nodes.py 65 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
8
import math
9
import time
10
import random
comfyanonymous's avatar
comfyanonymous committed
11

12
from PIL import Image, ImageOps
comfyanonymous's avatar
comfyanonymous committed
13
14
from PIL.PngImagePlugin import PngInfo
import numpy as np
15
import safetensors.torch
comfyanonymous's avatar
comfyanonymous committed
16

comfyanonymous's avatar
comfyanonymous committed
17
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
18
19


20
import comfy.diffusers_load
comfyanonymous's avatar
comfyanonymous committed
21
import comfy.samplers
22
import comfy.sample
comfyanonymous's avatar
comfyanonymous committed
23
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
24
import comfy.utils
25
import comfy.controlnet
comfyanonymous's avatar
comfyanonymous committed
26

27
import comfy.clip_vision
28

29
import comfy.model_management
30
31
from comfy.cli_args import args

32
import importlib
comfyanonymous's avatar
comfyanonymous committed
33

34
import folder_paths
35
import latent_preview
space-nuko's avatar
space-nuko committed
36

37
def before_node_execution():
38
    comfy.model_management.throw_exception_if_processing_interrupted()
39

40
def interrupt_processing(value=True):
41
    comfy.model_management.interrupt_current_processing(value)
42

43
44
MAX_RESOLUTION=8192

comfyanonymous's avatar
comfyanonymous committed
45
46
47
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
48
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
49
50
51
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

52
53
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
54
    def encode(self, clip, text):
55
56
57
        tokens = clip.tokenize(text)
        cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
        return ([[cond, {"pooled_output": pooled}]], )
comfyanonymous's avatar
comfyanonymous committed
58
59
60
61
62
63
64
65

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

66
67
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
68
69
70
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

FizzleDorf's avatar
FizzleDorf committed
71
72
73
class ConditioningAverage :
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
74
75
        return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
                              "conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
FizzleDorf's avatar
FizzleDorf committed
76
77
78
79
80
81
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "addWeighted"

    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
82
    def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
FizzleDorf's avatar
FizzleDorf committed
83
        out = []
comfyanonymous's avatar
comfyanonymous committed
84
85
86
87
88

        if len(conditioning_from) > 1:
            print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

        cond_from = conditioning_from[0][0]
89
        pooled_output_from = conditioning_from[0][1].get("pooled_output", None)
comfyanonymous's avatar
comfyanonymous committed
90
91
92

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
93
            pooled_output_to = conditioning_to[i][1].get("pooled_output", pooled_output_from)
comfyanonymous's avatar
comfyanonymous committed
94
95
96
97
98
            t0 = cond_from[:,:t1.shape[1]]
            if t0.shape[1] < t1.shape[1]:
                t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)

            tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
99
100
101
102
103
104
105
            t_to = conditioning_to[i][1].copy()
            if pooled_output_from is not None and pooled_output_to is not None:
                t_to["pooled_output"] = torch.mul(pooled_output_to, conditioning_to_strength) + torch.mul(pooled_output_from, (1.0 - conditioning_to_strength))
            elif pooled_output_from is not None:
                t_to["pooled_output"] = pooled_output_from

            n = [tw, t_to]
FizzleDorf's avatar
FizzleDorf committed
106
107
108
            out.append(n)
        return (out, )

109
110
111
112
113
114
115
116
117
118
class ConditioningConcat:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "conditioning_to": ("CONDITIONING",),
            "conditioning_from": ("CONDITIONING",),
            }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "concat"

119
    CATEGORY = "conditioning"
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

    def concat(self, conditioning_to, conditioning_from):
        out = []

        if len(conditioning_from) > 1:
            print("Warning: ConditioningConcat conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

        cond_from = conditioning_from[0][0]

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
            tw = torch.cat((t1, cond_from),1)
            n = [tw, conditioning_to[i][1].copy()]
            out.append(n)

        return (out, )

comfyanonymous's avatar
comfyanonymous committed
137
138
139
140
class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
141
142
143
144
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
145
146
147
148
149
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

150
151
    CATEGORY = "conditioning"

152
    def append(self, conditioning, width, height, x, y, strength):
comfyanonymous's avatar
comfyanonymous committed
153
154
155
156
157
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
158
            n[1]['set_area_to_bounds'] = False
comfyanonymous's avatar
comfyanonymous committed
159
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
160
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
161

Jacob Segal's avatar
Jacob Segal committed
162
163
164
165
166
167
class ConditioningSetMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "mask": ("MASK", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
168
                              "set_cond_area": (["default", "mask bounds"],),
Jacob Segal's avatar
Jacob Segal committed
169
170
171
172
173
174
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

175
    def append(self, conditioning, mask, set_cond_area, strength):
Jacob Segal's avatar
Jacob Segal committed
176
        c = []
177
178
179
        set_area_to_bounds = False
        if set_cond_area != "default":
            set_area_to_bounds = True
Jacob Segal's avatar
Jacob Segal committed
180
181
182
183
184
185
        if len(mask.shape) < 3:
            mask = mask.unsqueeze(0)
        for t in conditioning:
            n = [t[0], t[1].copy()]
            _, h, w = mask.shape
            n[1]['mask'] = mask
Jacob Segal's avatar
Jacob Segal committed
186
            n[1]['set_area_to_bounds'] = set_area_to_bounds
187
            n[1]['mask_strength'] = strength
Jacob Segal's avatar
Jacob Segal committed
188
189
190
            c.append(n)
        return (c, )

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
class ConditioningZeroOut:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "zero_out"

    CATEGORY = "advanced/conditioning"

    def zero_out(self, conditioning):
        c = []
        for t in conditioning:
            d = t[1].copy()
            if "pooled_output" in d:
                d["pooled_output"] = torch.zeros_like(d["pooled_output"])
            n = [torch.zeros_like(t[0]), d]
            c.append(n)
        return (c, )

210
211
212
213
class ConditioningSetTimestepRange:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
214
215
                             "start": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                             "end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
216
217
218
219
220
221
222
223
224
225
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "set_range"

    CATEGORY = "advanced/conditioning"

    def set_range(self, conditioning, start, end):
        c = []
        for t in conditioning:
            d = t[1].copy()
226
227
            d['start_percent'] = 1.0 - start
            d['end_percent'] = 1.0 - end
228
229
230
231
            n = [t[0], d]
            c.append(n)
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
232
233
234
235
236
237
238
class VAEDecode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

239
240
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
241
    def decode(self, vae, samples):
242
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
243

244
245
246
class VAEDecodeTiled:
    @classmethod
    def INPUT_TYPES(s):
247
        return {"required": {"samples": ("LATENT", ), "vae": ("VAE", ),
248
                             "tile_size": ("INT", {"default": 512, "min": 192, "max": 4096, "step": 64})
249
                            }}
250
251
252
253
254
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

255
    def decode(self, vae, samples, tile_size):
256
        return (vae.decode_tiled(samples["samples"], tile_x=tile_size // 8, tile_y=tile_size // 8, ), )
257

comfyanonymous's avatar
comfyanonymous committed
258
259
260
261
262
263
264
class VAEEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

265
266
    CATEGORY = "latent"

267
268
269
270
    @staticmethod
    def vae_encode_crop_pixels(pixels):
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
271
        if pixels.shape[1] != x or pixels.shape[2] != y:
272
273
274
275
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
        return pixels
276

277
278
279
    def encode(self, vae, pixels):
        pixels = self.vae_encode_crop_pixels(pixels)
        t = vae.encode(pixels[:,:,:,:3])
280
        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
281

comfyanonymous's avatar
comfyanonymous committed
282
283
284
class VAEEncodeTiled:
    @classmethod
    def INPUT_TYPES(s):
285
        return {"required": {"pixels": ("IMAGE", ), "vae": ("VAE", ),
286
                             "tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64})
287
                            }}
comfyanonymous's avatar
comfyanonymous committed
288
289
290
291
292
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

293
    def encode(self, vae, pixels, tile_size):
294
        pixels = VAEEncode.vae_encode_crop_pixels(pixels)
295
        t = vae.encode_tiled(pixels[:,:,:,:3], tile_x=tile_size, tile_y=tile_size, )
comfyanonymous's avatar
comfyanonymous committed
296
        return ({"samples":t}, )
297

298
299
300
class VAEEncodeForInpaint:
    @classmethod
    def INPUT_TYPES(s):
301
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
302
303
304
305
306
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

307
    def encode(self, vae, pixels, mask, grow_mask_by=6):
308
309
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
310
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
311

312
        pixels = pixels.clone()
313
        if pixels.shape[1] != x or pixels.shape[2] != y:
314
315
316
317
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
318

319
        #grow mask by a few pixels to keep things seamless in latent space
320
321
322
323
324
325
326
327
        if grow_mask_by == 0:
            mask_erosion = mask
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)

328
        m = (1.0 - mask.round()).squeeze(1)
329
330
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
331
            pixels[:,:,:,i] *= m
332
333
334
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

335
        return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
336

Dr.Lt.Data's avatar
Dr.Lt.Data committed
337
338
class SaveLatent:
    def __init__(self):
339
        self.output_dir = folder_paths.get_output_directory()
Dr.Lt.Data's avatar
Dr.Lt.Data committed
340
341
342
343

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ),
344
                              "filename_prefix": ("STRING", {"default": "latents/ComfyUI"})},
Dr.Lt.Data's avatar
Dr.Lt.Data committed
345
346
347
348
349
350
351
352
353
354
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
    RETURN_TYPES = ()
    FUNCTION = "save"

    OUTPUT_NODE = True

    CATEGORY = "_for_testing"

    def save(self, samples, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
355
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
356
357
358
359
360
361

        # support save metadata for latent sharing
        prompt_info = ""
        if prompt is not None:
            prompt_info = json.dumps(prompt)

362
363
364
365
366
367
        metadata = None
        if not args.disable_metadata:
            metadata = {"prompt": prompt_info}
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata[x] = json.dumps(extra_pnginfo[x])
Dr.Lt.Data's avatar
Dr.Lt.Data committed
368
369

        file = f"{filename}_{counter:05}_.latent"
370
371
372
373
374
375
376
377

        results = list()
        results.append({
            "filename": file,
            "subfolder": subfolder,
            "type": "output"
        })

Dr.Lt.Data's avatar
Dr.Lt.Data committed
378
379
        file = os.path.join(full_output_folder, file)

380
381
        output = {}
        output["latent_tensor"] = samples["samples"]
382
        output["latent_format_version_0"] = torch.tensor([])
383

384
        comfy.utils.save_torch_file(output, file, metadata=metadata)
385
        return { "ui": { "latents": results } }
Dr.Lt.Data's avatar
Dr.Lt.Data committed
386
387
388
389
390


class LoadLatent:
    @classmethod
    def INPUT_TYPES(s):
391
392
        input_dir = folder_paths.get_input_directory()
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.endswith(".latent")]
Dr.Lt.Data's avatar
Dr.Lt.Data committed
393
394
395
396
397
398
399
400
        return {"required": {"latent": [sorted(files), ]}, }

    CATEGORY = "_for_testing"

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "load"

    def load(self, latent):
401
402
        latent_path = folder_paths.get_annotated_filepath(latent)
        latent = safetensors.torch.load_file(latent_path, device="cpu")
403
404
405
406
        multiplier = 1.0
        if "latent_format_version_0" not in latent:
            multiplier = 1.0 / 0.18215
        samples = {"samples": latent["latent_tensor"].float() * multiplier}
407
        return (samples, )
Dr.Lt.Data's avatar
Dr.Lt.Data committed
408

409
410
411
412
413
414
415
416
417
418
419
420
421
422
    @classmethod
    def IS_CHANGED(s, latent):
        image_path = folder_paths.get_annotated_filepath(latent)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

    @classmethod
    def VALIDATE_INPUTS(s, latent):
        if not folder_paths.exists_annotated_filepath(latent):
            return "Invalid latent file: {}".format(latent)
        return True

Dr.Lt.Data's avatar
Dr.Lt.Data committed
423

comfyanonymous's avatar
comfyanonymous committed
424
425
426
class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
427
428
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
429
430
431
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

432
    CATEGORY = "advanced/loaders"
433

comfyanonymous's avatar
comfyanonymous committed
434
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
435
436
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
437
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
438

439
440
441
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
442
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
443
444
445
446
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

447
    CATEGORY = "loaders"
448

449
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
450
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
451
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
452
453
        return out

sALTaccount's avatar
sALTaccount committed
454
455
456
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
457
        paths = []
sALTaccount's avatar
sALTaccount committed
458
        for search_path in folder_paths.get_folder_paths("diffusers"):
459
            if os.path.exists(search_path):
460
461
462
463
                for root, subdir, files in os.walk(search_path, followlinks=True):
                    if "model_index.json" in files:
                        paths.append(os.path.relpath(root, start=search_path))

464
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
465
466
467
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

468
    CATEGORY = "advanced/loaders/deprecated"
sALTaccount's avatar
sALTaccount committed
469
470

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
471
472
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
473
474
475
                path = os.path.join(search_path, model_path)
                if os.path.exists(path):
                    model_path = path
sALTaccount's avatar
sALTaccount committed
476
                    break
477

478
        return comfy.diffusers_load.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
479
480


481
482
483
484
485
486
487
488
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

489
    CATEGORY = "loaders"
490
491
492
493
494
495

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

512
class LoraLoader:
513
514
515
    def __init__(self):
        self.loaded_lora = None

516
517
518
519
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
520
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
521
522
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
523
524
525
526
527
528
529
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
530
531
532
        if strength_model == 0 and strength_clip == 0:
            return (model, clip)

533
        lora_path = folder_paths.get_full_path("loras", lora_name)
534
535
536
537
538
        lora = None
        if self.loaded_lora is not None:
            if self.loaded_lora[0] == lora_path:
                lora = self.loaded_lora[1]
            else:
539
540
541
                temp = self.loaded_lora
                self.loaded_lora = None
                del temp
542
543
544
545
546
547

        if lora is None:
            lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
            self.loaded_lora = (lora_path, lora)

        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
548
549
        return (model_lora, clip_lora)

comfyanonymous's avatar
comfyanonymous committed
550
551
552
class VAELoader:
    @classmethod
    def INPUT_TYPES(s):
553
        return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
comfyanonymous's avatar
comfyanonymous committed
554
555
556
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

557
558
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
559
560
    #TODO: scale factor?
    def load_vae(self, vae_name):
561
        vae_path = folder_paths.get_full_path("vae", vae_name)
comfyanonymous's avatar
comfyanonymous committed
562
563
564
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
565
566
567
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
568
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
569
570
571
572
573
574
575

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
576
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
577
        controlnet = comfy.controlnet.load_controlnet(controlnet_path)
comfyanonymous's avatar
comfyanonymous committed
578
579
        return (controlnet,)

580
581
582
583
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
584
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
585
586
587
588
589
590
591

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
592
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
593
        controlnet = comfy.controlnet.load_controlnet(controlnet_path, model)
594
595
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
596
597
598
599

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
600
601
602
603
604
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
605
606
607
608
609
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

610
    def apply_controlnet(self, conditioning, control_net, image, strength):
611
612
613
        if strength == 0:
            return (conditioning, )

comfyanonymous's avatar
comfyanonymous committed
614
615
616
617
        c = []
        control_hint = image.movedim(-1,1)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
618
619
620
621
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
622
            n[1]['control_apply_to_uncond'] = True
comfyanonymous's avatar
comfyanonymous committed
623
624
625
            c.append(n)
        return (c, )

626
627
628
629
630
631
632
633
634

class ControlNetApplyAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"positive": ("CONDITIONING", ),
                             "negative": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
635
636
                             "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                             "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
637
638
639
640
641
642
643
644
                             }}

    RETURN_TYPES = ("CONDITIONING","CONDITIONING")
    RETURN_NAMES = ("positive", "negative")
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

645
    def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent):
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
        if strength == 0:
            return (positive, negative)

        control_hint = image.movedim(-1,1)
        cnets = {}

        out = []
        for conditioning in [positive, negative]:
            c = []
            for t in conditioning:
                d = t[1].copy()

                prev_cnet = d.get('control', None)
                if prev_cnet in cnets:
                    c_net = cnets[prev_cnet]
                else:
662
                    c_net = control_net.copy().set_cond_hint(control_hint, strength, (1.0 - start_percent, 1.0 - end_percent))
663
664
665
666
667
668
669
670
671
672
673
                    c_net.set_previous_controlnet(prev_cnet)
                    cnets[prev_cnet] = c_net

                d['control'] = c_net
                d['control_apply_to_uncond'] = False
                n = [t[0], d]
                c.append(n)
            out.append(c)
        return (out[0], out[1])


674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
class UNETLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "unet_name": (folder_paths.get_filename_list("unet"), ),
                             }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "load_unet"

    CATEGORY = "advanced/loaders"

    def load_unet(self, unet_name):
        unet_path = folder_paths.get_full_path("unet", unet_name)
        model = comfy.sd.load_unet(unet_path)
        return (model,)

689
690
691
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
692
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
693
694
695
696
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

697
    CATEGORY = "advanced/loaders"
698

699
    def load_clip(self, clip_name):
700
        clip_path = folder_paths.get_full_path("clip", clip_name)
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return (clip,)

class DualCLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_name1": (folder_paths.get_filename_list("clip"), ), "clip_name2": (folder_paths.get_filename_list("clip"), ),
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "advanced/loaders"

    def load_clip(self, clip_name1, clip_name2):
        clip_path1 = folder_paths.get_full_path("clip", clip_name1)
        clip_path2 = folder_paths.get_full_path("clip", clip_name2)
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"))
718
719
        return (clip,)

720
721
722
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
723
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
724
725
726
727
728
729
730
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
731
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
732
        clip_vision = comfy.clip_vision.load(clip_path)
733
734
735
736
737
738
739
740
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
741
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
742
743
    FUNCTION = "encode"

744
    CATEGORY = "conditioning"
745
746
747
748
749
750
751
752

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
753
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
754
755
756
757
758
759
760

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
761
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
762
763
764
765
766
767
768
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
769
770
771
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
772
773
774
775
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
776
    CATEGORY = "conditioning/style_model"
777

778
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
779
        cond = style_model.get_cond(clip_vision_output).flatten(start_dim=0, end_dim=1).unsqueeze(dim=0)
780
        c = []
781
782
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
783
784
785
            c.append(n)
        return (c, )

786
787
788
789
790
791
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
792
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
793
794
795
796
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

797
    CATEGORY = "conditioning"
798

799
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
800
801
802
        if strength == 0:
            return (conditioning, )

803
804
805
        c = []
        for t in conditioning:
            o = t[1].copy()
806
807
808
            x = {"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation}
            if "unclip_conditioning" in o:
                o["unclip_conditioning"] = o["unclip_conditioning"][:] + [x]
809
            else:
810
                o["unclip_conditioning"] = [x]
811
812
813
814
            n = [t[0], o]
            c.append(n)
        return (c, )

815
816
817
818
819
820
821
822
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
823
    CATEGORY = "loaders"
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
                              "text": ("STRING", {"multiline": True}),
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
845
    CATEGORY = "conditioning/gligen"
846
847
848
849
850
851
852
853
854
855
856
857
858
859

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
860

comfyanonymous's avatar
comfyanonymous committed
861
862
863
864
865
866
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
867
868
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
869
870
871
872
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

873
874
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
875
876
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
877
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
878

comfyanonymous's avatar
comfyanonymous committed
879

880
881
882
883
884
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
885
                              "length": ("INT", {"default": 1, "min": 1, "max": 64}),
886
887
                              }}
    RETURN_TYPES = ("LATENT",)
888
    FUNCTION = "frombatch"
889

890
    CATEGORY = "latent/batch"
891

892
    def frombatch(self, samples, batch_index, length):
893
894
895
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
        length = min(s_in.shape[0] - batch_index, length)
        s["samples"] = s_in[batch_index:batch_index + length].clone()
        if "noise_mask" in samples:
            masks = samples["noise_mask"]
            if masks.shape[0] == 1:
                s["noise_mask"] = masks.clone()
            else:
                if masks.shape[0] < s_in.shape[0]:
                    masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
                s["noise_mask"] = masks[batch_index:batch_index + length].clone()
        if "batch_index" not in s:
            s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
        else:
            s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
        return (s,)
    
class RepeatLatentBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "amount": ("INT", {"default": 1, "min": 1, "max": 64}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "repeat"

    CATEGORY = "latent/batch"

    def repeat(self, samples, amount):
        s = samples.copy()
        s_in = samples["samples"]
        
        s["samples"] = s_in.repeat((amount, 1,1,1))
        if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
            masks = samples["noise_mask"]
            if masks.shape[0] < s_in.shape[0]:
                masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
            s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
        if "batch_index" in s:
            offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
            s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
936
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
937

comfyanonymous's avatar
comfyanonymous committed
938
class LatentUpscale:
comfyanonymous's avatar
comfyanonymous committed
939
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
940
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
941
942
943
944

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
945
946
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
947
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
948
949
950
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

951
952
    CATEGORY = "latent"

953
    def upscale(self, samples, upscale_method, width, height, crop):
954
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
955
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
956
957
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
958
class LatentUpscaleBy:
comfyanonymous's avatar
comfyanonymous committed
959
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
comfyanonymous's avatar
comfyanonymous committed
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.5, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

    CATEGORY = "latent"

    def upscale(self, samples, upscale_method, scale_by):
        s = samples.copy()
        width = round(samples["samples"].shape[3] * scale_by)
        height = round(samples["samples"].shape[2] * scale_by)
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled")
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
977
978
979
980
981
982
983
984
985
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
986
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
987
988

    def rotate(self, samples, rotation):
989
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
990
991
992
993
994
995
996
997
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

998
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
999
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
1010
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
1011
1012

    def flip(self, samples, flip_method):
1013
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
1014
        if flip_method.startswith("x"):
1015
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
1016
        elif flip_method.startswith("y"):
1017
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
1018
1019

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1020
1021
1022
1023

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
1024
1025
1026
1027
1028
1029
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
1030
1031
1032
1033
1034
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
1035
1036
1037
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
1038
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
1062

1063
1064
1065
1066
class LatentBlend:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
1067
1068
            "samples1": ("LATENT",),
            "samples2": ("LATENT",),
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
            "blend_factor": ("FLOAT", {
                "default": 0.5,
                "min": 0,
                "max": 1,
                "step": 0.01
            }),
        }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "blend"

    CATEGORY = "_for_testing"

1082
    def blend(self, samples1, samples2, blend_factor:float, blend_mode: str="normal"):
1083

1084
1085
1086
        samples_out = samples1.copy()
        samples1 = samples1["samples"]
        samples2 = samples2["samples"]
1087

1088
1089
1090
1091
        if samples1.shape != samples2.shape:
            samples2.permute(0, 3, 1, 2)
            samples2 = comfy.utils.common_upscale(samples2, samples1.shape[3], samples1.shape[2], 'bicubic', crop='center')
            samples2.permute(0, 2, 3, 1)
1092

1093
1094
        samples_blended = self.blend_mode(samples1, samples2, blend_mode)
        samples_blended = samples1 * blend_factor + samples_blended * (1 - blend_factor)
1095
1096
1097
1098
1099
1100
1101
1102
1103
        samples_out["samples"] = samples_blended
        return (samples_out,)

    def blend_mode(self, img1, img2, mode):
        if mode == "normal":
            return img2
        else:
            raise ValueError(f"Unsupported blend mode: {mode}")

comfyanonymous's avatar
comfyanonymous committed
1104
1105
1106
1107
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
1108
1109
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
1110
1111
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
1112
1113
1114
1115
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
1116
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
1117
1118

    def crop(self, samples, width, height, x, y):
1119
1120
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
1134
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
1135
1136
        return (s,)

1137
1138
1139
1140
1141
1142
1143
1144
1145
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

1146
    CATEGORY = "latent/inpaint"
1147
1148
1149

    def set_mask(self, samples, mask):
        s = samples.copy()
1150
        s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
1151
1152
        return (s,)

space-nuko's avatar
space-nuko committed
1153

space-nuko's avatar
space-nuko committed
1154
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
1155
    device = comfy.model_management.get_torch_device()
1156
    latent_image = latent["samples"]
1157

comfyanonymous's avatar
comfyanonymous committed
1158
1159
1160
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
1161
1162
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
comfyanonymous's avatar
comfyanonymous committed
1163

1164
    noise_mask = None
1165
    if "noise_mask" in latent:
1166
        noise_mask = latent["noise_mask"]
comfyanonymous's avatar
comfyanonymous committed
1167

space-nuko's avatar
space-nuko committed
1168
1169
1170
1171
    preview_format = "JPEG"
    if preview_format not in ["JPEG", "PNG"]:
        preview_format = "JPEG"

1172
    previewer = latent_preview.get_previewer(device, model.model.latent_format)
space-nuko's avatar
space-nuko committed
1173

1174
    pbar = comfy.utils.ProgressBar(steps)
1175
    def callback(step, x0, x, total_steps):
space-nuko's avatar
space-nuko committed
1176
        preview_bytes = None
1177
        if previewer:
1178
            preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
space-nuko's avatar
space-nuko committed
1179
        pbar.update_absolute(step + 1, total_steps, preview_bytes)
1180

1181
1182
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
1183
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, seed=seed)
1184
1185
1186
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
1187

comfyanonymous's avatar
comfyanonymous committed
1188
1189
1190
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
1191
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
space-nuko's avatar
space-nuko committed
1202
1203
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1204
1205
1206
1207

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

1208
1209
    CATEGORY = "sampling"

space-nuko's avatar
space-nuko committed
1210
1211
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
1212

comfyanonymous's avatar
comfyanonymous committed
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
space-nuko's avatar
space-nuko committed
1230
1231
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1232
1233
1234
1235
1236

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
1237

space-nuko's avatar
space-nuko committed
1238
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
comfyanonymous's avatar
comfyanonymous committed
1239
1240
1241
1242
1243
1244
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
space-nuko's avatar
space-nuko committed
1245
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
1246
1247
1248

class SaveImage:
    def __init__(self):
1249
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1250
        self.type = "output"
1251
        self.prefix_append = ""
comfyanonymous's avatar
comfyanonymous committed
1252
1253
1254
1255

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
1256
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
1257
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
1258
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
1259
1260
1261
1262
1263
1264
1265
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

1266
1267
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
1268
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
1269
        filename_prefix += self.prefix_append
1270
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
m957ymj75urz's avatar
m957ymj75urz committed
1271
        results = list()
comfyanonymous's avatar
comfyanonymous committed
1272
1273
        for image in images:
            i = 255. * image.cpu().numpy()
1274
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
1275
1276
1277
1278
1279
1280
1281
1282
            metadata = None
            if not args.disable_metadata:
                metadata = PngInfo()
                if prompt is not None:
                    metadata.add_text("prompt", json.dumps(prompt))
                if extra_pnginfo is not None:
                    for x in extra_pnginfo:
                        metadata.add_text(x, json.dumps(extra_pnginfo[x]))
1283

1284
            file = f"{filename}_{counter:05}_.png"
1285
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
1286
1287
1288
1289
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
1290
            })
1291
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
1292

m957ymj75urz's avatar
m957ymj75urz committed
1293
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
1294

pythongosssss's avatar
pythongosssss committed
1295
1296
class PreviewImage(SaveImage):
    def __init__(self):
1297
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1298
        self.type = "temp"
1299
        self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
pythongosssss's avatar
pythongosssss committed
1300
1301
1302

    @classmethod
    def INPUT_TYPES(s):
1303
        return {"required":
pythongosssss's avatar
pythongosssss committed
1304
1305
1306
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
1307

1308
1309
1310
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
1311
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1312
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1313
        return {"required":
1314
                    {"image": (sorted(files), {"image_upload": True})},
1315
                }
1316
1317

    CATEGORY = "image"
1318

1319
    RETURN_TYPES = ("IMAGE", "MASK")
1320
1321
    FUNCTION = "load_image"
    def load_image(self, image):
1322
        image_path = folder_paths.get_annotated_filepath(image)
1323
        i = Image.open(image_path)
1324
        i = ImageOps.exif_transpose(i)
1325
        image = i.convert("RGB")
1326
        image = np.array(image).astype(np.float32) / 255.0
1327
        image = torch.from_numpy(image)[None,]
1328
1329
1330
1331
1332
1333
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)
1334

1335
1336
    @classmethod
    def IS_CHANGED(s, image):
1337
        image_path = folder_paths.get_annotated_filepath(image)
1338
1339
1340
1341
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1342

1343
1344
1345
1346
1347
1348
1349
    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

1350
class LoadImageMask:
1351
    _color_channels = ["alpha", "red", "green", "blue"]
1352
1353
    @classmethod
    def INPUT_TYPES(s):
1354
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1355
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1356
        return {"required":
1357
                    {"image": (sorted(files), {"image_upload": True}),
1358
                     "channel": (s._color_channels, ), }
1359
1360
                }

1361
    CATEGORY = "mask"
1362
1363
1364
1365

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
1366
        image_path = folder_paths.get_annotated_filepath(image)
1367
        i = Image.open(image_path)
1368
        i = ImageOps.exif_transpose(i)
1369
1370
        if i.getbands() != ("R", "G", "B", "A"):
            i = i.convert("RGBA")
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
1384
        image_path = folder_paths.get_annotated_filepath(image)
1385
1386
1387
1388
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1389

1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
    @classmethod
    def VALIDATE_INPUTS(s, image, channel):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        if channel not in s._color_channels:
            return "Invalid color channel: {}".format(channel)

        return True

comfyanonymous's avatar
comfyanonymous committed
1400
class ImageScale:
comfyanonymous's avatar
comfyanonymous committed
1401
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic"]
comfyanonymous's avatar
comfyanonymous committed
1402
1403
1404
1405
1406
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1407
1408
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1409
1410
1411
1412
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1413
    CATEGORY = "image/upscaling"
1414

comfyanonymous's avatar
comfyanonymous committed
1415
1416
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
1417
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1418
1419
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1420

comfyanonymous's avatar
comfyanonymous committed
1421
class ImageScaleBy:
comfyanonymous's avatar
comfyanonymous committed
1422
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic"]
comfyanonymous's avatar
comfyanonymous committed
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

    CATEGORY = "image/upscaling"

    def upscale(self, image, upscale_method, scale_by):
        samples = image.movedim(-1,1)
        width = round(samples.shape[3] * scale_by)
        height = round(samples.shape[2] * scale_by)
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
        s = s.movedim(1,-1)
        return (s,)

1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)

1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
class ImageBatch:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image1": ("IMAGE",), "image2": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "batch"

    CATEGORY = "image"

    def batch(self, image1, image2):
        if image1.shape[1:] != image2.shape[1:]:
            image2 = comfy.utils.common_upscale(image2.movedim(-1,1), image1.shape[2], image1.shape[1], "bilinear", "center").movedim(1,-1)
        s = torch.cat((image1, image2), dim=0)
        return (s,)
1472

comfyanonymous's avatar
comfyanonymous committed
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
class EmptyImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64}),
                              "color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}),
                              }}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "generate"

    CATEGORY = "image"

    def generate(self, width, height, batch_size=1, color=0):
        r = torch.full([batch_size, height, width, 1], ((color >> 16) & 0xFF) / 0xFF)
        g = torch.full([batch_size, height, width, 1], ((color >> 8) & 0xFF) / 0xFF)
        b = torch.full([batch_size, height, width, 1], ((color) & 0xFF) / 0xFF)
        return (torch.cat((r, g, b), dim=-1), )

Guo Y.K's avatar
Guo Y.K committed
1495
1496
1497
1498
1499
1500
1501
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1502
1503
1504
1505
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1506
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1507
1508
1509
1510
1511
1512
1513
1514
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1515
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1528

1529
1530
1531
1532
1533
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1534
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1554

Guo Y.K's avatar
Guo Y.K committed
1555
1556
1557
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1558
1559
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1560
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1561
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1562
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1563
1564
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1565
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1566
1567
1568
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
comfyanonymous's avatar
comfyanonymous committed
1569
    "LatentUpscaleBy": LatentUpscaleBy,
1570
    "LatentFromBatch": LatentFromBatch,
1571
    "RepeatLatentBatch": RepeatLatentBatch,
comfyanonymous's avatar
comfyanonymous committed
1572
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1573
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1574
    "LoadImage": LoadImage,
1575
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1576
    "ImageScale": ImageScale,
comfyanonymous's avatar
comfyanonymous committed
1577
    "ImageScaleBy": ImageScaleBy,
1578
    "ImageInvert": ImageInvert,
1579
    "ImageBatch": ImageBatch,
Guo Y.K's avatar
Guo Y.K committed
1580
    "ImagePadForOutpaint": ImagePadForOutpaint,
comfyanonymous's avatar
comfyanonymous committed
1581
    "EmptyImage": EmptyImage,
FizzleDorf's avatar
FizzleDorf committed
1582
    "ConditioningAverage ": ConditioningAverage ,
comfyanonymous's avatar
comfyanonymous committed
1583
    "ConditioningCombine": ConditioningCombine,
1584
    "ConditioningConcat": ConditioningConcat,
comfyanonymous's avatar
comfyanonymous committed
1585
    "ConditioningSetArea": ConditioningSetArea,
Jacob Segal's avatar
Jacob Segal committed
1586
    "ConditioningSetMask": ConditioningSetMask,
comfyanonymous's avatar
comfyanonymous committed
1587
    "KSamplerAdvanced": KSamplerAdvanced,
1588
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1589
    "LatentComposite": LatentComposite,
1590
    "LatentBlend": LatentBlend,
comfyanonymous's avatar
comfyanonymous committed
1591
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1592
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1593
    "LatentCrop": LatentCrop,
1594
    "LoraLoader": LoraLoader,
1595
    "CLIPLoader": CLIPLoader,
1596
    "UNETLoader": UNETLoader,
1597
    "DualCLIPLoader": DualCLIPLoader,
1598
    "CLIPVisionEncode": CLIPVisionEncode,
1599
    "StyleModelApply": StyleModelApply,
1600
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1601
    "ControlNetApply": ControlNetApply,
1602
    "ControlNetApplyAdvanced": ControlNetApplyAdvanced,
comfyanonymous's avatar
comfyanonymous committed
1603
    "ControlNetLoader": ControlNetLoader,
1604
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1605
1606
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1607
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1608
    "VAEEncodeTiled": VAEEncodeTiled,
1609
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1610
1611
1612
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,

1613
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1614
    "DiffusersLoader": DiffusersLoader,
Dr.Lt.Data's avatar
Dr.Lt.Data committed
1615
1616

    "LoadLatent": LoadLatent,
1617
    "SaveLatent": SaveLatent,
1618
1619

    "ConditioningZeroOut": ConditioningZeroOut,
1620
    "ConditioningSetTimestepRange": ConditioningSetTimestepRange,
comfyanonymous's avatar
comfyanonymous committed
1621
1622
}

City's avatar
City committed
1623
1624
1625
1626
1627
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1628
1629
    "CheckpointLoader": "Load Checkpoint (With Config)",
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
FizzleDorf's avatar
FizzleDorf committed
1644
    "ConditioningAverage ": "Conditioning (Average)",
1645
    "ConditioningConcat": "Conditioning (Concat)",
City's avatar
City committed
1646
    "ConditioningSetArea": "Conditioning (Set Area)",
Jacob Segal's avatar
Jacob Segal committed
1647
    "ConditioningSetMask": "Conditioning (Set Mask)",
City's avatar
City committed
1648
    "ControlNetApply": "Apply ControlNet",
1649
    "ControlNetApplyAdvanced": "Apply ControlNet (Advanced)",
City's avatar
City committed
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
comfyanonymous's avatar
comfyanonymous committed
1660
    "LatentUpscaleBy": "Upscale Latent By",
City's avatar
City committed
1661
    "LatentComposite": "Latent Composite",
1662
    "LatentBlend": "Latent Blend",
1663
1664
    "LatentFromBatch" : "Latent From Batch",
    "RepeatLatentBatch": "Repeat Latent Batch",
City's avatar
City committed
1665
1666
1667
1668
1669
1670
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
comfyanonymous's avatar
comfyanonymous committed
1671
    "ImageScaleBy": "Upscale Image By",
City's avatar
City committed
1672
1673
1674
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
1675
    "ImageBatch": "Batch Images",
City's avatar
City committed
1676
1677
1678
1679
1680
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1681
1682
EXTENSION_WEB_DIRS = {}

1683
def load_custom_node(module_path, ignore=set()):
1684
1685
1686
1687
1688
1689
1690
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
1691
            module_dir = os.path.split(module_path)[0]
1692
1693
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
1694
1695
            module_dir = module_path

1696
1697
1698
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
1699
1700
1701
1702
1703
1704

        if hasattr(module, "WEB_DIRECTORY") and getattr(module, "WEB_DIRECTORY") is not None:
            web_dir = os.path.abspath(os.path.join(module_dir, getattr(module, "WEB_DIRECTORY")))
            if os.path.isdir(web_dir):
                EXTENSION_WEB_DIRS[module_name] = web_dir

1705
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
1706
1707
1708
            for name in module.NODE_CLASS_MAPPINGS:
                if name not in ignore:
                    NODE_CLASS_MAPPINGS[name] = module.NODE_CLASS_MAPPINGS[name]
1709
1710
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1711
            return True
1712
1713
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
1714
            return False
1715
1716
1717
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)
1718
        return False
1719

Hacker 17082006's avatar
Hacker 17082006 committed
1720
def load_custom_nodes():
1721
    base_node_names = set(NODE_CLASS_MAPPINGS.keys())
1722
    node_paths = folder_paths.get_folder_paths("custom_nodes")
1723
    node_import_times = []
1724
1725
1726
1727
1728
1729
1730
1731
    for custom_node_path in node_paths:
        possible_modules = os.listdir(custom_node_path)
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1732
            if module_path.endswith(".disabled"): continue
1733
            time_before = time.perf_counter()
1734
            success = load_custom_node(module_path, base_node_names)
1735
            node_import_times.append((time.perf_counter() - time_before, module_path, success))
1736

1737
    if len(node_import_times) > 0:
comfyanonymous's avatar
comfyanonymous committed
1738
        print("\nImport times for custom nodes:")
1739
        for n in sorted(node_import_times):
1740
1741
1742
1743
1744
            if n[2]:
                import_message = ""
            else:
                import_message = " (IMPORT FAILED)"
            print("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
1745
        print()
1746

1747
def init_custom_nodes():
1748
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_hypernetwork.py"))
1749
1750
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
1751
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))
1752
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_rebatch.py"))
1753
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_model_merging.py"))
1754
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_tomesd.py"))
1755
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_clip_sdxl.py"))
1756
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_canny.py"))
1757
    load_custom_nodes()