"vscode:/vscode.git/clone" did not exist on "9a05adcacb22803cedf81fcde9a9678014021a60"
nodes.py 40.5 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
comfyanonymous's avatar
comfyanonymous committed
8
9
10
11
12

from PIL import Image
from PIL.PngImagePlugin import PngInfo
import numpy as np

sALTaccount's avatar
sALTaccount committed
13
14
from comfy.diffusers_convert import load_diffusers

comfyanonymous's avatar
comfyanonymous committed
15
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
16
17
18
19


import comfy.samplers
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
20
21
import comfy.utils

22
import comfy.clip_vision
23

24
import model_management
25
import importlib
comfyanonymous's avatar
comfyanonymous committed
26

27
import folder_paths
28
29
30
31

def before_node_execution():
    model_management.throw_exception_if_processing_interrupted()

32
33
def interrupt_processing(value=True):
    model_management.interrupt_current_processing(value)
34

35
36
MAX_RESOLUTION=8192

comfyanonymous's avatar
comfyanonymous committed
37
38
39
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
40
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
41
42
43
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

44
45
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
46
    def encode(self, clip, text):
comfyanonymous's avatar
comfyanonymous committed
47
48
49
50
51
52
53
54
55
        return ([[clip.encode(text), {}]], )

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

56
57
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
58
59
60
61
62
63
64
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
65
66
67
68
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
comfyanonymous's avatar
comfyanonymous committed
69
70
71
72
73
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

74
75
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
76
    def append(self, conditioning, width, height, x, y, strength, min_sigma=0.0, max_sigma=99.0):
comfyanonymous's avatar
comfyanonymous committed
77
78
79
80
81
82
83
84
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
            n[1]['min_sigma'] = min_sigma
            n[1]['max_sigma'] = max_sigma
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
85
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
86
87
88
89
90
91
92
93
94
95
96

class VAEDecode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

97
98
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
99
    def decode(self, vae, samples):
100
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
class VAEDecodeTiled:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
117
118
119
120
121
122
123
124
125
126
class VAEEncode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

127
128
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
129
    def encode(self, vae, pixels):
130
131
132
133
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
134
135
136
        t = vae.encode(pixels[:,:,:,:3])

        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
137

comfyanonymous's avatar
comfyanonymous committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

class VAEEncodeTiled:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

    def encode(self, vae, pixels):
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
        t = vae.encode_tiled(pixels[:,:,:,:3])

        return ({"samples":t}, )
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
class VAEEncodeForInpaint:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

    def encode(self, vae, pixels, mask):
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
174
175
        mask = torch.nn.functional.interpolate(mask[None,None,], size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")[0][0]

176
        pixels = pixels.clone()
177
178
179
180
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
            mask = mask[:x,:y]

181
        #grow mask by a few pixels to keep things seamless in latent space
182
        kernel_tensor = torch.ones((1, 1, 6, 6))
183
184
        mask_erosion = torch.clamp(torch.nn.functional.conv2d((mask.round())[None], kernel_tensor, padding=3), 0, 1)
        m = (1.0 - mask.round())
185
186
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
187
            pixels[:,:,:,i] *= m
188
189
190
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

191
        return ({"samples":t, "noise_mask": (mask_erosion[0][:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
192
193
194
195

class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
196
197
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
198
199
200
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

201
    CATEGORY = "advanced/loaders"
202

comfyanonymous's avatar
comfyanonymous committed
203
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
204
205
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
206
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
207

208
209
210
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
211
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
212
213
214
215
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

216
    CATEGORY = "loaders"
217

218
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
219
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
220
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
221
222
        return out

sALTaccount's avatar
sALTaccount committed
223
224
225
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
226
        paths = []
sALTaccount's avatar
sALTaccount committed
227
        for search_path in folder_paths.get_folder_paths("diffusers"):
228
            if os.path.exists(search_path):
sALTaccount's avatar
sALTaccount committed
229
                paths += next(os.walk(search_path))[1]
230
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
231
232
233
234
235
236
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

    CATEGORY = "loaders"

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
237
238
239
240
241
242
243
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
                paths = next(os.walk(search_path))[1]
                if model_path in paths:
                    model_path = os.path.join(search_path, model_path)
                    break
        search_paths = folder_paths.get_folder_paths("diffusers")
244
        return load_diffusers(model_path, fp16=model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
245
246


247
248
249
250
251
252
253
254
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

255
    CATEGORY = "loaders"
256
257
258
259
260
261

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

278
279
280
281
282
class LoraLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
283
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
284
285
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
286
287
288
289
290
291
292
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
293
        lora_path = folder_paths.get_full_path("loras", lora_name)
294
295
296
        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
        return (model_lora, clip_lora)

297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
class TomePatchModel:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "_for_testing"

    def patch(self, model, ratio):
        m = model.clone()
        m.set_model_tomesd(ratio)
        return (m, )

comfyanonymous's avatar
comfyanonymous committed
313
314
315
class VAELoader:
    @classmethod
    def INPUT_TYPES(s):
316
        return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
comfyanonymous's avatar
comfyanonymous committed
317
318
319
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

320
321
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
322
323
    #TODO: scale factor?
    def load_vae(self, vae_name):
324
        vae_path = folder_paths.get_full_path("vae", vae_name)
comfyanonymous's avatar
comfyanonymous committed
325
326
327
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
328
329
330
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
331
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
332
333
334
335
336
337
338

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
339
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
comfyanonymous's avatar
comfyanonymous committed
340
341
342
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

343
344
345
346
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
347
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
348
349
350
351
352
353
354

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
355
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
356
357
358
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
359
360
361
362

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
363
364
365
366
367
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
368
369
370
371
372
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

373
    def apply_controlnet(self, conditioning, control_net, image, strength):
comfyanonymous's avatar
comfyanonymous committed
374
375
376
377
378
        c = []
        control_hint = image.movedim(-1,1)
        print(control_hint.shape)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
379
380
381
382
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
comfyanonymous's avatar
comfyanonymous committed
383
384
385
            c.append(n)
        return (c, )

386
387
388
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
389
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
390
391
392
393
394
395
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

396
    def load_clip(self, clip_name):
397
        clip_path = folder_paths.get_full_path("clip", clip_name)
comfyanonymous's avatar
comfyanonymous committed
398
        clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=folder_paths.get_folder_paths("embeddings"))
399
400
        return (clip,)

401
402
403
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
404
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
405
406
407
408
409
410
411
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
412
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
413
        clip_vision = comfy.clip_vision.load(clip_path)
414
415
416
417
418
419
420
421
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
422
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
423
424
    FUNCTION = "encode"

425
    CATEGORY = "conditioning"
426
427
428
429
430
431
432
433

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
434
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
435
436
437
438
439
440
441

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
442
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
443
444
445
446
447
448
449
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
450
451
452
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
453
454
455
456
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
457
    CATEGORY = "conditioning/style_model"
458

459
460
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
        cond = style_model.get_cond(clip_vision_output)
461
        c = []
462
463
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
464
465
466
            c.append(n)
        return (c, )

467
468
469
470
471
472
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
473
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
474
475
476
477
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

478
    CATEGORY = "conditioning"
479

480
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
481
482
483
        c = []
        for t in conditioning:
            o = t[1].copy()
484
            x = (clip_vision_output, strength, noise_augmentation)
485
486
487
488
489
490
491
492
493
            if "adm" in o:
                o["adm"] = o["adm"][:] + [x]
            else:
                o["adm"] = [x]
            n = [t[0], o]
            c.append(n)
        return (c, )


comfyanonymous's avatar
comfyanonymous committed
494
495
496
497
498
499
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
500
501
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
comfyanonymous's avatar
comfyanonymous committed
502
503
504
505
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

506
507
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
508
509
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
510
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
511

comfyanonymous's avatar
comfyanonymous committed
512

comfyanonymous's avatar
comfyanonymous committed
513

comfyanonymous's avatar
comfyanonymous committed
514
515
class LatentUpscale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
516
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
517
518
519
520

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
521
522
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
523
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
524
525
526
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

527
528
    CATEGORY = "latent"

529
    def upscale(self, samples, upscale_method, width, height, crop):
530
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
531
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
532
533
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
534
535
536
537
538
539
540
541
542
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
543
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
544
545

    def rotate(self, samples, rotation):
546
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
547
548
549
550
551
552
553
554
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

555
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
556
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
557
558
559
560
561
562
563
564
565
566

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
567
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
568
569

    def flip(self, samples, flip_method):
570
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
571
        if flip_method.startswith("x"):
572
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
573
        elif flip_method.startswith("y"):
574
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
575
576

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
577
578
579
580
581
582

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
583
584
585
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
586
587
588
589
590
591
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

592
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
comfyanonymous's avatar
comfyanonymous committed
593
594
        x =  x // 8
        y = y // 8
595
        feather = feather // 8
596
597
598
599
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
600
601
602
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
603
604
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
605
606
607
608
609
610
611
612
613
614
615
616
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
617
618
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
619

comfyanonymous's avatar
comfyanonymous committed
620
621
622
623
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
624
625
626
627
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
628
629
630
631
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
632
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
633
634

    def crop(self, samples, width, height, x, y):
635
636
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
        def enforce_image_dim(d, to_d, max_d):
            if to_d > max_d:
                leftover = (to_d - max_d) % 8
                to_d = max_d
                d -= leftover
            return (d, to_d)

        #make sure size is always multiple of 64
        x, to_x = enforce_image_dim(x, to_x, samples.shape[3])
        y, to_y = enforce_image_dim(y, to_y, samples.shape[2])
660
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
661
662
        return (s,)

663
664
665
666
667
668
669
670
671
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

672
    CATEGORY = "latent/inpaint"
673
674
675
676
677
678
679

    def set_mask(self, samples, mask):
        s = samples.copy()
        s["noise_mask"] = mask
        return (s,)


680
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
681
682
    latent_image = latent["samples"]
    noise_mask = None
683
    device = model_management.get_torch_device()
684

comfyanonymous's avatar
comfyanonymous committed
685
686
687
688
689
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
        noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=torch.manual_seed(seed), device="cpu")

690
691
692
    if "noise_mask" in latent:
        noise_mask = latent['noise_mask']
        noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear")
693
        noise_mask = noise_mask.round()
694
695
696
697
        noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1)
        noise_mask = torch.cat([noise_mask] * noise.shape[0])
        noise_mask = noise_mask.to(device)

698
    real_model = None
699
700
701
    model_management.load_model_gpu(model)
    real_model = model.model

702
703
704
705
706
707
    noise = noise.to(device)
    latent_image = latent_image.to(device)

    positive_copy = []
    negative_copy = []

comfyanonymous's avatar
comfyanonymous committed
708
    control_nets = []
709
710
711
712
713
    for p in positive:
        t = p[0]
        if t.shape[0] < noise.shape[0]:
            t = torch.cat([t] * noise.shape[0])
        t = t.to(device)
comfyanonymous's avatar
comfyanonymous committed
714
715
        if 'control' in p[1]:
            control_nets += [p[1]['control']]
716
717
718
719
720
721
        positive_copy += [[t] + p[1:]]
    for n in negative:
        t = n[0]
        if t.shape[0] < noise.shape[0]:
            t = torch.cat([t] * noise.shape[0])
        t = t.to(device)
722
723
        if 'control' in n[1]:
            control_nets += [n[1]['control']]
724
725
        negative_copy += [[t] + n[1:]]

comfyanonymous's avatar
comfyanonymous committed
726
727
728
729
    control_net_models = []
    for x in control_nets:
        control_net_models += x.get_control_models()
    model_management.load_controlnet_gpu(control_net_models)
comfyanonymous's avatar
comfyanonymous committed
730

731
    if sampler_name in comfy.samplers.KSampler.SAMPLERS:
732
        sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
733
734
735
736
    else:
        #other samplers
        pass

737
    samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask)
738
    samples = samples.cpu()
comfyanonymous's avatar
comfyanonymous committed
739
740
    for c in control_nets:
        c.cleanup()
comfyanonymous's avatar
comfyanonymous committed
741

742
743
744
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
745

comfyanonymous's avatar
comfyanonymous committed
746
747
748
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
749
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

765
766
    CATEGORY = "sampling"

comfyanonymous's avatar
comfyanonymous committed
767
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
768
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
769

comfyanonymous's avatar
comfyanonymous committed
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
793

comfyanonymous's avatar
comfyanonymous committed
794
795
796
797
798
799
800
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
801
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
802
803
804

class SaveImage:
    def __init__(self):
805
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
806
        self.type = "output"
comfyanonymous's avatar
comfyanonymous committed
807
808
809
810

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
811
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
812
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
813
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
814
815
816
817
818
819
820
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

821
822
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
823
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
824
        def map_filename(filename):
825
            prefix_len = len(os.path.basename(filename_prefix))
826
827
828
829
830
831
            prefix = filename[:prefix_len + 1]
            try:
                digits = int(filename[prefix_len + 1:].split('_')[0])
            except:
                digits = 0
            return (digits, prefix)
comfyanonymous's avatar
Style.  
comfyanonymous committed
832

833
834
835
836
        def compute_vars(input):
            input = input.replace("%width%", str(images[0].shape[1]))
            input = input.replace("%height%", str(images[0].shape[0]))
            return input
comfyanonymous's avatar
Style.  
comfyanonymous committed
837

838
        filename_prefix = compute_vars(filename_prefix)
comfyanonymous's avatar
comfyanonymous committed
839

m957ymj75urz's avatar
m957ymj75urz committed
840
841
842
        subfolder = os.path.dirname(os.path.normpath(filename_prefix))
        filename = os.path.basename(os.path.normpath(filename_prefix))

comfyanonymous's avatar
comfyanonymous committed
843
        full_output_folder = os.path.join(self.output_dir, subfolder)
844

845
        if os.path.commonpath((self.output_dir, os.path.abspath(full_output_folder))) != self.output_dir:
846
            print("Saving image outside the output folder is not allowed.")
comfyanonymous's avatar
comfyanonymous committed
847
848
            return {}

849
        try:
850
            counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1
851
852
        except ValueError:
            counter = 1
853
        except FileNotFoundError:
854
            os.makedirs(full_output_folder, exist_ok=True)
855
            counter = 1
pythongosssss's avatar
pythongosssss committed
856

m957ymj75urz's avatar
m957ymj75urz committed
857
        results = list()
comfyanonymous's avatar
comfyanonymous committed
858
859
        for image in images:
            i = 255. * image.cpu().numpy()
860
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
comfyanonymous's avatar
comfyanonymous committed
861
862
863
864
865
866
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
867

868
            file = f"{filename}_{counter:05}_.png"
869
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
870
871
872
873
874
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
            });
875
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
876

m957ymj75urz's avatar
m957ymj75urz committed
877
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
878

pythongosssss's avatar
pythongosssss committed
879
880
class PreviewImage(SaveImage):
    def __init__(self):
881
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
882
        self.type = "temp"
pythongosssss's avatar
pythongosssss committed
883
884
885

    @classmethod
    def INPUT_TYPES(s):
886
        return {"required":
pythongosssss's avatar
pythongosssss committed
887
888
889
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
890

891
892
893
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
894
        input_dir = folder_paths.get_input_directory()
895
        return {"required":
896
                    {"image": (sorted(os.listdir(input_dir)), )},
897
                }
898
899

    CATEGORY = "image"
900

901
    RETURN_TYPES = ("IMAGE", "MASK")
902
903
    FUNCTION = "load_image"
    def load_image(self, image):
904
905
        input_dir = folder_paths.get_input_directory()
        image_path = os.path.join(input_dir, image)
906
907
        i = Image.open(image_path)
        image = i.convert("RGB")
908
        image = np.array(image).astype(np.float32) / 255.0
909
        image = torch.from_numpy(image)[None,]
910
911
912
913
914
915
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)
916

917
918
    @classmethod
    def IS_CHANGED(s, image):
919
920
        input_dir = folder_paths.get_input_directory()
        image_path = os.path.join(input_dir, image)
921
922
923
924
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
925

926
927
928
class LoadImageMask:
    @classmethod
    def INPUT_TYPES(s):
929
        input_dir = folder_paths.get_input_directory()
930
        return {"required":
931
                    {"image": (sorted(os.listdir(input_dir)), ),
932
933
934
935
936
937
938
939
                    "channel": (["alpha", "red", "green", "blue"], ),}
                }

    CATEGORY = "image"

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
940
941
        input_dir = folder_paths.get_input_directory()
        image_path = os.path.join(input_dir, image)
942
943
944
945
946
947
948
949
950
951
952
953
954
955
        i = Image.open(image_path)
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
956
957
        input_dir = folder_paths.get_input_directory()
        image_path = os.path.join(input_dir, image)
958
959
960
961
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
962

comfyanonymous's avatar
comfyanonymous committed
963
964
965
966
967
968
969
class ImageScale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
970
971
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
972
973
974
975
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

976
    CATEGORY = "image/upscaling"
977

comfyanonymous's avatar
comfyanonymous committed
978
979
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
980
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
981
982
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
983

984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


Guo Y.K's avatar
Guo Y.K committed
1000
1001
1002
1003
1004
1005
1006
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1007
1008
1009
1010
1011
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1012
1013
1014
1015
1016
1017
1018
1019
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1020
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1033

1034
1035
1036
1037
1038
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1039
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1059

Guo Y.K's avatar
Guo Y.K committed
1060
1061
1062
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1063
1064
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1065
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1066
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1067
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1068
1069
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1070
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1071
1072
1073
1074
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1075
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1076
    "LoadImage": LoadImage,
1077
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1078
    "ImageScale": ImageScale,
1079
    "ImageInvert": ImageInvert,
Guo Y.K's avatar
Guo Y.K committed
1080
    "ImagePadForOutpaint": ImagePadForOutpaint,
comfyanonymous's avatar
comfyanonymous committed
1081
1082
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
comfyanonymous's avatar
comfyanonymous committed
1083
    "KSamplerAdvanced": KSamplerAdvanced,
1084
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1085
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
1086
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1087
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1088
    "LatentCrop": LatentCrop,
1089
    "LoraLoader": LoraLoader,
1090
    "CLIPLoader": CLIPLoader,
1091
    "CLIPVisionEncode": CLIPVisionEncode,
1092
    "StyleModelApply": StyleModelApply,
1093
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1094
1095
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
1096
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1097
1098
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1099
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1100
    "VAEEncodeTiled": VAEEncodeTiled,
1101
    "TomePatchModel": TomePatchModel,
1102
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1103
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1104
    "DiffusersLoader": DiffusersLoader,
comfyanonymous's avatar
comfyanonymous committed
1105
1106
}

1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
def load_custom_node(module_path):
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
            NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)

Hacker 17082006's avatar
Hacker 17082006 committed
1128
def load_custom_nodes():
1129
    CUSTOM_NODE_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)), "custom_nodes")
1130
    possible_modules = os.listdir(CUSTOM_NODE_PATH)
1131
    if "__pycache__" in possible_modules:
Hacker 17082006's avatar
.  
Hacker 17082006 committed
1132
        possible_modules.remove("__pycache__")
1133

Hacker 17082006's avatar
Hacker 17082006 committed
1134
    for possible_module in possible_modules:
1135
1136
        module_path = os.path.join(CUSTOM_NODE_PATH, possible_module)
        if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1137
        load_custom_node(module_path)
1138

1139
1140
def init_custom_nodes():
    load_custom_nodes()
1141
1142
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))