nodes.py 40.3 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
comfyanonymous's avatar
comfyanonymous committed
8
9
10
11
12

from PIL import Image
from PIL.PngImagePlugin import PngInfo
import numpy as np

sALTaccount's avatar
sALTaccount committed
13
14
from comfy.diffusers_convert import load_diffusers

comfyanonymous's avatar
comfyanonymous committed
15
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
16
17
18
19


import comfy.samplers
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
20
21
import comfy.utils

22
import comfy.clip_vision
23

24
import model_management
25
import importlib
comfyanonymous's avatar
comfyanonymous committed
26

27
import folder_paths
28
29
30
31

def before_node_execution():
    model_management.throw_exception_if_processing_interrupted()

32
33
def interrupt_processing(value=True):
    model_management.interrupt_current_processing(value)
34

35
36
MAX_RESOLUTION=8192

comfyanonymous's avatar
comfyanonymous committed
37
38
39
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
40
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
41
42
43
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

44
45
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
46
    def encode(self, clip, text):
comfyanonymous's avatar
comfyanonymous committed
47
48
49
50
51
52
53
54
55
        return ([[clip.encode(text), {}]], )

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

56
57
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
58
59
60
61
62
63
64
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
65
66
67
68
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
comfyanonymous's avatar
comfyanonymous committed
69
70
71
72
73
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

74
75
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
76
    def append(self, conditioning, width, height, x, y, strength, min_sigma=0.0, max_sigma=99.0):
comfyanonymous's avatar
comfyanonymous committed
77
78
79
80
81
82
83
84
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
            n[1]['min_sigma'] = min_sigma
            n[1]['max_sigma'] = max_sigma
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
85
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
86
87
88
89
90
91
92
93
94
95
96

class VAEDecode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

97
98
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
99
    def decode(self, vae, samples):
100
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
class VAEDecodeTiled:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
117
118
119
120
121
122
123
124
125
126
class VAEEncode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

127
128
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
129
    def encode(self, vae, pixels):
130
131
132
133
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
134
135
136
        t = vae.encode(pixels[:,:,:,:3])

        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
137

comfyanonymous's avatar
comfyanonymous committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

class VAEEncodeTiled:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

    def encode(self, vae, pixels):
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
        t = vae.encode_tiled(pixels[:,:,:,:3])

        return ({"samples":t}, )
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
class VAEEncodeForInpaint:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

    def encode(self, vae, pixels, mask):
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
174
175
        mask = torch.nn.functional.interpolate(mask[None,None,], size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")[0][0]

176
        pixels = pixels.clone()
177
178
179
180
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
            mask = mask[:x,:y]

181
        #grow mask by a few pixels to keep things seamless in latent space
182
        kernel_tensor = torch.ones((1, 1, 6, 6))
183
184
        mask_erosion = torch.clamp(torch.nn.functional.conv2d((mask.round())[None], kernel_tensor, padding=3), 0, 1)
        m = (1.0 - mask.round())
185
186
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
187
            pixels[:,:,:,i] *= m
188
189
190
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

191
        return ({"samples":t, "noise_mask": (mask_erosion[0][:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
192
193
194
195

class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
196
197
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
198
199
200
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

201
    CATEGORY = "advanced/loaders"
202

comfyanonymous's avatar
comfyanonymous committed
203
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
204
205
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
206
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
207

208
209
210
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
211
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
212
213
214
215
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

216
    CATEGORY = "loaders"
217

218
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
219
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
220
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
221
222
        return out

sALTaccount's avatar
sALTaccount committed
223
224
225
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
226
        paths = []
227
228
229
230
        search_paths = folder_paths.get_folder_paths("diffusers")
        for search_path in search_paths:
            if os.path.exists(search_path):
                paths = next(os.walk(search_path))[1]
231
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
232
233
234
235
236
237
238
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

    CATEGORY = "loaders"

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
        model_path = os.path.join(folder_paths.models_dir, 'diffusers', model_path)
239
        return load_diffusers(model_path, fp16=model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
240
241


242
243
244
245
246
247
248
249
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

250
    CATEGORY = "loaders"
251
252
253
254
255
256

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

273
274
275
276
277
class LoraLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
278
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
279
280
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
281
282
283
284
285
286
287
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
288
        lora_path = folder_paths.get_full_path("loras", lora_name)
289
290
291
        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
        return (model_lora, clip_lora)

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
class TomePatchModel:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "_for_testing"

    def patch(self, model, ratio):
        m = model.clone()
        m.set_model_tomesd(ratio)
        return (m, )

comfyanonymous's avatar
comfyanonymous committed
308
309
310
class VAELoader:
    @classmethod
    def INPUT_TYPES(s):
311
        return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
comfyanonymous's avatar
comfyanonymous committed
312
313
314
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

315
316
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
317
318
    #TODO: scale factor?
    def load_vae(self, vae_name):
319
        vae_path = folder_paths.get_full_path("vae", vae_name)
comfyanonymous's avatar
comfyanonymous committed
320
321
322
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
323
324
325
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
326
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
327
328
329
330
331
332
333

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
334
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
comfyanonymous's avatar
comfyanonymous committed
335
336
337
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

338
339
340
341
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
342
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
343
344
345
346
347
348
349

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
350
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
351
352
353
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
354
355
356
357

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
358
359
360
361
362
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
363
364
365
366
367
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

368
    def apply_controlnet(self, conditioning, control_net, image, strength):
comfyanonymous's avatar
comfyanonymous committed
369
370
371
372
373
        c = []
        control_hint = image.movedim(-1,1)
        print(control_hint.shape)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
374
375
376
377
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
comfyanonymous's avatar
comfyanonymous committed
378
379
380
            c.append(n)
        return (c, )

381
382
383
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
384
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
385
386
387
388
389
390
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

391
    def load_clip(self, clip_name):
392
        clip_path = folder_paths.get_full_path("clip", clip_name)
comfyanonymous's avatar
comfyanonymous committed
393
        clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=folder_paths.get_folder_paths("embeddings"))
394
395
        return (clip,)

396
397
398
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
399
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
400
401
402
403
404
405
406
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
407
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
408
        clip_vision = comfy.clip_vision.load(clip_path)
409
410
411
412
413
414
415
416
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
417
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
418
419
    FUNCTION = "encode"

420
    CATEGORY = "conditioning"
421
422
423
424
425
426
427
428

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
429
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
430
431
432
433
434
435
436

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
437
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
438
439
440
441
442
443
444
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
445
446
447
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
448
449
450
451
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
452
    CATEGORY = "conditioning/style_model"
453

454
455
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
        cond = style_model.get_cond(clip_vision_output)
456
        c = []
457
458
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
459
460
461
            c.append(n)
        return (c, )

462
463
464
465
466
467
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
468
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
469
470
471
472
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

473
    CATEGORY = "conditioning"
474

475
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
476
477
478
        c = []
        for t in conditioning:
            o = t[1].copy()
479
            x = (clip_vision_output, strength, noise_augmentation)
480
481
482
483
484
485
486
487
488
            if "adm" in o:
                o["adm"] = o["adm"][:] + [x]
            else:
                o["adm"] = [x]
            n = [t[0], o]
            c.append(n)
        return (c, )


comfyanonymous's avatar
comfyanonymous committed
489
490
491
492
493
494
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
495
496
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
comfyanonymous's avatar
comfyanonymous committed
497
498
499
500
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

501
502
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
503
504
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
505
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
506

comfyanonymous's avatar
comfyanonymous committed
507

comfyanonymous's avatar
comfyanonymous committed
508

comfyanonymous's avatar
comfyanonymous committed
509
510
class LatentUpscale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
511
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
512
513
514
515

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
516
517
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
518
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
519
520
521
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

522
523
    CATEGORY = "latent"

524
    def upscale(self, samples, upscale_method, width, height, crop):
525
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
526
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
527
528
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
529
530
531
532
533
534
535
536
537
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
538
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
539
540

    def rotate(self, samples, rotation):
541
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
542
543
544
545
546
547
548
549
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

550
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
551
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
552
553
554
555
556
557
558
559
560
561

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
562
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
563
564

    def flip(self, samples, flip_method):
565
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
566
        if flip_method.startswith("x"):
567
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
568
        elif flip_method.startswith("y"):
569
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
570
571

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
572
573
574
575
576
577

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
578
579
580
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
581
582
583
584
585
586
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

587
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
comfyanonymous's avatar
comfyanonymous committed
588
589
        x =  x // 8
        y = y // 8
590
        feather = feather // 8
591
592
593
594
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
595
596
597
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
598
599
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
600
601
602
603
604
605
606
607
608
609
610
611
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
612
613
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
614

comfyanonymous's avatar
comfyanonymous committed
615
616
617
618
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
619
620
621
622
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
623
624
625
626
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
627
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
628
629

    def crop(self, samples, width, height, x, y):
630
631
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
        def enforce_image_dim(d, to_d, max_d):
            if to_d > max_d:
                leftover = (to_d - max_d) % 8
                to_d = max_d
                d -= leftover
            return (d, to_d)

        #make sure size is always multiple of 64
        x, to_x = enforce_image_dim(x, to_x, samples.shape[3])
        y, to_y = enforce_image_dim(y, to_y, samples.shape[2])
655
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
656
657
        return (s,)

658
659
660
661
662
663
664
665
666
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

667
    CATEGORY = "latent/inpaint"
668
669
670
671
672
673
674

    def set_mask(self, samples, mask):
        s = samples.copy()
        s["noise_mask"] = mask
        return (s,)


675
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
676
677
    latent_image = latent["samples"]
    noise_mask = None
678
    device = model_management.get_torch_device()
679

comfyanonymous's avatar
comfyanonymous committed
680
681
682
683
684
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
        noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=torch.manual_seed(seed), device="cpu")

685
686
687
    if "noise_mask" in latent:
        noise_mask = latent['noise_mask']
        noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear")
688
        noise_mask = noise_mask.round()
689
690
691
692
        noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1)
        noise_mask = torch.cat([noise_mask] * noise.shape[0])
        noise_mask = noise_mask.to(device)

693
    real_model = None
694
695
696
    model_management.load_model_gpu(model)
    real_model = model.model

697
698
699
700
701
702
    noise = noise.to(device)
    latent_image = latent_image.to(device)

    positive_copy = []
    negative_copy = []

comfyanonymous's avatar
comfyanonymous committed
703
    control_nets = []
704
705
706
707
708
    for p in positive:
        t = p[0]
        if t.shape[0] < noise.shape[0]:
            t = torch.cat([t] * noise.shape[0])
        t = t.to(device)
comfyanonymous's avatar
comfyanonymous committed
709
710
        if 'control' in p[1]:
            control_nets += [p[1]['control']]
711
712
713
714
715
716
        positive_copy += [[t] + p[1:]]
    for n in negative:
        t = n[0]
        if t.shape[0] < noise.shape[0]:
            t = torch.cat([t] * noise.shape[0])
        t = t.to(device)
717
718
        if 'control' in n[1]:
            control_nets += [n[1]['control']]
719
720
        negative_copy += [[t] + n[1:]]

comfyanonymous's avatar
comfyanonymous committed
721
722
723
724
    control_net_models = []
    for x in control_nets:
        control_net_models += x.get_control_models()
    model_management.load_controlnet_gpu(control_net_models)
comfyanonymous's avatar
comfyanonymous committed
725

726
    if sampler_name in comfy.samplers.KSampler.SAMPLERS:
727
        sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
728
729
730
731
    else:
        #other samplers
        pass

732
    samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask)
733
    samples = samples.cpu()
comfyanonymous's avatar
comfyanonymous committed
734
735
    for c in control_nets:
        c.cleanup()
comfyanonymous's avatar
comfyanonymous committed
736

737
738
739
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
740

comfyanonymous's avatar
comfyanonymous committed
741
742
743
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
744
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

760
761
    CATEGORY = "sampling"

comfyanonymous's avatar
comfyanonymous committed
762
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
763
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
764

comfyanonymous's avatar
comfyanonymous committed
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
788

comfyanonymous's avatar
comfyanonymous committed
789
790
791
792
793
794
795
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
796
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
797
798
799

class SaveImage:
    def __init__(self):
800
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
801
        self.type = "output"
comfyanonymous's avatar
comfyanonymous committed
802
803
804
805

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
806
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
807
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
808
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
809
810
811
812
813
814
815
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

816
817
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
818
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
819
        def map_filename(filename):
820
            prefix_len = len(os.path.basename(filename_prefix))
821
822
823
824
825
826
            prefix = filename[:prefix_len + 1]
            try:
                digits = int(filename[prefix_len + 1:].split('_')[0])
            except:
                digits = 0
            return (digits, prefix)
comfyanonymous's avatar
Style.  
comfyanonymous committed
827

828
829
830
831
        def compute_vars(input):
            input = input.replace("%width%", str(images[0].shape[1]))
            input = input.replace("%height%", str(images[0].shape[0]))
            return input
comfyanonymous's avatar
Style.  
comfyanonymous committed
832

833
        filename_prefix = compute_vars(filename_prefix)
comfyanonymous's avatar
comfyanonymous committed
834

m957ymj75urz's avatar
m957ymj75urz committed
835
836
837
        subfolder = os.path.dirname(os.path.normpath(filename_prefix))
        filename = os.path.basename(os.path.normpath(filename_prefix))

comfyanonymous's avatar
comfyanonymous committed
838
        full_output_folder = os.path.join(self.output_dir, subfolder)
839

840
        if os.path.commonpath((self.output_dir, os.path.abspath(full_output_folder))) != self.output_dir:
841
            print("Saving image outside the output folder is not allowed.")
comfyanonymous's avatar
comfyanonymous committed
842
843
            return {}

844
        try:
845
            counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1
846
847
        except ValueError:
            counter = 1
848
        except FileNotFoundError:
849
            os.makedirs(full_output_folder, exist_ok=True)
850
            counter = 1
pythongosssss's avatar
pythongosssss committed
851

m957ymj75urz's avatar
m957ymj75urz committed
852
        results = list()
comfyanonymous's avatar
comfyanonymous committed
853
854
        for image in images:
            i = 255. * image.cpu().numpy()
855
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
comfyanonymous's avatar
comfyanonymous committed
856
857
858
859
860
861
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
862

863
            file = f"{filename}_{counter:05}_.png"
864
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
865
866
867
868
869
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
            });
870
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
871

m957ymj75urz's avatar
m957ymj75urz committed
872
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
873

pythongosssss's avatar
pythongosssss committed
874
875
class PreviewImage(SaveImage):
    def __init__(self):
876
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
877
        self.type = "temp"
pythongosssss's avatar
pythongosssss committed
878
879
880

    @classmethod
    def INPUT_TYPES(s):
881
        return {"required":
pythongosssss's avatar
pythongosssss committed
882
883
884
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
885

886
887
888
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
889
        input_dir = folder_paths.get_input_directory()
890
        return {"required":
891
                    {"image": (sorted(os.listdir(input_dir)), )},
892
                }
893
894

    CATEGORY = "image"
895

896
    RETURN_TYPES = ("IMAGE", "MASK")
897
898
    FUNCTION = "load_image"
    def load_image(self, image):
899
900
        input_dir = folder_paths.get_input_directory()
        image_path = os.path.join(input_dir, image)
901
902
        i = Image.open(image_path)
        image = i.convert("RGB")
903
        image = np.array(image).astype(np.float32) / 255.0
904
        image = torch.from_numpy(image)[None,]
905
906
907
908
909
910
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)
911

912
913
    @classmethod
    def IS_CHANGED(s, image):
914
915
        input_dir = folder_paths.get_input_directory()
        image_path = os.path.join(input_dir, image)
916
917
918
919
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
920

921
922
923
class LoadImageMask:
    @classmethod
    def INPUT_TYPES(s):
924
        input_dir = folder_paths.get_input_directory()
925
        return {"required":
926
                    {"image": (sorted(os.listdir(input_dir)), ),
927
928
929
930
931
932
933
934
                    "channel": (["alpha", "red", "green", "blue"], ),}
                }

    CATEGORY = "image"

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
935
936
        input_dir = folder_paths.get_input_directory()
        image_path = os.path.join(input_dir, image)
937
938
939
940
941
942
943
944
945
946
947
948
949
950
        i = Image.open(image_path)
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
951
952
        input_dir = folder_paths.get_input_directory()
        image_path = os.path.join(input_dir, image)
953
954
955
956
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
957

comfyanonymous's avatar
comfyanonymous committed
958
959
960
961
962
963
964
class ImageScale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
965
966
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
967
968
969
970
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

971
    CATEGORY = "image/upscaling"
972

comfyanonymous's avatar
comfyanonymous committed
973
974
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
975
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
976
977
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
978

979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


Guo Y.K's avatar
Guo Y.K committed
995
996
997
998
999
1000
1001
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1002
1003
1004
1005
1006
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1007
1008
1009
1010
1011
1012
1013
1014
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1015
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1028

1029
1030
1031
1032
1033
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1034
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1054

Guo Y.K's avatar
Guo Y.K committed
1055
1056
1057
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1058
1059
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1060
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1061
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1062
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1063
1064
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1065
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1066
1067
1068
1069
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1070
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1071
    "LoadImage": LoadImage,
1072
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1073
    "ImageScale": ImageScale,
1074
    "ImageInvert": ImageInvert,
Guo Y.K's avatar
Guo Y.K committed
1075
    "ImagePadForOutpaint": ImagePadForOutpaint,
comfyanonymous's avatar
comfyanonymous committed
1076
1077
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
comfyanonymous's avatar
comfyanonymous committed
1078
    "KSamplerAdvanced": KSamplerAdvanced,
1079
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1080
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
1081
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1082
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1083
    "LatentCrop": LatentCrop,
1084
    "LoraLoader": LoraLoader,
1085
    "CLIPLoader": CLIPLoader,
1086
    "CLIPVisionEncode": CLIPVisionEncode,
1087
    "StyleModelApply": StyleModelApply,
1088
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1089
1090
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
1091
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1092
1093
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1094
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1095
    "VAEEncodeTiled": VAEEncodeTiled,
1096
    "TomePatchModel": TomePatchModel,
1097
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1098
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1099
    "DiffusersLoader": DiffusersLoader,
comfyanonymous's avatar
comfyanonymous committed
1100
1101
}

1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
def load_custom_node(module_path):
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
            NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)

Hacker 17082006's avatar
Hacker 17082006 committed
1123
def load_custom_nodes():
1124
    CUSTOM_NODE_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)), "custom_nodes")
1125
    possible_modules = os.listdir(CUSTOM_NODE_PATH)
1126
    if "__pycache__" in possible_modules:
Hacker 17082006's avatar
.  
Hacker 17082006 committed
1127
        possible_modules.remove("__pycache__")
1128

Hacker 17082006's avatar
Hacker 17082006 committed
1129
    for possible_module in possible_modules:
1130
1131
        module_path = os.path.join(CUSTOM_NODE_PATH, possible_module)
        if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1132
        load_custom_node(module_path)
1133

1134
1135
def init_custom_nodes():
    load_custom_nodes()
1136
1137
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))