous committed
789

790
791
792
793
794
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
795
                              "length": ("INT", {"default": 1, "min": 1, "max": 64}),
796
797
                              }}
    RETURN_TYPES = ("LATENT",)
798
    FUNCTION = "frombatch"
799

800
    CATEGORY = "latent/batch"
801

802
    def frombatch(self, samples, batch_index, length):
803
804
805
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
        length = min(s_in.shape[0] - batch_index, length)
        s["samples"] = s_in[batch_index:batch_index + length].clone()
        if "noise_mask" in samples:
            masks = samples["noise_mask"]
            if masks.shape[0] == 1:
                s["noise_mask"] = masks.clone()
            else:
                if masks.shape[0] < s_in.shape[0]:
                    masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
                s["noise_mask"] = masks[batch_index:batch_index + length].clone()
        if "batch_index" not in s:
            s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
        else:
            s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
        return (s,)
    
class RepeatLatentBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "amount": ("INT", {"default": 1, "min": 1, "max": 64}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "repeat"

    CATEGORY = "latent/batch"

    def repeat(self, samples, amount):
        s = samples.copy()
        s_in = samples["samples"]
        
        s["samples"] = s_in.repeat((amount, 1,1,1))
        if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
            masks = samples["noise_mask"]
            if masks.shape[0] < s_in.shape[0]:
                masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
            s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
        if "batch_index" in s:
            offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
            s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
846
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
847

comfyanonymous's avatar
comfyanonymous committed
848
class LatentUpscale:
comfyanonymous's avatar
comfyanonymous committed
849
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
850
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
851
852
853
854

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
855
856
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
857
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
858
859
860
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

861
862
    CATEGORY = "latent"

863
    def upscale(self, samples, upscale_method, width, height, crop):
864
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
865
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
866
867
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
868
class LatentUpscaleBy:
comfyanonymous's avatar
comfyanonymous committed
869
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
comfyanonymous's avatar
comfyanonymous committed
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.5, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

    CATEGORY = "latent"

    def upscale(self, samples, upscale_method, scale_by):
        s = samples.copy()
        width = round(samples["samples"].shape[3] * scale_by)
        height = round(samples["samples"].shape[2] * scale_by)
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled")
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
887
888
889
890
891
892
893
894
895
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
896
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
897
898

    def rotate(self, samples, rotation):
899
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
900
901
902
903
904
905
906
907
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

908
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
909
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
910
911
912
913
914
915
916
917
918
919

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
920
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
921
922

    def flip(self, samples, flip_method):
923
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
924
        if flip_method.startswith("x"):
925
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
926
        elif flip_method.startswith("y"):
927
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
928
929

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
930
931
932
933

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
934
935
936
937
938
939
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
940
941
942
943
944
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
945
946
947
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
948
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
972

comfyanonymous's avatar
comfyanonymous committed
973
974
975
976
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
977
978
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
979
980
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
981
982
983
984
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
985
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
986
987

    def crop(self, samples, width, height, x, y):
988
989
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
1003
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
1004
1005
        return (s,)

1006
1007
1008
1009
1010
1011
1012
1013
1014
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

1015
    CATEGORY = "latent/inpaint"
1016
1017
1018

    def set_mask(self, samples, mask):
        s = samples.copy()
1019
        s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
1020
1021
        return (s,)

space-nuko's avatar
space-nuko committed
1022

space-nuko's avatar
space-nuko committed
1023
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
1024
    device = comfy.model_management.get_torch_device()
1025
    latent_image = latent["samples"]
1026

comfyanonymous's avatar
comfyanonymous committed
1027
1028
1029
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
1030
1031
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
comfyanonymous's avatar
comfyanonymous committed
1032

1033
    noise_mask = None
1034
    if "noise_mask" in latent:
1035
        noise_mask = latent["noise_mask"]
comfyanonymous's avatar
comfyanonymous committed
1036

space-nuko's avatar
space-nuko committed
1037
1038
1039
1040
    preview_format = "JPEG"
    if preview_format not in ["JPEG", "PNG"]:
        preview_format = "JPEG"

1041
    previewer = latent_preview.get_previewer(device, model.model.latent_format)
space-nuko's avatar
space-nuko committed
1042

1043
    pbar = comfy.utils.ProgressBar(steps)
1044
    def callback(step, x0, x, total_steps):
space-nuko's avatar
space-nuko committed
1045
        preview_bytes = None
1046
        if previewer:
1047
            preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
space-nuko's avatar
space-nuko committed
1048
        pbar.update_absolute(step + 1, total_steps, preview_bytes)
1049

1050
1051
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
1052
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, seed=seed)
1053
1054
1055
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
1056

comfyanonymous's avatar
comfyanonymous committed
1057
1058
1059
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
1060
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
space-nuko's avatar
space-nuko committed
1071
1072
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1073
1074
1075
1076

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

1077
1078
    CATEGORY = "sampling"

space-nuko's avatar
space-nuko committed
1079
1080
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
1081

comfyanonymous's avatar
comfyanonymous committed
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
space-nuko's avatar
space-nuko committed
1099
1100
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1101
1102
1103
1104
1105

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
1106

space-nuko's avatar
space-nuko committed
1107
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
comfyanonymous's avatar
comfyanonymous committed
1108
1109
1110
1111
1112
1113
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
space-nuko's avatar
space-nuko committed
1114
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
1115
1116
1117

class SaveImage:
    def __init__(self):
1118
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1119
        self.type = "output"
1120
        self.prefix_append = ""
comfyanonymous's avatar
comfyanonymous committed
1121
1122
1123
1124

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
1125
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
1126
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
1127
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
1128
1129
1130
1131
1132
1133
1134
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

1135
1136
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
1137
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
1138
        filename_prefix += self.prefix_append
1139
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
m957ymj75urz's avatar
m957ymj75urz committed
1140
        results = list()
comfyanonymous's avatar
comfyanonymous committed
1141
1142
        for image in images:
            i = 255. * image.cpu().numpy()
1143
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
comfyanonymous's avatar
comfyanonymous committed
1144
1145
1146
1147
1148
1149
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
1150

1151
            file = f"{filename}_{counter:05}_.png"
1152
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
1153
1154
1155
1156
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
1157
            })
1158
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
1159

m957ymj75urz's avatar
m957ymj75urz committed
1160
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
1161

pythongosssss's avatar
pythongosssss committed
1162
1163
class PreviewImage(SaveImage):
    def __init__(self):
1164
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1165
        self.type = "temp"
1166
        self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
pythongosssss's avatar
pythongosssss committed
1167
1168
1169

    @classmethod
    def INPUT_TYPES(s):
1170
        return {"required":
pythongosssss's avatar
pythongosssss committed
1171
1172
1173
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
1174

1175
1176
1177
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
1178
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1179
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1180
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1181
                    {"image": (sorted(files), )},
1182
                }
1183
1184

    CATEGORY = "image"
1185

1186
    RETURN_TYPES = ("IMAGE", "MASK")
1187
1188
    FUNCTION = "load_image"
    def load_image(self, image):
1189
        image_path = folder_paths.get_annotated_filepath(image)
1190
        i = Image.open(image_path)
1191
        i = ImageOps.exif_transpose(i)
1192
        image = i.convert("RGB")
1193
        image = np.array(image).astype(np.float32) / 255.0
1194
        image = torch.from_numpy(image)[None,]
1195
1196
1197
1198
1199
1200
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)
1201

1202
1203
    @classmethod
    def IS_CHANGED(s, image):
1204
        image_path = folder_paths.get_annotated_filepath(image)
1205
1206
1207
1208
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1209

1210
1211
1212
1213
1214
1215
1216
    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

1217
class LoadImageMask:
1218
    _color_channels = ["alpha", "red", "green", "blue"]
1219
1220
    @classmethod
    def INPUT_TYPES(s):
1221
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1222
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1223
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1224
                    {"image": (sorted(files), ),
1225
                     "channel": (s._color_channels, ), }
1226
1227
                }

1228
    CATEGORY = "mask"
1229
1230
1231
1232

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
1233
        image_path = folder_paths.get_annotated_filepath(image)
1234
        i = Image.open(image_path)
1235
        i = ImageOps.exif_transpose(i)
1236
1237
        if i.getbands() != ("R", "G", "B", "A"):
            i = i.convert("RGBA")
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
1251
        image_path = folder_paths.get_annotated_filepath(image)
1252
1253
1254
1255
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1256

1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
    @classmethod
    def VALIDATE_INPUTS(s, image, channel):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        if channel not in s._color_channels:
            return "Invalid color channel: {}".format(channel)

        return True

comfyanonymous's avatar
comfyanonymous committed
1267
class ImageScale:
comfyanonymous's avatar
comfyanonymous committed
1268
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic"]
comfyanonymous's avatar
comfyanonymous committed
1269
1270
1271
1272
1273
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1274
1275
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1276
1277
1278
1279
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1280
    CATEGORY = "image/upscaling"
1281

comfyanonymous's avatar
comfyanonymous committed
1282
1283
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
1284
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1285
1286
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1287

comfyanonymous's avatar
comfyanonymous committed
1288
class ImageScaleBy:
comfyanonymous's avatar
comfyanonymous committed
1289
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic"]
comfyanonymous's avatar
comfyanonymous committed
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

    CATEGORY = "image/upscaling"

    def upscale(self, image, upscale_method, scale_by):
        samples = image.movedim(-1,1)
        width = round(samples.shape[3] * scale_by)
        height = round(samples.shape[2] * scale_by)
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
        s = s.movedim(1,-1)
        return (s,)

1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


Guo Y.K's avatar
Guo Y.K committed
1324
1325
1326
1327
1328
1329
1330
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1331
1332
1333
1334
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1335
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1336
1337
1338
1339
1340
1341
1342
1343
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1344
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1357

1358
1359
1360
1361
1362
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1363
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1383

Guo Y.K's avatar
Guo Y.K committed
1384
1385
1386
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1387
1388
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1389
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1390
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1391
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1392
1393
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1394
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1395
1396
1397
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
comfyanonymous's avatar
comfyanonymous committed
1398
    "LatentUpscaleBy": LatentUpscaleBy,
1399
    "LatentFromBatch": LatentFromBatch,
1400
    "RepeatLatentBatch": RepeatLatentBatch,
comfyanonymous's avatar
comfyanonymous committed
1401
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1402
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1403
    "LoadImage": LoadImage,
1404
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1405
    "ImageScale": ImageScale,
comfyanonymous's avatar
comfyanonymous committed
1406
    "ImageScaleBy": ImageScaleBy,
1407
    "ImageInvert": ImageInvert,
Guo Y.K's avatar
Guo Y.K committed
1408
    "ImagePadForOutpaint": ImagePadForOutpaint,
FizzleDorf's avatar
FizzleDorf committed
1409
    "ConditioningAverage ": ConditioningAverage ,
comfyanonymous's avatar
comfyanonymous committed
1410
1411
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
Jacob Segal's avatar
Jacob Segal committed
1412
    "ConditioningSetMask": ConditioningSetMask,
comfyanonymous's avatar
comfyanonymous committed
1413
    "KSamplerAdvanced": KSamplerAdvanced,
1414
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1415
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
1416
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1417
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1418
    "LatentCrop": LatentCrop,
1419
    "LoraLoader": LoraLoader,
1420
    "CLIPLoader": CLIPLoader,
1421
    "UNETLoader": UNETLoader,
1422
    "DualCLIPLoader": DualCLIPLoader,
1423
    "CLIPVisionEncode": CLIPVisionEncode,
1424
    "StyleModelApply": StyleModelApply,
1425
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1426
1427
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
1428
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1429
1430
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1431
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1432
    "VAEEncodeTiled": VAEEncodeTiled,
1433
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1434
1435
1436
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,

1437
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1438
    "DiffusersLoader": DiffusersLoader,
Dr.Lt.Data's avatar
Dr.Lt.Data committed
1439
1440

    "LoadLatent": LoadLatent,
1441
    "SaveLatent": SaveLatent,
1442
1443

    "ConditioningZeroOut": ConditioningZeroOut,
1444
    "ConditioningConcat": ConditioningConcat,
comfyanonymous's avatar
comfyanonymous committed
1445
1446
}

City's avatar
City committed
1447
1448
1449
1450
1451
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1452
1453
    "CheckpointLoader": "Load Checkpoint (With Config)",
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
FizzleDorf's avatar
FizzleDorf committed
1468
    "ConditioningAverage ": "Conditioning (Average)",
City's avatar
City committed
1469
    "ConditioningSetArea": "Conditioning (Set Area)",
Jacob Segal's avatar
Jacob Segal committed
1470
    "ConditioningSetMask": "Conditioning (Set Mask)",
City's avatar
City committed
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
    "ControlNetApply": "Apply ControlNet",
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
comfyanonymous's avatar
comfyanonymous committed
1482
    "LatentUpscaleBy": "Upscale Latent By",
City's avatar
City committed
1483
    "LatentComposite": "Latent Composite",
1484
1485
    "LatentFromBatch" : "Latent From Batch",
    "RepeatLatentBatch": "Repeat Latent Batch",
City's avatar
City committed
1486
1487
1488
1489
1490
1491
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
comfyanonymous's avatar
comfyanonymous committed
1492
    "ImageScaleBy": "Upscale Image By",
City's avatar
City committed
1493
1494
1495
1496
1497
1498
1499
1500
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1501
def load_custom_node(module_path, ignore=set()):
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
1515
1516
1517
            for name in module.NODE_CLASS_MAPPINGS:
                if name not in ignore:
                    NODE_CLASS_MAPPINGS[name] = module.NODE_CLASS_MAPPINGS[name]
1518
1519
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1520
            return True
1521
1522
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
1523
            return False
1524
1525
1526
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)
1527
        return False
1528

Hacker 17082006's avatar
Hacker 17082006 committed
1529
def load_custom_nodes():
1530
    base_node_names = set(NODE_CLASS_MAPPINGS.keys())
1531
    node_paths = folder_paths.get_folder_paths("custom_nodes")
1532
    node_import_times = []
1533
1534
1535
1536
1537
1538
1539
1540
    for custom_node_path in node_paths:
        possible_modules = os.listdir(custom_node_path)
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1541
            if module_path.endswith(".disabled"): continue
1542
            time_before = time.perf_counter()
1543
            success = load_custom_node(module_path, base_node_names)
1544
            node_import_times.append((time.perf_counter() - time_before, module_path, success))
1545

1546
    if len(node_import_times) > 0:
comfyanonymous's avatar
comfyanonymous committed
1547
        print("\nImport times for custom nodes:")
1548
        for n in sorted(node_import_times):
1549
1550
1551
1552
1553
            if n[2]:
                import_message = ""
            else:
                import_message = " (IMPORT FAILED)"
            print("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
1554
        print()
1555

1556
def init_custom_nodes():
1557
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_hypernetwork.py"))
1558
1559
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
1560
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))
1561
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_rebatch.py"))
1562
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_model_merging.py"))
1563
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_tomesd.py"))
1564
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_clip_sdxl.py"))
1565
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_canny.py"))
1566
    load_custom_nodes()