"...internlm2-math-7b.git" did not exist on "fe9a149a13363e5fc631cc23202661eab2f6713c"
nodes.py 74.3 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
8
import math
9
import time
10
import random
11
import logging
comfyanonymous's avatar
comfyanonymous committed
12

13
from PIL import Image, ImageOps, ImageSequence, ImageFile
comfyanonymous's avatar
comfyanonymous committed
14
from PIL.PngImagePlugin import PngInfo
15

comfyanonymous's avatar
comfyanonymous committed
16
import numpy as np
17
import safetensors.torch
comfyanonymous's avatar
comfyanonymous committed
18

19
20
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))

21
import comfy.diffusers_load
comfyanonymous's avatar
comfyanonymous committed
22
import comfy.samplers
23
import comfy.sample
comfyanonymous's avatar
comfyanonymous committed
24
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
25
import comfy.utils
26
import comfy.controlnet
comfyanonymous's avatar
comfyanonymous committed
27

28
import comfy.clip_vision
29

30
import comfy.model_management
31
32
from comfy.cli_args import args

33
import importlib
comfyanonymous's avatar
comfyanonymous committed
34

35
import folder_paths
36
import latent_preview
37
import node_helpers
space-nuko's avatar
space-nuko committed
38

39
def before_node_execution():
40
    comfy.model_management.throw_exception_if_processing_interrupted()
41

42
def interrupt_processing(value=True):
43
    comfy.model_management.interrupt_current_processing(value)
44

comfyanonymous's avatar
comfyanonymous committed
45
MAX_RESOLUTION=16384
46

comfyanonymous's avatar
comfyanonymous committed
47
48
49
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
50
        return {"required": {"text": ("STRING", {"multiline": True, "dynamicPrompts": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
51
52
53
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

54
55
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
56
    def encode(self, clip, text):
57
58
59
        tokens = clip.tokenize(text)
        cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
        return ([[cond, {"pooled_output": pooled}]], )
comfyanonymous's avatar
comfyanonymous committed
60
61
62
63
64
65
66
67

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

68
69
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
70
71
72
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

FizzleDorf's avatar
FizzleDorf committed
73
74
75
class ConditioningAverage :
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
76
77
        return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
                              "conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
FizzleDorf's avatar
FizzleDorf committed
78
79
80
81
82
83
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "addWeighted"

    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
84
    def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
FizzleDorf's avatar
FizzleDorf committed
85
        out = []
comfyanonymous's avatar
comfyanonymous committed
86
87

        if len(conditioning_from) > 1:
88
            logging.warning("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
comfyanonymous's avatar
comfyanonymous committed
89
90

        cond_from = conditioning_from[0][0]
91
        pooled_output_from = conditioning_from[0][1].get("pooled_output", None)
comfyanonymous's avatar
comfyanonymous committed
92
93
94

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
95
            pooled_output_to = conditioning_to[i][1].get("pooled_output", pooled_output_from)
comfyanonymous's avatar
comfyanonymous committed
96
97
98
99
100
            t0 = cond_from[:,:t1.shape[1]]
            if t0.shape[1] < t1.shape[1]:
                t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)

            tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
101
102
103
104
105
106
107
            t_to = conditioning_to[i][1].copy()
            if pooled_output_from is not None and pooled_output_to is not None:
                t_to["pooled_output"] = torch.mul(pooled_output_to, conditioning_to_strength) + torch.mul(pooled_output_from, (1.0 - conditioning_to_strength))
            elif pooled_output_from is not None:
                t_to["pooled_output"] = pooled_output_from

            n = [tw, t_to]
FizzleDorf's avatar
FizzleDorf committed
108
109
110
            out.append(n)
        return (out, )

111
112
113
114
115
116
117
118
119
120
class ConditioningConcat:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "conditioning_to": ("CONDITIONING",),
            "conditioning_from": ("CONDITIONING",),
            }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "concat"

121
    CATEGORY = "conditioning"
122
123
124
125
126

    def concat(self, conditioning_to, conditioning_from):
        out = []

        if len(conditioning_from) > 1:
127
            logging.warning("Warning: ConditioningConcat conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
128
129
130
131
132
133
134
135
136
137
138

        cond_from = conditioning_from[0][0]

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
            tw = torch.cat((t1, cond_from),1)
            n = [tw, conditioning_to[i][1].copy()]
            out.append(n)

        return (out, )

comfyanonymous's avatar
comfyanonymous committed
139
140
141
142
class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
143
144
145
146
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
147
148
149
150
151
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

152
153
    CATEGORY = "conditioning"

154
    def append(self, conditioning, width, height, x, y, strength):
155
156
157
        c = node_helpers.conditioning_set_values(conditioning, {"area": (height // 8, width // 8, y // 8, x // 8),
                                                                "strength": strength,
                                                                "set_area_to_bounds": False})
comfyanonymous's avatar
comfyanonymous committed
158
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
class ConditioningSetAreaPercentage:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "width": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
                              "height": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
                              "x": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
                              "y": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

    def append(self, conditioning, width, height, x, y, strength):
176
177
178
        c = node_helpers.conditioning_set_values(conditioning, {"area": ("percentage", height, width, y, x),
                                                                "strength": strength,
                                                                "set_area_to_bounds": False})
179
180
        return (c, )

181
182
183
184
185
186
187
188
189
190
191
192
class ConditioningSetAreaStrength:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

    def append(self, conditioning, strength):
193
        c = node_helpers.conditioning_set_values(conditioning, {"strength": strength})
194
195
196
        return (c, )


Jacob Segal's avatar
Jacob Segal committed
197
198
199
200
201
202
class ConditioningSetMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "mask": ("MASK", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
203
                              "set_cond_area": (["default", "mask bounds"],),
Jacob Segal's avatar
Jacob Segal committed
204
205
206
207
208
209
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

210
211
212
213
    def append(self, conditioning, mask, set_cond_area, strength):
        set_area_to_bounds = False
        if set_cond_area != "default":
            set_area_to_bounds = True
Jacob Segal's avatar
Jacob Segal committed
214
215
        if len(mask.shape) < 3:
            mask = mask.unsqueeze(0)
216
217
218
219

        c = node_helpers.conditioning_set_values(conditioning, {"mask": mask,
                                                                "set_area_to_bounds": set_area_to_bounds,
                                                                "mask_strength": strength})
Jacob Segal's avatar
Jacob Segal committed
220
221
        return (c, )

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
class ConditioningZeroOut:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "zero_out"

    CATEGORY = "advanced/conditioning"

    def zero_out(self, conditioning):
        c = []
        for t in conditioning:
            d = t[1].copy()
            if "pooled_output" in d:
                d["pooled_output"] = torch.zeros_like(d["pooled_output"])
            n = [torch.zeros_like(t[0]), d]
            c.append(n)
        return (c, )

241
242
243
244
class ConditioningSetTimestepRange:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
245
246
                             "start": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                             "end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
247
248
249
250
251
252
253
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "set_range"

    CATEGORY = "advanced/conditioning"

    def set_range(self, conditioning, start, end):
254
255
        c = node_helpers.conditioning_set_values(conditioning, {"start_percent": start,
                                                                "end_percent": end})
256
257
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
258
259
260
261
262
263
264
class VAEDecode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

265
266
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
267
    def decode(self, vae, samples):
268
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
269

270
271
272
class VAEDecodeTiled:
    @classmethod
    def INPUT_TYPES(s):
273
        return {"required": {"samples": ("LATENT", ), "vae": ("VAE", ),
comfyanonymous's avatar
comfyanonymous committed
274
                             "tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64})
275
                            }}
276
277
278
279
280
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

281
    def decode(self, vae, samples, tile_size):
282
        return (vae.decode_tiled(samples["samples"], tile_x=tile_size // 8, tile_y=tile_size // 8, ), )
283

comfyanonymous's avatar
comfyanonymous committed
284
285
286
287
288
289
290
class VAEEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

291
292
    CATEGORY = "latent"

293
294
    def encode(self, vae, pixels):
        t = vae.encode(pixels[:,:,:,:3])
295
        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
296

comfyanonymous's avatar
comfyanonymous committed
297
298
299
class VAEEncodeTiled:
    @classmethod
    def INPUT_TYPES(s):
300
        return {"required": {"pixels": ("IMAGE", ), "vae": ("VAE", ),
301
                             "tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64})
302
                            }}
comfyanonymous's avatar
comfyanonymous committed
303
304
305
306
307
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

308
309
    def encode(self, vae, pixels, tile_size):
        t = vae.encode_tiled(pixels[:,:,:,:3], tile_x=tile_size, tile_y=tile_size, )
comfyanonymous's avatar
comfyanonymous committed
310
        return ({"samples":t}, )
311

312
313
314
class VAEEncodeForInpaint:
    @classmethod
    def INPUT_TYPES(s):
315
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
316
317
318
319
320
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

321
    def encode(self, vae, pixels, mask, grow_mask_by=6):
322
323
        x = (pixels.shape[1] // vae.downscale_ratio) * vae.downscale_ratio
        y = (pixels.shape[2] // vae.downscale_ratio) * vae.downscale_ratio
324
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
325

326
        pixels = pixels.clone()
327
        if pixels.shape[1] != x or pixels.shape[2] != y:
328
329
            x_offset = (pixels.shape[1] % vae.downscale_ratio) // 2
            y_offset = (pixels.shape[2] % vae.downscale_ratio) // 2
330
331
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
332

333
        #grow mask by a few pixels to keep things seamless in latent space
334
335
336
337
338
339
340
341
        if grow_mask_by == 0:
            mask_erosion = mask
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)

342
        m = (1.0 - mask.round()).squeeze(1)
343
344
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
345
            pixels[:,:,:,i] *= m
346
347
348
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

349
        return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
350

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

class InpaintModelConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"positive": ("CONDITIONING", ),
                             "negative": ("CONDITIONING", ),
                             "vae": ("VAE", ),
                             "pixels": ("IMAGE", ),
                             "mask": ("MASK", ),
                             }}

    RETURN_TYPES = ("CONDITIONING","CONDITIONING","LATENT")
    RETURN_NAMES = ("positive", "negative", "latent")
    FUNCTION = "encode"

    CATEGORY = "conditioning/inpaint"

    def encode(self, positive, negative, pixels, vae, mask):
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")

        orig_pixels = pixels
        pixels = orig_pixels.clone()
        if pixels.shape[1] != x or pixels.shape[2] != y:
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]

        m = (1.0 - mask.round()).squeeze(1)
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
            pixels[:,:,:,i] *= m
            pixels[:,:,:,i] += 0.5
        concat_latent = vae.encode(pixels)
        orig_latent = vae.encode(orig_pixels)

        out_latent = {}

        out_latent["samples"] = orig_latent
        out_latent["noise_mask"] = mask

        out = []
        for conditioning in [positive, negative]:
396
397
            c = node_helpers.conditioning_set_values(conditioning, {"concat_latent_image": concat_latent,
                                                                    "concat_mask": mask})
398
399
400
401
            out.append(c)
        return (out[0], out[1], out_latent)


Dr.Lt.Data's avatar
Dr.Lt.Data committed
402
403
class SaveLatent:
    def __init__(self):
404
        self.output_dir = folder_paths.get_output_directory()
Dr.Lt.Data's avatar
Dr.Lt.Data committed
405
406
407
408

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ),
409
                              "filename_prefix": ("STRING", {"default": "latents/ComfyUI"})},
Dr.Lt.Data's avatar
Dr.Lt.Data committed
410
411
412
413
414
415
416
417
418
419
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
    RETURN_TYPES = ()
    FUNCTION = "save"

    OUTPUT_NODE = True

    CATEGORY = "_for_testing"

    def save(self, samples, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
420
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
421
422
423
424
425
426

        # support save metadata for latent sharing
        prompt_info = ""
        if prompt is not None:
            prompt_info = json.dumps(prompt)

427
428
429
430
431
432
        metadata = None
        if not args.disable_metadata:
            metadata = {"prompt": prompt_info}
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata[x] = json.dumps(extra_pnginfo[x])
Dr.Lt.Data's avatar
Dr.Lt.Data committed
433
434

        file = f"{filename}_{counter:05}_.latent"
435
436
437
438
439
440
441
442

        results = list()
        results.append({
            "filename": file,
            "subfolder": subfolder,
            "type": "output"
        })

Dr.Lt.Data's avatar
Dr.Lt.Data committed
443
444
        file = os.path.join(full_output_folder, file)

445
446
        output = {}
        output["latent_tensor"] = samples["samples"]
447
        output["latent_format_version_0"] = torch.tensor([])
448

449
        comfy.utils.save_torch_file(output, file, metadata=metadata)
450
        return { "ui": { "latents": results } }
Dr.Lt.Data's avatar
Dr.Lt.Data committed
451
452
453
454
455


class LoadLatent:
    @classmethod
    def INPUT_TYPES(s):
456
457
        input_dir = folder_paths.get_input_directory()
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.endswith(".latent")]
Dr.Lt.Data's avatar
Dr.Lt.Data committed
458
459
460
461
462
463
464
465
        return {"required": {"latent": [sorted(files), ]}, }

    CATEGORY = "_for_testing"

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "load"

    def load(self, latent):
466
467
        latent_path = folder_paths.get_annotated_filepath(latent)
        latent = safetensors.torch.load_file(latent_path, device="cpu")
468
469
470
471
        multiplier = 1.0
        if "latent_format_version_0" not in latent:
            multiplier = 1.0 / 0.18215
        samples = {"samples": latent["latent_tensor"].float() * multiplier}
472
        return (samples, )
Dr.Lt.Data's avatar
Dr.Lt.Data committed
473

474
475
476
477
478
479
480
481
482
483
484
485
486
487
    @classmethod
    def IS_CHANGED(s, latent):
        image_path = folder_paths.get_annotated_filepath(latent)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

    @classmethod
    def VALIDATE_INPUTS(s, latent):
        if not folder_paths.exists_annotated_filepath(latent):
            return "Invalid latent file: {}".format(latent)
        return True

Dr.Lt.Data's avatar
Dr.Lt.Data committed
488

comfyanonymous's avatar
comfyanonymous committed
489
490
491
class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
492
493
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
494
495
496
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

497
    CATEGORY = "advanced/loaders"
498

499
    def load_checkpoint(self, config_name, ckpt_name):
500
501
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
502
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
503

504
505
506
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
507
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
508
509
510
511
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

512
    CATEGORY = "loaders"
513

514
    def load_checkpoint(self, ckpt_name):
515
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
516
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
517
        return out[:3]
518

sALTaccount's avatar
sALTaccount committed
519
520
521
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
522
        paths = []
sALTaccount's avatar
sALTaccount committed
523
        for search_path in folder_paths.get_folder_paths("diffusers"):
524
            if os.path.exists(search_path):
525
526
527
528
                for root, subdir, files in os.walk(search_path, followlinks=True):
                    if "model_index.json" in files:
                        paths.append(os.path.relpath(root, start=search_path))

529
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
530
531
532
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

533
    CATEGORY = "advanced/loaders/deprecated"
sALTaccount's avatar
sALTaccount committed
534
535

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
536
537
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
538
539
540
                path = os.path.join(search_path, model_path)
                if os.path.exists(path):
                    model_path = path
sALTaccount's avatar
sALTaccount committed
541
                    break
542

543
        return comfy.diffusers_load.load_diffusers(model_path, output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
544
545


546
547
548
549
550
551
552
553
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

554
    CATEGORY = "loaders"
555
556
557
558
559
560

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

577
class LoraLoader:
578
579
580
    def __init__(self):
        self.loaded_lora = None

581
582
583
584
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
585
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
586
587
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01}),
588
589
590
591
592
593
594
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
595
596
597
        if strength_model == 0 and strength_clip == 0:
            return (model, clip)

598
        lora_path = folder_paths.get_full_path("loras", lora_name)
599
600
601
602
603
        lora = None
        if self.loaded_lora is not None:
            if self.loaded_lora[0] == lora_path:
                lora = self.loaded_lora[1]
            else:
604
605
606
                temp = self.loaded_lora
                self.loaded_lora = None
                del temp
607
608
609
610
611
612

        if lora is None:
            lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
            self.loaded_lora = (lora_path, lora)

        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
613
614
        return (model_lora, clip_lora)

615
616
617
618
619
class LoraLoaderModelOnly(LoraLoader):
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
620
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01}),
621
622
623
624
625
626
627
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "load_lora_model_only"

    def load_lora_model_only(self, model, lora_name, strength_model):
        return (self.load_lora(model, None, lora_name, strength_model, 0)[0],)

comfyanonymous's avatar
comfyanonymous committed
628
class VAELoader:
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
    @staticmethod
    def vae_list():
        vaes = folder_paths.get_filename_list("vae")
        approx_vaes = folder_paths.get_filename_list("vae_approx")
        sdxl_taesd_enc = False
        sdxl_taesd_dec = False
        sd1_taesd_enc = False
        sd1_taesd_dec = False

        for v in approx_vaes:
            if v.startswith("taesd_decoder."):
                sd1_taesd_dec = True
            elif v.startswith("taesd_encoder."):
                sd1_taesd_enc = True
            elif v.startswith("taesdxl_decoder."):
                sdxl_taesd_dec = True
            elif v.startswith("taesdxl_encoder."):
                sdxl_taesd_enc = True
        if sd1_taesd_dec and sd1_taesd_enc:
            vaes.append("taesd")
        if sdxl_taesd_dec and sdxl_taesd_enc:
            vaes.append("taesdxl")
        return vaes

    @staticmethod
    def load_taesd(name):
        sd = {}
        approx_vaes = folder_paths.get_filename_list("vae_approx")

        encoder = next(filter(lambda a: a.startswith("{}_encoder.".format(name)), approx_vaes))
        decoder = next(filter(lambda a: a.startswith("{}_decoder.".format(name)), approx_vaes))

        enc = comfy.utils.load_torch_file(folder_paths.get_full_path("vae_approx", encoder))
        for k in enc:
            sd["taesd_encoder.{}".format(k)] = enc[k]

        dec = comfy.utils.load_torch_file(folder_paths.get_full_path("vae_approx", decoder))
        for k in dec:
            sd["taesd_decoder.{}".format(k)] = dec[k]

        if name == "taesd":
            sd["vae_scale"] = torch.tensor(0.18215)
        elif name == "taesdxl":
            sd["vae_scale"] = torch.tensor(0.13025)
        return sd

comfyanonymous's avatar
comfyanonymous committed
675
676
    @classmethod
    def INPUT_TYPES(s):
677
        return {"required": { "vae_name": (s.vae_list(), )}}
comfyanonymous's avatar
comfyanonymous committed
678
679
680
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

681
682
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
683
684
    #TODO: scale factor?
    def load_vae(self, vae_name):
685
686
687
688
689
        if vae_name in ["taesd", "taesdxl"]:
            sd = self.load_taesd(vae_name)
        else:
            vae_path = folder_paths.get_full_path("vae", vae_name)
            sd = comfy.utils.load_torch_file(vae_path)
comfyanonymous's avatar
comfyanonymous committed
690
        vae = comfy.sd.VAE(sd=sd)
comfyanonymous's avatar
comfyanonymous committed
691
692
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
693
694
695
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
696
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
697
698
699
700
701
702
703

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
704
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
705
        controlnet = comfy.controlnet.load_controlnet(controlnet_path)
comfyanonymous's avatar
comfyanonymous committed
706
707
        return (controlnet,)

708
709
710
711
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
712
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
713
714
715
716
717
718
719

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
720
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
721
        controlnet = comfy.controlnet.load_controlnet(controlnet_path, model)
722
723
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
724
725
726
727

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
728
729
730
731
732
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
733
734
735
736
737
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

738
    def apply_controlnet(self, conditioning, control_net, image, strength):
739
740
741
        if strength == 0:
            return (conditioning, )

comfyanonymous's avatar
comfyanonymous committed
742
743
744
745
        c = []
        control_hint = image.movedim(-1,1)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
746
747
748
749
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
750
            n[1]['control_apply_to_uncond'] = True
comfyanonymous's avatar
comfyanonymous committed
751
752
753
            c.append(n)
        return (c, )

754
755
756
757
758
759
760
761
762

class ControlNetApplyAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"positive": ("CONDITIONING", ),
                             "negative": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
763
764
                             "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                             "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
765
766
767
768
769
770
771
772
                             }}

    RETURN_TYPES = ("CONDITIONING","CONDITIONING")
    RETURN_NAMES = ("positive", "negative")
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

773
    def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent):
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
        if strength == 0:
            return (positive, negative)

        control_hint = image.movedim(-1,1)
        cnets = {}

        out = []
        for conditioning in [positive, negative]:
            c = []
            for t in conditioning:
                d = t[1].copy()

                prev_cnet = d.get('control', None)
                if prev_cnet in cnets:
                    c_net = cnets[prev_cnet]
                else:
790
                    c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_percent, end_percent))
791
792
793
794
795
796
797
798
799
800
801
                    c_net.set_previous_controlnet(prev_cnet)
                    cnets[prev_cnet] = c_net

                d['control'] = c_net
                d['control_apply_to_uncond'] = False
                n = [t[0], d]
                c.append(n)
            out.append(c)
        return (out[0], out[1])


802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
class UNETLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "unet_name": (folder_paths.get_filename_list("unet"), ),
                             }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "load_unet"

    CATEGORY = "advanced/loaders"

    def load_unet(self, unet_name):
        unet_path = folder_paths.get_full_path("unet", unet_name)
        model = comfy.sd.load_unet(unet_path)
        return (model,)

817
818
819
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
820
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
821
                              "type": (["stable_diffusion", "stable_cascade", "sd3"], ),
822
823
824
825
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

826
    CATEGORY = "advanced/loaders"
827

828
829
830
831
    def load_clip(self, clip_name, type="stable_diffusion"):
        clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION
        if type == "stable_cascade":
            clip_type = comfy.sd.CLIPType.STABLE_CASCADE
832
833
        elif type == "sd3":
            clip_type = comfy.sd.CLIPType.SD3
834

835
        clip_path = folder_paths.get_full_path("clip", clip_name)
836
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type)
837
838
839
840
841
        return (clip,)

class DualCLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
842
843
844
        return {"required": { "clip_name1": (folder_paths.get_filename_list("clip"), ),
                              "clip_name2": (folder_paths.get_filename_list("clip"), ),
                              "type": (["sdxl", "sd3"], ),
845
846
847
848
849
850
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "advanced/loaders"

851
    def load_clip(self, clip_name1, clip_name2, type):
852
853
        clip_path1 = folder_paths.get_full_path("clip", clip_name1)
        clip_path2 = folder_paths.get_full_path("clip", clip_name2)
854
855
856
857
858
859
        if type == "sdxl":
            clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION
        elif type == "sd3":
            clip_type = comfy.sd.CLIPType.SD3

        clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type)
860
861
        return (clip,)

862
863
864
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
865
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
866
867
868
869
870
871
872
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
873
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
874
        clip_vision = comfy.clip_vision.load(clip_path)
875
876
877
878
879
880
881
882
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
883
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
884
885
    FUNCTION = "encode"

886
    CATEGORY = "conditioning"
887
888
889
890
891
892
893
894

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
895
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
896
897
898
899
900
901
902

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
903
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
904
905
906
907
908
909
910
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
911
912
913
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
914
915
916
917
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
918
    CATEGORY = "conditioning/style_model"
919

920
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
921
        cond = style_model.get_cond(clip_vision_output).flatten(start_dim=0, end_dim=1).unsqueeze(dim=0)
922
        c = []
923
924
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
925
926
927
            c.append(n)
        return (c, )

928
929
930
931
932
933
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
934
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
935
936
937
938
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

939
    CATEGORY = "conditioning"
940

941
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
942
943
944
        if strength == 0:
            return (conditioning, )

945
946
947
        c = []
        for t in conditioning:
            o = t[1].copy()
948
949
950
            x = {"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation}
            if "unclip_conditioning" in o:
                o["unclip_conditioning"] = o["unclip_conditioning"][:] + [x]
951
            else:
952
                o["unclip_conditioning"] = [x]
953
954
955
956
            n = [t[0], o]
            c.append(n)
        return (c, )

957
958
959
960
961
962
963
964
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
965
    CATEGORY = "loaders"
966
967
968
969
970
971
972
973
974
975
976
977

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
978
                              "text": ("STRING", {"multiline": True, "dynamicPrompts": True}),
979
980
981
982
983
984
985
986
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
987
    CATEGORY = "conditioning/gligen"
988
989
990

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
991
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled="unprojected")
992
993
994
995
996
997
998
999
1000
1001
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
1002

comfyanonymous's avatar
comfyanonymous committed
1003
class EmptyLatentImage:
1004
1005
    def __init__(self):
        self.device = comfy.model_management.intermediate_device()
comfyanonymous's avatar
comfyanonymous committed
1006
1007
1008

    @classmethod
    def INPUT_TYPES(s):
1009
1010
        return {"required": { "width": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
1011
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}}
comfyanonymous's avatar
comfyanonymous committed
1012
1013
1014
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

1015
1016
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
1017
    def generate(self, width, height, batch_size=1):
1018
        latent = torch.zeros([batch_size, 4, height // 8, width // 8], device=self.device)
1019
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
1020

comfyanonymous's avatar
comfyanonymous committed
1021

1022
1023
1024
1025
1026
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
1027
                              "length": ("INT", {"default": 1, "min": 1, "max": 64}),
1028
1029
                              }}
    RETURN_TYPES = ("LATENT",)
1030
    FUNCTION = "frombatch"
1031

1032
    CATEGORY = "latent/batch"
1033

1034
    def frombatch(self, samples, batch_index, length):
1035
1036
1037
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
        length = min(s_in.shape[0] - batch_index, length)
        s["samples"] = s_in[batch_index:batch_index + length].clone()
        if "noise_mask" in samples:
            masks = samples["noise_mask"]
            if masks.shape[0] == 1:
                s["noise_mask"] = masks.clone()
            else:
                if masks.shape[0] < s_in.shape[0]:
                    masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
                s["noise_mask"] = masks[batch_index:batch_index + length].clone()
        if "batch_index" not in s:
            s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
        else:
            s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
        return (s,)
    
class RepeatLatentBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "amount": ("INT", {"default": 1, "min": 1, "max": 64}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "repeat"

    CATEGORY = "latent/batch"

    def repeat(self, samples, amount):
        s = samples.copy()
        s_in = samples["samples"]
        
        s["samples"] = s_in.repeat((amount, 1,1,1))
        if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
            masks = samples["noise_mask"]
            if masks.shape[0] < s_in.shape[0]:
                masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
            s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
        if "batch_index" in s:
            offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
            s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
1078
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1079

comfyanonymous's avatar
comfyanonymous committed
1080
class LatentUpscale:
comfyanonymous's avatar
comfyanonymous committed
1081
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
1082
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
1083
1084
1085
1086

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
1087
1088
                              "width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1089
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
1090
1091
1092
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

1093
1094
    CATEGORY = "latent"

1095
    def upscale(self, samples, upscale_method, width, height, crop):
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
        if width == 0 and height == 0:
            s = samples
        else:
            s = samples.copy()

            if width == 0:
                height = max(64, height)
                width = max(64, round(samples["samples"].shape[3] * height / samples["samples"].shape[2]))
            elif height == 0:
                width = max(64, width)
                height = max(64, round(samples["samples"].shape[2] * width / samples["samples"].shape[3]))
            else:
                width = max(64, width)
                height = max(64, height)

            s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1112
1113
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
1114
class LatentUpscaleBy:
comfyanonymous's avatar
comfyanonymous committed
1115
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
comfyanonymous's avatar
comfyanonymous committed
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.5, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

    CATEGORY = "latent"

    def upscale(self, samples, upscale_method, scale_by):
        s = samples.copy()
        width = round(samples["samples"].shape[3] * scale_by)
        height = round(samples["samples"].shape[2] * scale_by)
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled")
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
1133
1134
1135
1136
1137
1138
1139
1140
1141
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
1142
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
1143
1144

    def rotate(self, samples, rotation):
1145
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
1146
1147
1148
1149
1150
1151
1152
1153
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

1154
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
1155
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
1166
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
1167
1168

    def flip(self, samples, flip_method):
1169
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
1170
        if flip_method.startswith("x"):
1171
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
1172
        elif flip_method.startswith("y"):
1173
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
1174
1175

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1176
1177
1178
1179

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
1180
1181
1182
1183
1184
1185
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
1186
1187
1188
1189
1190
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
1191
1192
1193
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
1194
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
1218

1219
1220
1221
1222
class LatentBlend:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
1223
1224
            "samples1": ("LATENT",),
            "samples2": ("LATENT",),
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
            "blend_factor": ("FLOAT", {
                "default": 0.5,
                "min": 0,
                "max": 1,
                "step": 0.01
            }),
        }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "blend"

    CATEGORY = "_for_testing"

1238
    def blend(self, samples1, samples2, blend_factor:float, blend_mode: str="normal"):
1239

1240
1241
1242
        samples_out = samples1.copy()
        samples1 = samples1["samples"]
        samples2 = samples2["samples"]
1243

1244
1245
1246
1247
        if samples1.shape != samples2.shape:
            samples2.permute(0, 3, 1, 2)
            samples2 = comfy.utils.common_upscale(samples2, samples1.shape[3], samples1.shape[2], 'bicubic', crop='center')
            samples2.permute(0, 2, 3, 1)
1248

1249
1250
        samples_blended = self.blend_mode(samples1, samples2, blend_mode)
        samples_blended = samples1 * blend_factor + samples_blended * (1 - blend_factor)
1251
1252
1253
1254
1255
1256
1257
1258
1259
        samples_out["samples"] = samples_blended
        return (samples_out,)

    def blend_mode(self, img1, img2, mode):
        if mode == "normal":
            return img2
        else:
            raise ValueError(f"Unsupported blend mode: {mode}")

comfyanonymous's avatar
comfyanonymous committed
1260
1261
1262
1263
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
1264
1265
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
1266
1267
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
1268
1269
1270
1271
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
1272
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
1273
1274

    def crop(self, samples, width, height, x, y):
1275
1276
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
1290
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
1291
1292
        return (s,)

1293
1294
1295
1296
1297
1298
1299
1300
1301
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

1302
    CATEGORY = "latent/inpaint"
1303
1304
1305

    def set_mask(self, samples, mask):
        s = samples.copy()
1306
        s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
1307
1308
        return (s,)

space-nuko's avatar
space-nuko committed
1309
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
1310
    latent_image = latent["samples"]
1311
1312
    latent_image = comfy.sample.fix_empty_latent_channels(model, latent_image)

comfyanonymous's avatar
comfyanonymous committed
1313
1314
1315
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
1316
1317
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
comfyanonymous's avatar
comfyanonymous committed
1318

1319
    noise_mask = None
1320
    if "noise_mask" in latent:
1321
        noise_mask = latent["noise_mask"]
comfyanonymous's avatar
comfyanonymous committed
1322

1323
    callback = latent_preview.prepare_callback(model, steps)
1324
    disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
1325
1326
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
comfyanonymous's avatar
comfyanonymous committed
1327
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
1328
1329
1330
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
1331

comfyanonymous's avatar
comfyanonymous committed
1332
1333
1334
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
1335
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1336
1337
1338
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
1339
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
comfyanonymous's avatar
comfyanonymous committed
1340
1341
1342
1343
1344
1345
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
space-nuko's avatar
space-nuko committed
1346
1347
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1348
1349
1350
1351

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

1352
1353
    CATEGORY = "sampling"

space-nuko's avatar
space-nuko committed
1354
1355
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
1356

comfyanonymous's avatar
comfyanonymous committed
1357
1358
1359
1360
1361
1362
1363
1364
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
1365
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
comfyanonymous's avatar
comfyanonymous committed
1366
1367
1368
1369
1370
1371
1372
1373
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
space-nuko's avatar
space-nuko committed
1374
1375
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1376
1377
1378
1379
1380

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
1381

space-nuko's avatar
space-nuko committed
1382
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
comfyanonymous's avatar
comfyanonymous committed
1383
1384
1385
1386
1387
1388
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
space-nuko's avatar
space-nuko committed
1389
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
1390
1391
1392

class SaveImage:
    def __init__(self):
1393
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1394
        self.type = "output"
1395
        self.prefix_append = ""
1396
        self.compress_level = 4
comfyanonymous's avatar
comfyanonymous committed
1397
1398
1399
1400

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
1401
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
1402
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
1403
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
1404
1405
1406
1407
1408
1409
1410
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

1411
1412
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
1413
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
1414
        filename_prefix += self.prefix_append
1415
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
m957ymj75urz's avatar
m957ymj75urz committed
1416
        results = list()
1417
        for (batch_number, image) in enumerate(images):
comfyanonymous's avatar
comfyanonymous committed
1418
            i = 255. * image.cpu().numpy()
1419
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
1420
1421
1422
1423
1424
1425
1426
1427
            metadata = None
            if not args.disable_metadata:
                metadata = PngInfo()
                if prompt is not None:
                    metadata.add_text("prompt", json.dumps(prompt))
                if extra_pnginfo is not None:
                    for x in extra_pnginfo:
                        metadata.add_text(x, json.dumps(extra_pnginfo[x]))
1428

1429
1430
            filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
            file = f"{filename_with_batch_num}_{counter:05}_.png"
1431
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=self.compress_level)
m957ymj75urz's avatar
m957ymj75urz committed
1432
1433
1434
1435
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
1436
            })
1437
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
1438

m957ymj75urz's avatar
m957ymj75urz committed
1439
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
1440

pythongosssss's avatar
pythongosssss committed
1441
1442
class PreviewImage(SaveImage):
    def __init__(self):
1443
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1444
        self.type = "temp"
1445
        self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
1446
        self.compress_level = 1
pythongosssss's avatar
pythongosssss committed
1447
1448
1449

    @classmethod
    def INPUT_TYPES(s):
1450
        return {"required":
pythongosssss's avatar
pythongosssss committed
1451
1452
1453
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
1454

1455
1456
1457
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
1458
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1459
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1460
        return {"required":
1461
                    {"image": (sorted(files), {"image_upload": True})},
1462
                }
1463
1464

    CATEGORY = "image"
1465

1466
    RETURN_TYPES = ("IMAGE", "MASK")
1467
1468
    FUNCTION = "load_image"
    def load_image(self, image):
1469
        image_path = folder_paths.get_annotated_filepath(image)
1470
        
1471
        img = node_helpers.pillow(Image.open, image_path)
1472
        
1473
1474
        output_images = []
        output_masks = []
1475
1476
1477
1478
        w, h = None, None

        excluded_formats = ['MPO']
        
1479
        for i in ImageSequence.Iterator(img):
1480
            i = node_helpers.pillow(ImageOps.exif_transpose, i)
1481

1482
1483
            if i.mode == 'I':
                i = i.point(lambda i: i * (1 / 255))
1484
            image = i.convert("RGB")
1485
1486
1487
1488
1489
1490
1491
1492

            if len(output_images) == 0:
                w = image.size[0]
                h = image.size[1]
            
            if image.size[0] != w or image.size[1] != h:
                continue
            
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
            image = np.array(image).astype(np.float32) / 255.0
            image = torch.from_numpy(image)[None,]
            if 'A' in i.getbands():
                mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
                mask = 1. - torch.from_numpy(mask)
            else:
                mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
            output_images.append(image)
            output_masks.append(mask.unsqueeze(0))

1503
        if len(output_images) > 1 and img.format not in excluded_formats:
1504
1505
            output_image = torch.cat(output_images, dim=0)
            output_mask = torch.cat(output_masks, dim=0)
1506
        else:
1507
1508
1509
1510
            output_image = output_images[0]
            output_mask = output_masks[0]

        return (output_image, output_mask)
1511

1512
1513
    @classmethod
    def IS_CHANGED(s, image):
1514
        image_path = folder_paths.get_annotated_filepath(image)
1515
1516
1517
1518
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1519

1520
1521
1522
1523
1524
1525
1526
    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

1527
class LoadImageMask:
1528
    _color_channels = ["alpha", "red", "green", "blue"]
1529
1530
    @classmethod
    def INPUT_TYPES(s):
1531
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1532
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1533
        return {"required":
1534
                    {"image": (sorted(files), {"image_upload": True}),
1535
                     "channel": (s._color_channels, ), }
1536
1537
                }

1538
    CATEGORY = "mask"
1539
1540
1541
1542

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
1543
        image_path = folder_paths.get_annotated_filepath(image)
1544
1545
        i = node_helpers.pillow(Image.open, image_path)
        i = node_helpers.pillow(ImageOps.exif_transpose, i)
1546
        if i.getbands() != ("R", "G", "B", "A"):
1547
1548
            if i.mode == 'I':
                i = i.point(lambda i: i * (1 / 255))
1549
            i = i.convert("RGBA")
1550
1551
1552
1553
1554
1555
1556
1557
1558
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
1559
        return (mask.unsqueeze(0),)
1560
1561
1562

    @classmethod
    def IS_CHANGED(s, image, channel):
1563
        image_path = folder_paths.get_annotated_filepath(image)
1564
1565
1566
1567
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1568

1569
    @classmethod
1570
    def VALIDATE_INPUTS(s, image):
1571
1572
1573
1574
1575
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

comfyanonymous's avatar
comfyanonymous committed
1576
class ImageScale:
1577
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
comfyanonymous's avatar
comfyanonymous committed
1578
1579
1580
1581
1582
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1583
1584
                              "width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1585
1586
1587
1588
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1589
    CATEGORY = "image/upscaling"
1590

comfyanonymous's avatar
comfyanonymous committed
1591
    def upscale(self, image, upscale_method, width, height, crop):
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
        if width == 0 and height == 0:
            s = image
        else:
            samples = image.movedim(-1,1)

            if width == 0:
                width = max(1, round(samples.shape[3] * height / samples.shape[2]))
            elif height == 0:
                height = max(1, round(samples.shape[2] * width / samples.shape[3]))

            s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
            s = s.movedim(1,-1)
comfyanonymous's avatar
comfyanonymous committed
1604
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1605

comfyanonymous's avatar
comfyanonymous committed
1606
class ImageScaleBy:
1607
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
comfyanonymous's avatar
comfyanonymous committed
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

    CATEGORY = "image/upscaling"

    def upscale(self, image, upscale_method, scale_by):
        samples = image.movedim(-1,1)
        width = round(samples.shape[3] * scale_by)
        height = round(samples.shape[2] * scale_by)
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
        s = s.movedim(1,-1)
        return (s,)

1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)

1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
class ImageBatch:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image1": ("IMAGE",), "image2": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "batch"

    CATEGORY = "image"

    def batch(self, image1, image2):
        if image1.shape[1:] != image2.shape[1:]:
            image2 = comfy.utils.common_upscale(image2.movedim(-1,1), image1.shape[2], image1.shape[1], "bilinear", "center").movedim(1,-1)
        s = torch.cat((image1, image2), dim=0)
        return (s,)
1657

comfyanonymous's avatar
comfyanonymous committed
1658
1659
1660
1661
1662
1663
1664
1665
class EmptyImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1666
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
comfyanonymous's avatar
comfyanonymous committed
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
                              "color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}),
                              }}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "generate"

    CATEGORY = "image"

    def generate(self, width, height, batch_size=1, color=0):
        r = torch.full([batch_size, height, width, 1], ((color >> 16) & 0xFF) / 0xFF)
        g = torch.full([batch_size, height, width, 1], ((color >> 8) & 0xFF) / 0xFF)
        b = torch.full([batch_size, height, width, 1], ((color) & 0xFF) / 0xFF)
        return (torch.cat((r, g, b), dim=-1), )

Guo Y.K's avatar
Guo Y.K committed
1680
1681
1682
1683
1684
1685
1686
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1687
1688
1689
1690
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1691
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1692
1693
1694
1695
1696
1697
1698
1699
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1700
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1701
1702
        d1, d2, d3, d4 = image.size()

1703
        new_image = torch.ones(
Guo Y.K's avatar
Guo Y.K committed
1704
1705
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
1706
1707
        ) * 0.5

Guo Y.K's avatar
Guo Y.K committed
1708
1709
1710
1711
1712
1713
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1714

1715
1716
1717
1718
1719
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1720
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1740

Guo Y.K's avatar
Guo Y.K committed
1741
1742
1743
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1744
1745
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1746
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1747
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1748
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1749
1750
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1751
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1752
1753
1754
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
comfyanonymous's avatar
comfyanonymous committed
1755
    "LatentUpscaleBy": LatentUpscaleBy,
1756
    "LatentFromBatch": LatentFromBatch,
1757
    "RepeatLatentBatch": RepeatLatentBatch,
comfyanonymous's avatar
comfyanonymous committed
1758
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1759
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1760
    "LoadImage": LoadImage,
1761
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1762
    "ImageScale": ImageScale,
comfyanonymous's avatar
comfyanonymous committed
1763
    "ImageScaleBy": ImageScaleBy,
1764
    "ImageInvert": ImageInvert,
1765
    "ImageBatch": ImageBatch,
Guo Y.K's avatar
Guo Y.K committed
1766
    "ImagePadForOutpaint": ImagePadForOutpaint,
comfyanonymous's avatar
comfyanonymous committed
1767
    "EmptyImage": EmptyImage,
comfyanonymous's avatar
comfyanonymous committed
1768
    "ConditioningAverage": ConditioningAverage ,
comfyanonymous's avatar
comfyanonymous committed
1769
    "ConditioningCombine": ConditioningCombine,
1770
    "ConditioningConcat": ConditioningConcat,
comfyanonymous's avatar
comfyanonymous committed
1771
    "ConditioningSetArea": ConditioningSetArea,
1772
    "ConditioningSetAreaPercentage": ConditioningSetAreaPercentage,
1773
    "ConditioningSetAreaStrength": ConditioningSetAreaStrength,
Jacob Segal's avatar
Jacob Segal committed
1774
    "ConditioningSetMask": ConditioningSetMask,
comfyanonymous's avatar
comfyanonymous committed
1775
    "KSamplerAdvanced": KSamplerAdvanced,
1776
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1777
    "LatentComposite": LatentComposite,
1778
    "LatentBlend": LatentBlend,
comfyanonymous's avatar
comfyanonymous committed
1779
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1780
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1781
    "LatentCrop": LatentCrop,
1782
    "LoraLoader": LoraLoader,
1783
    "CLIPLoader": CLIPLoader,
1784
    "UNETLoader": UNETLoader,
1785
    "DualCLIPLoader": DualCLIPLoader,
1786
    "CLIPVisionEncode": CLIPVisionEncode,
1787
    "StyleModelApply": StyleModelApply,
1788
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1789
    "ControlNetApply": ControlNetApply,
1790
    "ControlNetApplyAdvanced": ControlNetApplyAdvanced,
comfyanonymous's avatar
comfyanonymous committed
1791
    "ControlNetLoader": ControlNetLoader,
1792
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1793
1794
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1795
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1796
    "VAEEncodeTiled": VAEEncodeTiled,
1797
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1798
1799
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,
1800
    "InpaintModelConditioning": InpaintModelConditioning,
1801

1802
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1803
    "DiffusersLoader": DiffusersLoader,
Dr.Lt.Data's avatar
Dr.Lt.Data committed
1804
1805

    "LoadLatent": LoadLatent,
1806
    "SaveLatent": SaveLatent,
1807
1808

    "ConditioningZeroOut": ConditioningZeroOut,
1809
    "ConditioningSetTimestepRange": ConditioningSetTimestepRange,
1810
    "LoraLoaderModelOnly": LoraLoaderModelOnly,
comfyanonymous's avatar
comfyanonymous committed
1811
1812
}

City's avatar
City committed
1813
1814
1815
1816
1817
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
1818
    "CheckpointLoader": "Load Checkpoint With Config (DEPRECATED)",
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1819
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
FizzleDorf's avatar
FizzleDorf committed
1834
    "ConditioningAverage ": "Conditioning (Average)",
1835
    "ConditioningConcat": "Conditioning (Concat)",
City's avatar
City committed
1836
    "ConditioningSetArea": "Conditioning (Set Area)",
1837
    "ConditioningSetAreaPercentage": "Conditioning (Set Area with Percentage)",
Jacob Segal's avatar
Jacob Segal committed
1838
    "ConditioningSetMask": "Conditioning (Set Mask)",
City's avatar
City committed
1839
    "ControlNetApply": "Apply ControlNet",
1840
    "ControlNetApplyAdvanced": "Apply ControlNet (Advanced)",
City's avatar
City committed
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
comfyanonymous's avatar
comfyanonymous committed
1851
    "LatentUpscaleBy": "Upscale Latent By",
City's avatar
City committed
1852
    "LatentComposite": "Latent Composite",
1853
    "LatentBlend": "Latent Blend",
1854
1855
    "LatentFromBatch" : "Latent From Batch",
    "RepeatLatentBatch": "Repeat Latent Batch",
City's avatar
City committed
1856
1857
1858
1859
1860
1861
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
comfyanonymous's avatar
comfyanonymous committed
1862
    "ImageScaleBy": "Upscale Image By",
City's avatar
City committed
1863
1864
1865
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
1866
    "ImageBatch": "Batch Images",
City's avatar
City committed
1867
1868
1869
1870
1871
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1872
1873
EXTENSION_WEB_DIRS = {}

1874
def load_custom_node(module_path, ignore=set()):
1875
1876
1877
1878
1879
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
1880
        logging.debug("Trying to load custom node {}".format(module_path))
1881
1882
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
1883
            module_dir = os.path.split(module_path)[0]
1884
1885
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
1886
1887
            module_dir = module_path

1888
1889
1890
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
1891
1892
1893
1894
1895
1896

        if hasattr(module, "WEB_DIRECTORY") and getattr(module, "WEB_DIRECTORY") is not None:
            web_dir = os.path.abspath(os.path.join(module_dir, getattr(module, "WEB_DIRECTORY")))
            if os.path.isdir(web_dir):
                EXTENSION_WEB_DIRS[module_name] = web_dir

1897
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
1898
1899
1900
            for name in module.NODE_CLASS_MAPPINGS:
                if name not in ignore:
                    NODE_CLASS_MAPPINGS[name] = module.NODE_CLASS_MAPPINGS[name]
1901
1902
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1903
            return True
1904
        else:
1905
            logging.warning(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
1906
            return False
1907
    except Exception as e:
1908
        logging.warning(traceback.format_exc())
1909
        logging.warning(f"Cannot import {module_path} module for custom nodes: {e}")
1910
        return False
1911

Hacker 17082006's avatar
Hacker 17082006 committed
1912
def load_custom_nodes():
1913
    base_node_names = set(NODE_CLASS_MAPPINGS.keys())
1914
    node_paths = folder_paths.get_folder_paths("custom_nodes")
1915
    node_import_times = []
1916
    for custom_node_path in node_paths:
Enrico Fasoli's avatar
Enrico Fasoli committed
1917
        possible_modules = os.listdir(os.path.realpath(custom_node_path))
1918
1919
1920
1921
1922
1923
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1924
            if module_path.endswith(".disabled"): continue
1925
            time_before = time.perf_counter()
1926
            success = load_custom_node(module_path, base_node_names)
1927
            node_import_times.append((time.perf_counter() - time_before, module_path, success))
1928

1929
    if len(node_import_times) > 0:
comfyanonymous's avatar
comfyanonymous committed
1930
        logging.info("\nImport times for custom nodes:")
1931
        for n in sorted(node_import_times):
1932
1933
1934
1935
            if n[2]:
                import_message = ""
            else:
                import_message = " (IMPORT FAILED)"
comfyanonymous's avatar
comfyanonymous committed
1936
1937
            logging.info("{:6.1f} seconds{}: {}".format(n[0], import_message, n[1]))
        logging.info("")
1938

1939
def init_custom_nodes():
1940
1941
1942
1943
1944
1945
1946
    extras_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras")
    extras_files = [
        "nodes_latent.py",
        "nodes_hypernetwork.py",
        "nodes_upscale_model.py",
        "nodes_post_processing.py",
        "nodes_mask.py",
1947
        "nodes_compositing.py",
1948
1949
1950
1951
1952
1953
        "nodes_rebatch.py",
        "nodes_model_merging.py",
        "nodes_tomesd.py",
        "nodes_clip_sdxl.py",
        "nodes_canny.py",
        "nodes_freelunch.py",
1954
1955
        "nodes_custom_sampler.py",
        "nodes_hypertile.py",
1956
        "nodes_model_advanced.py",
1957
        "nodes_model_downscale.py",
comfyanonymous's avatar
comfyanonymous committed
1958
        "nodes_images.py",
1959
        "nodes_video_model.py",
1960
        "nodes_sag.py",
Hari's avatar
Hari committed
1961
        "nodes_perpneg.py",
1962
        "nodes_stable3d.py",
1963
        "nodes_sdupscale.py",
1964
        "nodes_photomaker.py",
1965
        "nodes_cond.py",
1966
        "nodes_morphology.py",
comfyanonymous's avatar
comfyanonymous committed
1967
        "nodes_stable_cascade.py",
1968
        "nodes_differential_diffusion.py",
1969
        "nodes_ip2p.py",
1970
        "nodes_model_merging_model_specific.py",
comfyanonymous's avatar
comfyanonymous committed
1971
        "nodes_pag.py",
1972
        "nodes_align_your_steps.py",
1973
        "nodes_attention_multiply.py",
comfyanonymous's avatar
comfyanonymous committed
1974
        "nodes_advanced_samplers.py",
pythongosssss's avatar
pythongosssss committed
1975
        "nodes_webcam.py",
comfyanonymous's avatar
comfyanonymous committed
1976
        "nodes_sd3.py",
1977
1978
    ]

1979
    import_failed = []
1980
    for node_file in extras_files:
1981
1982
        if not load_custom_node(os.path.join(extras_dir, node_file)):
            import_failed.append(node_file)
1983

1984
    load_custom_nodes()
1985
1986

    if len(import_failed) > 0:
1987
        logging.warning("WARNING: some comfy_extras/ nodes did not import correctly. This may be because they are missing some dependencies.\n")
1988
        for node in import_failed:
1989
1990
            logging.warning("IMPORT FAILED: {}".format(node))
        logging.warning("\nThis issue might be caused by new missing dependencies added the last time you updated ComfyUI.")
1991
        if args.windows_standalone_build:
1992
            logging.warning("Please run the update script: update/update_comfyui.bat")
1993
        else:
1994
1995
            logging.warning("Please do a: pip install -r requirements.txt")
        logging.warning("")