nodes.py 39.5 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
comfyanonymous's avatar
comfyanonymous committed
7
import copy
8
import traceback
comfyanonymous's avatar
comfyanonymous committed
9
10
11
12
13

from PIL import Image
from PIL.PngImagePlugin import PngInfo
import numpy as np

comfyanonymous's avatar
comfyanonymous committed
14
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
15
16
17
18


import comfy.samplers
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
19
20
import comfy.utils

21
import comfy.clip_vision
22

23
import model_management
24
import importlib
comfyanonymous's avatar
comfyanonymous committed
25

26
import folder_paths
27
28
29
30

def before_node_execution():
    model_management.throw_exception_if_processing_interrupted()

31
32
def interrupt_processing(value=True):
    model_management.interrupt_current_processing(value)
33

34
35
MAX_RESOLUTION=8192

comfyanonymous's avatar
comfyanonymous committed
36
37
38
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
39
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
40
41
42
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

43
44
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
45
    def encode(self, clip, text):
comfyanonymous's avatar
comfyanonymous committed
46
47
48
49
50
51
52
53
54
        return ([[clip.encode(text), {}]], )

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

55
56
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
57
58
59
60
61
62
63
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
64
65
66
67
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
comfyanonymous's avatar
comfyanonymous committed
68
69
70
71
72
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

73
74
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
75
    def append(self, conditioning, width, height, x, y, strength, min_sigma=0.0, max_sigma=99.0):
comfyanonymous's avatar
comfyanonymous committed
76
77
78
79
80
81
82
83
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
            n[1]['min_sigma'] = min_sigma
            n[1]['max_sigma'] = max_sigma
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
84
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
85
86
87
88
89
90
91
92
93
94
95

class VAEDecode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

96
97
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
98
    def decode(self, vae, samples):
99
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
100

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
class VAEDecodeTiled:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
116
117
118
119
120
121
122
123
124
125
class VAEEncode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

126
127
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
128
    def encode(self, vae, pixels):
129
130
131
132
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
133
134
135
        t = vae.encode(pixels[:,:,:,:3])

        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
136

comfyanonymous's avatar
comfyanonymous committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

class VAEEncodeTiled:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

    def encode(self, vae, pixels):
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
        t = vae.encode_tiled(pixels[:,:,:,:3])

        return ({"samples":t}, )
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
class VAEEncodeForInpaint:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

    def encode(self, vae, pixels, mask):
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
173
174
        mask = torch.nn.functional.interpolate(mask[None,None,], size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")[0][0]

175
        pixels = pixels.clone()
176
177
178
179
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
            mask = mask[:x,:y]

180
        #grow mask by a few pixels to keep things seamless in latent space
181
        kernel_tensor = torch.ones((1, 1, 6, 6))
182
183
        mask_erosion = torch.clamp(torch.nn.functional.conv2d((mask.round())[None], kernel_tensor, padding=3), 0, 1)
        m = (1.0 - mask.round())
184
185
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
186
            pixels[:,:,:,i] *= m
187
188
189
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

190
        return ({"samples":t, "noise_mask": (mask_erosion[0][:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
191
192
193
194

class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
195
196
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
197
198
199
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

200
    CATEGORY = "advanced/loaders"
201

comfyanonymous's avatar
comfyanonymous committed
202
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
203
204
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
205
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
206

207
208
209
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
210
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
211
212
213
214
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

215
    CATEGORY = "loaders"
216

217
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
218
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
219
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
220
221
        return out

222
223
224
225
226
227
228
229
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

230
    CATEGORY = "loaders"
231
232
233
234
235
236

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

253
254
255
256
257
class LoraLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
258
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
259
260
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
261
262
263
264
265
266
267
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
268
        lora_path = folder_paths.get_full_path("loras", lora_name)
269
270
271
        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
        return (model_lora, clip_lora)

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
class TomePatchModel:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "_for_testing"

    def patch(self, model, ratio):
        m = model.clone()
        m.set_model_tomesd(ratio)
        return (m, )

comfyanonymous's avatar
comfyanonymous committed
288
289
290
class VAELoader:
    @classmethod
    def INPUT_TYPES(s):
291
        return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
comfyanonymous's avatar
comfyanonymous committed
292
293
294
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

295
296
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
297
298
    #TODO: scale factor?
    def load_vae(self, vae_name):
299
        vae_path = folder_paths.get_full_path("vae", vae_name)
comfyanonymous's avatar
comfyanonymous committed
300
301
302
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
303
304
305
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
306
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
307
308
309
310
311
312
313

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
314
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
comfyanonymous's avatar
comfyanonymous committed
315
316
317
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

318
319
320
321
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
322
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
323
324
325
326
327
328
329

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
330
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
331
332
333
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
334
335
336
337

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
338
339
340
341
342
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
343
344
345
346
347
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

348
    def apply_controlnet(self, conditioning, control_net, image, strength):
comfyanonymous's avatar
comfyanonymous committed
349
350
351
352
353
        c = []
        control_hint = image.movedim(-1,1)
        print(control_hint.shape)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
354
355
356
357
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
comfyanonymous's avatar
comfyanonymous committed
358
359
360
            c.append(n)
        return (c, )

361
362
363
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
364
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
365
366
367
368
369
370
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

371
    def load_clip(self, clip_name):
372
        clip_path = folder_paths.get_full_path("clip", clip_name)
comfyanonymous's avatar
comfyanonymous committed
373
        clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=folder_paths.get_folder_paths("embeddings"))
374
375
        return (clip,)

376
377
378
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
379
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
380
381
382
383
384
385
386
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
387
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
388
        clip_vision = comfy.clip_vision.load(clip_path)
389
390
391
392
393
394
395
396
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
397
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
398
399
    FUNCTION = "encode"

400
    CATEGORY = "conditioning"
401
402
403
404
405
406
407
408

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
409
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
410
411
412
413
414
415
416

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
417
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
418
419
420
421
422
423
424
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
425
426
427
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
428
429
430
431
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
432
    CATEGORY = "conditioning/style_model"
433

434
435
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
        cond = style_model.get_cond(clip_vision_output)
436
        c = []
437
438
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
439
440
441
            c.append(n)
        return (c, )

442
443
444
445
446
447
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
448
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
449
450
451
452
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

453
    CATEGORY = "conditioning"
454

455
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
456
457
458
        c = []
        for t in conditioning:
            o = t[1].copy()
459
            x = (clip_vision_output, strength, noise_augmentation)
460
461
462
463
464
465
466
467
468
            if "adm" in o:
                o["adm"] = o["adm"][:] + [x]
            else:
                o["adm"] = [x]
            n = [t[0], o]
            c.append(n)
        return (c, )


comfyanonymous's avatar
comfyanonymous committed
469
470
471
472
473
474
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
475
476
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
comfyanonymous's avatar
comfyanonymous committed
477
478
479
480
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

481
482
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
483
484
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
485
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
486

comfyanonymous's avatar
comfyanonymous committed
487

comfyanonymous's avatar
comfyanonymous committed
488

comfyanonymous's avatar
comfyanonymous committed
489
490
class LatentUpscale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
491
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
492
493
494
495

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
496
497
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
498
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
499
500
501
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

502
503
    CATEGORY = "latent"

504
    def upscale(self, samples, upscale_method, width, height, crop):
505
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
506
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
507
508
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
509
510
511
512
513
514
515
516
517
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
518
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
519
520

    def rotate(self, samples, rotation):
521
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
522
523
524
525
526
527
528
529
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

530
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
531
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
532
533
534
535
536
537
538
539
540
541

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
542
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
543
544

    def flip(self, samples, flip_method):
545
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
546
        if flip_method.startswith("x"):
547
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
548
        elif flip_method.startswith("y"):
549
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
550
551

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
552
553
554
555
556
557

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
558
559
560
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
561
562
563
564
565
566
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

567
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
comfyanonymous's avatar
comfyanonymous committed
568
569
        x =  x // 8
        y = y // 8
570
        feather = feather // 8
571
572
573
574
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
575
576
577
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
578
579
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
580
581
582
583
584
585
586
587
588
589
590
591
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
592
593
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
594

comfyanonymous's avatar
comfyanonymous committed
595
596
597
598
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
599
600
601
602
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
603
604
605
606
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
607
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
608
609

    def crop(self, samples, width, height, x, y):
610
611
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
        def enforce_image_dim(d, to_d, max_d):
            if to_d > max_d:
                leftover = (to_d - max_d) % 8
                to_d = max_d
                d -= leftover
            return (d, to_d)

        #make sure size is always multiple of 64
        x, to_x = enforce_image_dim(x, to_x, samples.shape[3])
        y, to_y = enforce_image_dim(y, to_y, samples.shape[2])
635
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
636
637
        return (s,)

638
639
640
641
642
643
644
645
646
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

647
    CATEGORY = "latent/inpaint"
648
649
650
651
652
653
654

    def set_mask(self, samples, mask):
        s = samples.copy()
        s["noise_mask"] = mask
        return (s,)


655
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
656
657
    latent_image = latent["samples"]
    noise_mask = None
658
    device = model_management.get_torch_device()
659

comfyanonymous's avatar
comfyanonymous committed
660
661
662
663
664
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
        noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=torch.manual_seed(seed), device="cpu")

665
666
667
    if "noise_mask" in latent:
        noise_mask = latent['noise_mask']
        noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear")
668
        noise_mask = noise_mask.round()
669
670
671
672
        noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1)
        noise_mask = torch.cat([noise_mask] * noise.shape[0])
        noise_mask = noise_mask.to(device)

673
    real_model = None
674
675
676
    model_management.load_model_gpu(model)
    real_model = model.model

677
678
679
680
681
682
    noise = noise.to(device)
    latent_image = latent_image.to(device)

    positive_copy = []
    negative_copy = []

comfyanonymous's avatar
comfyanonymous committed
683
    control_nets = []
684
685
686
687
688
    for p in positive:
        t = p[0]
        if t.shape[0] < noise.shape[0]:
            t = torch.cat([t] * noise.shape[0])
        t = t.to(device)
comfyanonymous's avatar
comfyanonymous committed
689
690
        if 'control' in p[1]:
            control_nets += [p[1]['control']]
691
692
693
694
695
696
        positive_copy += [[t] + p[1:]]
    for n in negative:
        t = n[0]
        if t.shape[0] < noise.shape[0]:
            t = torch.cat([t] * noise.shape[0])
        t = t.to(device)
697
698
        if 'control' in n[1]:
            control_nets += [n[1]['control']]
699
700
        negative_copy += [[t] + n[1:]]

comfyanonymous's avatar
comfyanonymous committed
701
702
703
704
    control_net_models = []
    for x in control_nets:
        control_net_models += x.get_control_models()
    model_management.load_controlnet_gpu(control_net_models)
comfyanonymous's avatar
comfyanonymous committed
705

706
    if sampler_name in comfy.samplers.KSampler.SAMPLERS:
707
        sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
708
709
710
711
    else:
        #other samplers
        pass

712
    samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask)
713
    samples = samples.cpu()
comfyanonymous's avatar
comfyanonymous committed
714
715
    for c in control_nets:
        c.cleanup()
comfyanonymous's avatar
comfyanonymous committed
716

717
718
719
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
720

comfyanonymous's avatar
comfyanonymous committed
721
722
723
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
724
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

740
741
    CATEGORY = "sampling"

comfyanonymous's avatar
comfyanonymous committed
742
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
743
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
744

comfyanonymous's avatar
comfyanonymous committed
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
768

comfyanonymous's avatar
comfyanonymous committed
769
770
771
772
773
774
775
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
776
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
777
778
779
780

class SaveImage:
    def __init__(self):
        self.output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output")
m957ymj75urz's avatar
m957ymj75urz committed
781
        self.type = "output"
comfyanonymous's avatar
comfyanonymous committed
782
783
784
785

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
786
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
787
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
788
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
789
790
791
792
793
794
795
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

796
797
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
798
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
799
        def map_filename(filename):
800
            prefix_len = len(os.path.basename(filename_prefix))
801
802
803
804
805
806
            prefix = filename[:prefix_len + 1]
            try:
                digits = int(filename[prefix_len + 1:].split('_')[0])
            except:
                digits = 0
            return (digits, prefix)
comfyanonymous's avatar
Style.  
comfyanonymous committed
807

808
809
810
811
        def compute_vars(input):
            input = input.replace("%width%", str(images[0].shape[1]))
            input = input.replace("%height%", str(images[0].shape[0]))
            return input
comfyanonymous's avatar
Style.  
comfyanonymous committed
812

813
        filename_prefix = compute_vars(filename_prefix)
comfyanonymous's avatar
comfyanonymous committed
814

m957ymj75urz's avatar
m957ymj75urz committed
815
816
817
        subfolder = os.path.dirname(os.path.normpath(filename_prefix))
        filename = os.path.basename(os.path.normpath(filename_prefix))

comfyanonymous's avatar
comfyanonymous committed
818
        full_output_folder = os.path.join(self.output_dir, subfolder)
819

820
        if os.path.commonpath((self.output_dir, os.path.abspath(full_output_folder))) != self.output_dir:
821
            print("Saving image outside the output folder is not allowed.")
comfyanonymous's avatar
comfyanonymous committed
822
823
            return {}

824
        try:
825
            counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1
826
827
        except ValueError:
            counter = 1
828
        except FileNotFoundError:
829
            os.makedirs(full_output_folder, exist_ok=True)
830
            counter = 1
pythongosssss's avatar
pythongosssss committed
831

pythongosssss's avatar
pythongosssss committed
832
833
        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
834

m957ymj75urz's avatar
m957ymj75urz committed
835
        results = list()
comfyanonymous's avatar
comfyanonymous committed
836
837
        for image in images:
            i = 255. * image.cpu().numpy()
838
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
comfyanonymous's avatar
comfyanonymous committed
839
840
841
842
843
844
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
845

846
            file = f"{filename}_{counter:05}_.png"
847
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
848
849
850
851
852
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
            });
853
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
854

m957ymj75urz's avatar
m957ymj75urz committed
855
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
856

pythongosssss's avatar
pythongosssss committed
857
858
859
class PreviewImage(SaveImage):
    def __init__(self):
        self.output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "temp")
m957ymj75urz's avatar
m957ymj75urz committed
860
        self.type = "temp"
pythongosssss's avatar
pythongosssss committed
861
862
863

    @classmethod
    def INPUT_TYPES(s):
864
        return {"required":
pythongosssss's avatar
pythongosssss committed
865
866
867
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
868

869
870
871
872
class LoadImage:
    input_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
    @classmethod
    def INPUT_TYPES(s):
pythongosssss's avatar
pythongosssss committed
873
874
        if not os.path.exists(s.input_dir):
            os.makedirs(s.input_dir)
875
        return {"required":
876
                    {"image": (sorted(os.listdir(s.input_dir)), )},
877
                }
878
879

    CATEGORY = "image"
880

881
    RETURN_TYPES = ("IMAGE", "MASK")
882
883
884
    FUNCTION = "load_image"
    def load_image(self, image):
        image_path = os.path.join(self.input_dir, image)
885
886
        i = Image.open(image_path)
        image = i.convert("RGB")
887
        image = np.array(image).astype(np.float32) / 255.0
888
        image = torch.from_numpy(image)[None,]
889
890
891
892
893
894
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)
895

896
897
898
899
900
901
902
    @classmethod
    def IS_CHANGED(s, image):
        image_path = os.path.join(s.input_dir, image)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
903

904
905
906
907
908
class LoadImageMask:
    input_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
909
                    {"image": (sorted(os.listdir(s.input_dir)), ),
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
                    "channel": (["alpha", "red", "green", "blue"], ),}
                }

    CATEGORY = "image"

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
        image_path = os.path.join(self.input_dir, image)
        i = Image.open(image_path)
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
        image_path = os.path.join(s.input_dir, image)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
938

comfyanonymous's avatar
comfyanonymous committed
939
940
941
942
943
944
945
class ImageScale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
946
947
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
948
949
950
951
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

952
    CATEGORY = "image/upscaling"
953

comfyanonymous's avatar
comfyanonymous committed
954
955
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
956
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
957
958
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
959

960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


Guo Y.K's avatar
Guo Y.K committed
976
977
978
979
980
981
982
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
983
984
985
986
987
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
988
989
990
991
992
993
994
995
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

996
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1009

1010
1011
1012
1013
1014
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1015
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1035

Guo Y.K's avatar
Guo Y.K committed
1036
1037
1038
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1039
1040
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1041
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1042
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1043
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1044
1045
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1046
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1047
1048
1049
1050
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1051
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1052
    "LoadImage": LoadImage,
1053
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1054
    "ImageScale": ImageScale,
1055
    "ImageInvert": ImageInvert,
Guo Y.K's avatar
Guo Y.K committed
1056
    "ImagePadForOutpaint": ImagePadForOutpaint,
comfyanonymous's avatar
comfyanonymous committed
1057
1058
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
comfyanonymous's avatar
comfyanonymous committed
1059
    "KSamplerAdvanced": KSamplerAdvanced,
1060
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1061
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
1062
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1063
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1064
    "LatentCrop": LatentCrop,
1065
    "LoraLoader": LoraLoader,
1066
    "CLIPLoader": CLIPLoader,
1067
    "CLIPVisionEncode": CLIPVisionEncode,
1068
    "StyleModelApply": StyleModelApply,
1069
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1070
1071
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
1072
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1073
1074
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1075
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1076
    "VAEEncodeTiled": VAEEncodeTiled,
1077
    "TomePatchModel": TomePatchModel,
1078
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1079
    "CheckpointLoader": CheckpointLoader,
comfyanonymous's avatar
comfyanonymous committed
1080
1081
}

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
def load_custom_node(module_path):
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
            NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)

Hacker 17082006's avatar
Hacker 17082006 committed
1103
def load_custom_nodes():
1104
    CUSTOM_NODE_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)), "custom_nodes")
1105
    possible_modules = os.listdir(CUSTOM_NODE_PATH)
1106
    if "__pycache__" in possible_modules:
Hacker 17082006's avatar
.  
Hacker 17082006 committed
1107
        possible_modules.remove("__pycache__")
1108

Hacker 17082006's avatar
Hacker 17082006 committed
1109
    for possible_module in possible_modules:
1110
1111
        module_path = os.path.join(CUSTOM_NODE_PATH, possible_module)
        if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1112
        load_custom_node(module_path)
1113

1114
1115
def init_custom_nodes():
    load_custom_nodes()
1116
1117
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))