nodes.py 52.6 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
8
import math
9
import time
comfyanonymous's avatar
comfyanonymous committed
10
11
12
13
14

from PIL import Image
from PIL.PngImagePlugin import PngInfo
import numpy as np

sALTaccount's avatar
sALTaccount committed
15

comfyanonymous's avatar
comfyanonymous committed
16
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
17
18


comfyanonymous's avatar
comfyanonymous committed
19
import comfy.diffusers_convert
comfyanonymous's avatar
comfyanonymous committed
20
import comfy.samplers
21
import comfy.sample
comfyanonymous's avatar
comfyanonymous committed
22
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
23
24
import comfy.utils

25
import comfy.clip_vision
26

27
import comfy.model_management
28
import importlib
comfyanonymous's avatar
comfyanonymous committed
29

30
import folder_paths
31

Dr.Lt.Data's avatar
Dr.Lt.Data committed
32
33
import safetensors.torch as sft

34
def before_node_execution():
35
    comfy.model_management.throw_exception_if_processing_interrupted()
36

37
def interrupt_processing(value=True):
38
    comfy.model_management.interrupt_current_processing(value)
39

40
41
MAX_RESOLUTION=8192

comfyanonymous's avatar
comfyanonymous committed
42
43
44
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
45
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
46
47
48
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

49
50
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
51
    def encode(self, clip, text):
comfyanonymous's avatar
comfyanonymous committed
52
53
54
55
56
57
58
59
60
        return ([[clip.encode(text), {}]], )

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

61
62
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
63
64
65
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

FizzleDorf's avatar
FizzleDorf committed
66
67
68
class ConditioningAverage :
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
69
70
        return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
                              "conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
FizzleDorf's avatar
FizzleDorf committed
71
72
73
74
75
76
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "addWeighted"

    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
77
    def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
FizzleDorf's avatar
FizzleDorf committed
78
        out = []
comfyanonymous's avatar
comfyanonymous committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92

        if len(conditioning_from) > 1:
            print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

        cond_from = conditioning_from[0][0]

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
            t0 = cond_from[:,:t1.shape[1]]
            if t0.shape[1] < t1.shape[1]:
                t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)

            tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
            n = [tw, conditioning_to[i][1].copy()]
FizzleDorf's avatar
FizzleDorf committed
93
94
95
            out.append(n)
        return (out, )

comfyanonymous's avatar
comfyanonymous committed
96
97
98
99
class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
100
101
102
103
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
104
105
106
107
108
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

109
110
    CATEGORY = "conditioning"

111
    def append(self, conditioning, width, height, x, y, strength):
comfyanonymous's avatar
comfyanonymous committed
112
113
114
115
116
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
117
            n[1]['set_area_to_bounds'] = False
comfyanonymous's avatar
comfyanonymous committed
118
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
119
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
120

Jacob Segal's avatar
Jacob Segal committed
121
122
123
124
125
126
class ConditioningSetMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "mask": ("MASK", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
127
                              "set_cond_area": (["default", "mask bounds"],),
Jacob Segal's avatar
Jacob Segal committed
128
129
130
131
132
133
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

134
    def append(self, conditioning, mask, set_cond_area, strength):
Jacob Segal's avatar
Jacob Segal committed
135
        c = []
136
137
138
        set_area_to_bounds = False
        if set_cond_area != "default":
            set_area_to_bounds = True
Jacob Segal's avatar
Jacob Segal committed
139
140
141
142
143
144
        if len(mask.shape) < 3:
            mask = mask.unsqueeze(0)
        for t in conditioning:
            n = [t[0], t[1].copy()]
            _, h, w = mask.shape
            n[1]['mask'] = mask
Jacob Segal's avatar
Jacob Segal committed
145
            n[1]['set_area_to_bounds'] = set_area_to_bounds
146
            n[1]['mask_strength'] = strength
Jacob Segal's avatar
Jacob Segal committed
147
148
149
            c.append(n)
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
150
151
152
153
154
155
156
class VAEDecode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

157
158
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
159
    def decode(self, vae, samples):
160
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
161

162
163
164
165
166
167
168
169
170
171
172
173
class VAEDecodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
174
175
176
177
178
179
180
class VAEEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

181
182
    CATEGORY = "latent"

183
184
185
186
    @staticmethod
    def vae_encode_crop_pixels(pixels):
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
187
        if pixels.shape[1] != x or pixels.shape[2] != y:
188
189
190
191
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
        return pixels
192

193
194
195
    def encode(self, vae, pixels):
        pixels = self.vae_encode_crop_pixels(pixels)
        t = vae.encode(pixels[:,:,:,:3])
196
        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
197

comfyanonymous's avatar
comfyanonymous committed
198
199
200
201
202
203
204
205
206
207
class VAEEncodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

    def encode(self, vae, pixels):
208
        pixels = VAEEncode.vae_encode_crop_pixels(pixels)
comfyanonymous's avatar
comfyanonymous committed
209
210
        t = vae.encode_tiled(pixels[:,:,:,:3])
        return ({"samples":t}, )
211

212
213
214
class VAEEncodeForInpaint:
    @classmethod
    def INPUT_TYPES(s):
215
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
216
217
218
219
220
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

221
    def encode(self, vae, pixels, mask, grow_mask_by=6):
222
223
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
224
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
225

226
        pixels = pixels.clone()
227
        if pixels.shape[1] != x or pixels.shape[2] != y:
228
229
230
231
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
232

233
        #grow mask by a few pixels to keep things seamless in latent space
234
235
236
237
238
239
240
241
        if grow_mask_by == 0:
            mask_erosion = mask
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)

242
        m = (1.0 - mask.round()).squeeze(1)
243
244
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
245
            pixels[:,:,:,i] *= m
246
247
248
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

249
        return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
250

Dr.Lt.Data's avatar
Dr.Lt.Data committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335

class SaveLatent:
    def __init__(self):
        self.output_dir = os.path.join(folder_paths.get_input_directory(), "latents")
        self.type = "output"

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ),
                              "filename_prefix": ("STRING", {"default": "ComfyUI"})},
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
    RETURN_TYPES = ()
    FUNCTION = "save"

    OUTPUT_NODE = True

    CATEGORY = "_for_testing"

    def save(self, samples, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
        def map_filename(filename):
            prefix_len = len(os.path.basename(filename_prefix))
            prefix = filename[:prefix_len + 1]
            try:
                digits = int(filename[prefix_len + 1:].split('_')[0])
            except:
                digits = 0
            return (digits, prefix)

        subfolder = os.path.dirname(os.path.normpath(filename_prefix))
        filename = os.path.basename(os.path.normpath(filename_prefix))

        full_output_folder = os.path.join(self.output_dir, subfolder)

        if os.path.commonpath((self.output_dir, os.path.abspath(full_output_folder))) != self.output_dir:
            print("Saving latent outside the 'input/latents' folder is not allowed.")
            return {}

        try:
            counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1
        except ValueError:
            counter = 1
        except FileNotFoundError:
            os.makedirs(full_output_folder, exist_ok=True)
            counter = 1

        # support save metadata for latent sharing
        prompt_info = ""
        if prompt is not None:
            prompt_info = json.dumps(prompt)

        metadata = {"workflow": prompt_info}
        if extra_pnginfo is not None:
            for x in extra_pnginfo:
                metadata[x] = json.dumps(extra_pnginfo[x])

        file = f"{filename}_{counter:05}_.latent"
        file = os.path.join(full_output_folder, file)

        sft.save_file(samples, file, metadata=metadata)

        return {}


class LoadLatent:
    input_dir = os.path.join(folder_paths.get_input_directory(), "latents")

    @classmethod
    def INPUT_TYPES(s):
        files = [f for f in os.listdir(s.input_dir) if os.path.isfile(os.path.join(s.input_dir, f)) and f.endswith(".latent")]
        return {"required": {"latent": [sorted(files), ]}, }

    CATEGORY = "_for_testing"

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "load"

    def load(self, latent):
        file = folder_paths.get_annotated_filepath(latent, self.input_dir)

        latent = sft.load_file(file, device="cpu")

        return (latent, )


comfyanonymous's avatar
comfyanonymous committed
336
337
338
class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
339
340
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
341
342
343
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

344
    CATEGORY = "advanced/loaders"
345

comfyanonymous's avatar
comfyanonymous committed
346
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
347
348
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
349
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
350

351
352
353
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
354
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
355
356
357
358
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

359
    CATEGORY = "loaders"
360

361
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
362
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
363
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
364
365
        return out

sALTaccount's avatar
sALTaccount committed
366
367
368
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
369
        paths = []
sALTaccount's avatar
sALTaccount committed
370
        for search_path in folder_paths.get_folder_paths("diffusers"):
371
            if os.path.exists(search_path):
372
373
374
375
                for root, subdir, files in os.walk(search_path, followlinks=True):
                    if "model_index.json" in files:
                        paths.append(os.path.relpath(root, start=search_path))

376
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
377
378
379
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

380
    CATEGORY = "advanced/loaders"
sALTaccount's avatar
sALTaccount committed
381
382

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
383
384
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
385
386
387
                path = os.path.join(search_path, model_path)
                if os.path.exists(path):
                    model_path = path
sALTaccount's avatar
sALTaccount committed
388
                    break
389

390
        return comfy.diffusers_convert.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
391
392


393
394
395
396
397
398
399
400
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

401
    CATEGORY = "loaders"
402
403
404
405
406
407

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

424
425
426
427
428
class LoraLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
429
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
430
431
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
432
433
434
435
436
437
438
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
439
        lora_path = folder_paths.get_full_path("loras", lora_name)
440
441
442
        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
        return (model_lora, clip_lora)

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
class TomePatchModel:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "_for_testing"

    def patch(self, model, ratio):
        m = model.clone()
        m.set_model_tomesd(ratio)
        return (m, )

comfyanonymous's avatar
comfyanonymous committed
459
460
461
class VAELoader:
    @classmethod
    def INPUT_TYPES(s):
462
        return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
comfyanonymous's avatar
comfyanonymous committed
463
464
465
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

466
467
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
468
469
    #TODO: scale factor?
    def load_vae(self, vae_name):
470
        vae_path = folder_paths.get_full_path("vae", vae_name)
comfyanonymous's avatar
comfyanonymous committed
471
472
473
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
474
475
476
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
477
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
478
479
480
481
482
483
484

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
485
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
comfyanonymous's avatar
comfyanonymous committed
486
487
488
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

489
490
491
492
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
493
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
494
495
496
497
498
499
500

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
501
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
502
503
504
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
505
506
507
508

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
509
510
511
512
513
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
514
515
516
517
518
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

519
    def apply_controlnet(self, conditioning, control_net, image, strength):
comfyanonymous's avatar
comfyanonymous committed
520
521
522
523
        c = []
        control_hint = image.movedim(-1,1)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
524
525
526
527
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
comfyanonymous's avatar
comfyanonymous committed
528
529
530
            c.append(n)
        return (c, )

531
532
533
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
534
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
535
536
537
538
539
540
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

541
    def load_clip(self, clip_name):
542
        clip_path = folder_paths.get_full_path("clip", clip_name)
comfyanonymous's avatar
comfyanonymous committed
543
        clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=folder_paths.get_folder_paths("embeddings"))
544
545
        return (clip,)

546
547
548
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
549
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
550
551
552
553
554
555
556
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
557
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
558
        clip_vision = comfy.clip_vision.load(clip_path)
559
560
561
562
563
564
565
566
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
567
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
568
569
    FUNCTION = "encode"

570
    CATEGORY = "conditioning"
571
572
573
574
575
576
577
578

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
579
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
580
581
582
583
584
585
586

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
587
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
588
589
590
591
592
593
594
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
595
596
597
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
598
599
600
601
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
602
    CATEGORY = "conditioning/style_model"
603

604
605
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
        cond = style_model.get_cond(clip_vision_output)
606
        c = []
607
608
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
609
610
611
            c.append(n)
        return (c, )

612
613
614
615
616
617
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
618
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
619
620
621
622
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

623
    CATEGORY = "conditioning"
624

625
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
626
627
628
        c = []
        for t in conditioning:
            o = t[1].copy()
629
            x = (clip_vision_output, strength, noise_augmentation)
630
631
632
633
634
635
636
637
            if "adm" in o:
                o["adm"] = o["adm"][:] + [x]
            else:
                o["adm"] = [x]
            n = [t[0], o]
            c.append(n)
        return (c, )

638
639
640
641
642
643
644
645
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
646
    CATEGORY = "loaders"
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
                              "text": ("STRING", {"multiline": True}),
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
668
    CATEGORY = "conditioning/gligen"
669
670
671
672
673
674
675
676
677
678
679
680
681
682

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
683

comfyanonymous's avatar
comfyanonymous committed
684
685
686
687
688
689
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
690
691
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
692
693
694
695
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

696
697
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
698
699
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
700
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
701

comfyanonymous's avatar
comfyanonymous committed
702

703
704
705
706
707
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
708
                              "length": ("INT", {"default": 1, "min": 1, "max": 64}),
709
710
                              }}
    RETURN_TYPES = ("LATENT",)
711
    FUNCTION = "frombatch"
712

713
    CATEGORY = "latent/batch"
714

715
    def frombatch(self, samples, batch_index, length):
716
717
718
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
        length = min(s_in.shape[0] - batch_index, length)
        s["samples"] = s_in[batch_index:batch_index + length].clone()
        if "noise_mask" in samples:
            masks = samples["noise_mask"]
            if masks.shape[0] == 1:
                s["noise_mask"] = masks.clone()
            else:
                if masks.shape[0] < s_in.shape[0]:
                    masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
                s["noise_mask"] = masks[batch_index:batch_index + length].clone()
        if "batch_index" not in s:
            s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
        else:
            s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
        return (s,)
    
class RepeatLatentBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "amount": ("INT", {"default": 1, "min": 1, "max": 64}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "repeat"

    CATEGORY = "latent/batch"

    def repeat(self, samples, amount):
        s = samples.copy()
        s_in = samples["samples"]
        
        s["samples"] = s_in.repeat((amount, 1,1,1))
        if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
            masks = samples["noise_mask"]
            if masks.shape[0] < s_in.shape[0]:
                masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
            s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
        if "batch_index" in s:
            offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
            s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
759
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
760

comfyanonymous's avatar
comfyanonymous committed
761
762
class LatentUpscale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
763
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
764
765
766
767

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
768
769
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
770
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
771
772
773
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

774
775
    CATEGORY = "latent"

776
    def upscale(self, samples, upscale_method, width, height, crop):
777
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
778
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
779
780
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
781
782
783
784
785
786
787
788
789
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
790
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
791
792

    def rotate(self, samples, rotation):
793
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
794
795
796
797
798
799
800
801
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

802
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
803
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
804
805
806
807
808
809
810
811
812
813

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
814
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
815
816

    def flip(self, samples, flip_method):
817
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
818
        if flip_method.startswith("x"):
819
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
820
        elif flip_method.startswith("y"):
821
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
822
823

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
824
825
826
827

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
828
829
830
831
832
833
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
834
835
836
837
838
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
839
840
841
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
842
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
866

comfyanonymous's avatar
comfyanonymous committed
867
868
869
870
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
871
872
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
873
874
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
875
876
877
878
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
879
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
880
881

    def crop(self, samples, width, height, x, y):
882
883
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
884
885
886
887
888
889
890
891
892
893
894
895
896
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
897
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
898
899
        return (s,)

900
901
902
903
904
905
906
907
908
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

909
    CATEGORY = "latent/inpaint"
910
911
912

    def set_mask(self, samples, mask):
        s = samples.copy()
913
        s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
914
915
        return (s,)

916
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
917
    device = comfy.model_management.get_torch_device()
918
    latent_image = latent["samples"]
919

comfyanonymous's avatar
comfyanonymous committed
920
921
922
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
923
924
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
comfyanonymous's avatar
comfyanonymous committed
925

926
    noise_mask = None
927
    if "noise_mask" in latent:
928
        noise_mask = latent["noise_mask"]
comfyanonymous's avatar
comfyanonymous committed
929

930
    pbar = comfy.utils.ProgressBar(steps)
931
932
    def callback(step, x0, x, total_steps):
        pbar.update_absolute(step + 1, total_steps)
933

934
935
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
936
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback)
937
938
939
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
940

comfyanonymous's avatar
comfyanonymous committed
941
942
943
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
944
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

960
961
    CATEGORY = "sampling"

comfyanonymous's avatar
comfyanonymous committed
962
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
963
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
964

comfyanonymous's avatar
comfyanonymous committed
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
988

comfyanonymous's avatar
comfyanonymous committed
989
990
991
992
993
994
995
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
996
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
997
998
999

class SaveImage:
    def __init__(self):
1000
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1001
        self.type = "output"
comfyanonymous's avatar
comfyanonymous committed
1002
1003
1004
1005

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
1006
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
1007
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
1008
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
1009
1010
1011
1012
1013
1014
1015
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

1016
1017
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
1018
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
1019
        def map_filename(filename):
1020
            prefix_len = len(os.path.basename(filename_prefix))
1021
1022
1023
1024
1025
1026
            prefix = filename[:prefix_len + 1]
            try:
                digits = int(filename[prefix_len + 1:].split('_')[0])
            except:
                digits = 0
            return (digits, prefix)
comfyanonymous's avatar
Style.  
comfyanonymous committed
1027

1028
1029
1030
1031
        def compute_vars(input):
            input = input.replace("%width%", str(images[0].shape[1]))
            input = input.replace("%height%", str(images[0].shape[0]))
            return input
comfyanonymous's avatar
Style.  
comfyanonymous committed
1032

1033
        filename_prefix = compute_vars(filename_prefix)
comfyanonymous's avatar
comfyanonymous committed
1034

m957ymj75urz's avatar
m957ymj75urz committed
1035
1036
1037
        subfolder = os.path.dirname(os.path.normpath(filename_prefix))
        filename = os.path.basename(os.path.normpath(filename_prefix))

comfyanonymous's avatar
comfyanonymous committed
1038
        full_output_folder = os.path.join(self.output_dir, subfolder)
1039

1040
        if os.path.commonpath((self.output_dir, os.path.abspath(full_output_folder))) != self.output_dir:
1041
            print("Saving image outside the output folder is not allowed.")
comfyanonymous's avatar
comfyanonymous committed
1042
1043
            return {}

1044
        try:
1045
            counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1
1046
1047
        except ValueError:
            counter = 1
1048
        except FileNotFoundError:
1049
            os.makedirs(full_output_folder, exist_ok=True)
1050
            counter = 1
pythongosssss's avatar
pythongosssss committed
1051

m957ymj75urz's avatar
m957ymj75urz committed
1052
        results = list()
comfyanonymous's avatar
comfyanonymous committed
1053
1054
        for image in images:
            i = 255. * image.cpu().numpy()
1055
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
comfyanonymous's avatar
comfyanonymous committed
1056
1057
1058
1059
1060
1061
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
1062

1063
            file = f"{filename}_{counter:05}_.png"
1064
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
1065
1066
1067
1068
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
1069
            })
1070
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
1071

m957ymj75urz's avatar
m957ymj75urz committed
1072
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
1073

pythongosssss's avatar
pythongosssss committed
1074
1075
class PreviewImage(SaveImage):
    def __init__(self):
1076
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1077
        self.type = "temp"
pythongosssss's avatar
pythongosssss committed
1078
1079
1080

    @classmethod
    def INPUT_TYPES(s):
1081
        return {"required":
pythongosssss's avatar
pythongosssss committed
1082
1083
1084
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
1085

1086
1087
1088
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
1089
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1090
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1091
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1092
                    {"image": (sorted(files), )},
1093
                }
1094
1095

    CATEGORY = "image"
1096

1097
    RETURN_TYPES = ("IMAGE", "MASK")
1098
1099
    FUNCTION = "load_image"
    def load_image(self, image):
1100
        image_path = folder_paths.get_annotated_filepath(image)
1101
1102
        i = Image.open(image_path)
        image = i.convert("RGB")
1103
        image = np.array(image).astype(np.float32) / 255.0
1104
        image = torch.from_numpy(image)[None,]
1105
1106
1107
1108
1109
1110
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)
1111

1112
1113
    @classmethod
    def IS_CHANGED(s, image):
1114
        image_path = folder_paths.get_annotated_filepath(image)
1115
1116
1117
1118
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1119

1120
1121
1122
1123
1124
1125
1126
    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

1127
class LoadImageMask:
1128
    _color_channels = ["alpha", "red", "green", "blue"]
1129
1130
    @classmethod
    def INPUT_TYPES(s):
1131
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1132
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1133
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1134
                    {"image": (sorted(files), ),
1135
                     "channel": (s._color_channels, ), }
1136
1137
                }

1138
    CATEGORY = "mask"
1139
1140
1141
1142

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
1143
        image_path = folder_paths.get_annotated_filepath(image)
1144
        i = Image.open(image_path)
1145
1146
        if i.getbands() != ("R", "G", "B", "A"):
            i = i.convert("RGBA")
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
1160
        image_path = folder_paths.get_annotated_filepath(image)
1161
1162
1163
1164
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1165

1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
    @classmethod
    def VALIDATE_INPUTS(s, image, channel):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        if channel not in s._color_channels:
            return "Invalid color channel: {}".format(channel)

        return True

comfyanonymous's avatar
comfyanonymous committed
1176
1177
1178
1179
1180
1181
1182
class ImageScale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1183
1184
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1185
1186
1187
1188
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1189
    CATEGORY = "image/upscaling"
1190

comfyanonymous's avatar
comfyanonymous committed
1191
1192
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
1193
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1194
1195
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1196

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


Guo Y.K's avatar
Guo Y.K committed
1213
1214
1215
1216
1217
1218
1219
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1220
1221
1222
1223
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1224
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1225
1226
1227
1228
1229
1230
1231
1232
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1233
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1246

1247
1248
1249
1250
1251
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1252
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1272

Guo Y.K's avatar
Guo Y.K committed
1273
1274
1275
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1276
1277
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1278
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1279
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1280
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1281
1282
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1283
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1284
1285
1286
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
1287
    "LatentFromBatch": LatentFromBatch,
1288
    "RepeatLatentBatch": RepeatLatentBatch,
comfyanonymous's avatar
comfyanonymous committed
1289
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1290
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1291
    "LoadImage": LoadImage,
1292
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1293
    "ImageScale": ImageScale,
1294
    "ImageInvert": ImageInvert,
Guo Y.K's avatar
Guo Y.K committed
1295
    "ImagePadForOutpaint": ImagePadForOutpaint,
FizzleDorf's avatar
FizzleDorf committed
1296
    "ConditioningAverage ": ConditioningAverage ,
comfyanonymous's avatar
comfyanonymous committed
1297
1298
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
Jacob Segal's avatar
Jacob Segal committed
1299
    "ConditioningSetMask": ConditioningSetMask,
comfyanonymous's avatar
comfyanonymous committed
1300
    "KSamplerAdvanced": KSamplerAdvanced,
1301
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1302
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
1303
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1304
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1305
    "LatentCrop": LatentCrop,
1306
    "LoraLoader": LoraLoader,
1307
    "CLIPLoader": CLIPLoader,
1308
    "CLIPVisionEncode": CLIPVisionEncode,
1309
    "StyleModelApply": StyleModelApply,
1310
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1311
1312
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
1313
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1314
1315
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1316
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1317
    "VAEEncodeTiled": VAEEncodeTiled,
1318
    "TomePatchModel": TomePatchModel,
1319
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1320
1321
1322
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,

1323
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1324
    "DiffusersLoader": DiffusersLoader,
Dr.Lt.Data's avatar
Dr.Lt.Data committed
1325
1326
1327

    "LoadLatent": LoadLatent,
    "SaveLatent": SaveLatent
comfyanonymous's avatar
comfyanonymous committed
1328
1329
}

City's avatar
City committed
1330
1331
1332
1333
1334
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1335
1336
    "CheckpointLoader": "Load Checkpoint (With Config)",
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
FizzleDorf's avatar
FizzleDorf committed
1351
    "ConditioningAverage ": "Conditioning (Average)",
City's avatar
City committed
1352
    "ConditioningSetArea": "Conditioning (Set Area)",
Jacob Segal's avatar
Jacob Segal committed
1353
    "ConditioningSetMask": "Conditioning (Set Mask)",
City's avatar
City committed
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
    "ControlNetApply": "Apply ControlNet",
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
    "LatentComposite": "Latent Composite",
1366
1367
    "LatentFromBatch" : "Latent From Batch",
    "RepeatLatentBatch": "Repeat Latent Batch",
City's avatar
City committed
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
def load_custom_node(module_path):
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
            NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
1397
1398
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1399
            return True
1400
1401
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
1402
            return False
1403
1404
1405
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)
1406
        return False
1407

Hacker 17082006's avatar
Hacker 17082006 committed
1408
def load_custom_nodes():
1409
    node_paths = folder_paths.get_folder_paths("custom_nodes")
1410
    node_import_times = []
1411
1412
1413
1414
1415
1416
1417
1418
    for custom_node_path in node_paths:
        possible_modules = os.listdir(custom_node_path)
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1419
            if module_path.endswith(".disabled"): continue
1420
            time_before = time.perf_counter()
1421
            success = load_custom_node(module_path)
1422
            node_import_times.append((time.perf_counter() - time_before, module_path, success))
1423

1424
    if len(node_import_times) > 0:
comfyanonymous's avatar
comfyanonymous committed
1425
        print("\nImport times for custom nodes:")
1426
        for n in sorted(node_import_times):
1427
1428
1429
1430
1431
            if n[2]:
                import_message = ""
            else:
                import_message = " (IMPORT FAILED)"
            print("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
1432
        print()
1433

1434
def init_custom_nodes():
1435
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_hypernetwork.py"))
1436
1437
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
1438
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))
1439
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_rebatch.py"))
1440
    load_custom_nodes()