nodes.py 55.8 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
8
import math
9
import time
space-nuko's avatar
space-nuko committed
10
11
import struct
from io import BytesIO
comfyanonymous's avatar
comfyanonymous committed
12

13
from PIL import Image, ImageOps
comfyanonymous's avatar
comfyanonymous committed
14
15
from PIL.PngImagePlugin import PngInfo
import numpy as np
16
import safetensors.torch
comfyanonymous's avatar
comfyanonymous committed
17

sALTaccount's avatar
sALTaccount committed
18

comfyanonymous's avatar
comfyanonymous committed
19
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
20
21


22
import comfy.diffusers_load
comfyanonymous's avatar
comfyanonymous committed
23
import comfy.samplers
24
import comfy.sample
comfyanonymous's avatar
comfyanonymous committed
25
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
26
import comfy.utils
space-nuko's avatar
space-nuko committed
27
from comfy.cli_args import args, LatentPreviewMethod
space-nuko's avatar
space-nuko committed
28
from comfy.taesd.taesd import TAESD
comfyanonymous's avatar
comfyanonymous committed
29

30
import comfy.clip_vision
31

32
import comfy.model_management
33
import importlib
comfyanonymous's avatar
comfyanonymous committed
34

35
import folder_paths
36

Dr.Lt.Data's avatar
Dr.Lt.Data committed
37

38
39
40
41
42
class LatentPreviewer:
    def decode_latent_to_preview(self, device, x0):
        pass


space-nuko's avatar
space-nuko committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
class Latent2RGBPreviewer(LatentPreviewer):
    def __init__(self):
        self.latent_rgb_factors = torch.tensor([
                    #   R        G        B
                    [0.298, 0.207, 0.208],  # L1
                    [0.187, 0.286, 0.173],  # L2
                    [-0.158, 0.189, 0.264],  # L3
                    [-0.184, -0.271, -0.473],  # L4
                ], device="cpu")

    def decode_latent_to_preview(self, device, x0):
        latent_image = x0[0].permute(1, 2, 0).cpu() @ self.latent_rgb_factors

        latents_ubyte = (((latent_image + 1) / 2)
                            .clamp(0, 1)  # change scale from -1..1 to 0..1
                            .mul(0xFF)  # to 0..255
                            .byte()).cpu()

        return Image.fromarray(latents_ubyte.numpy())


64
def before_node_execution():
65
    comfy.model_management.throw_exception_if_processing_interrupted()
66

67
def interrupt_processing(value=True):
68
    comfy.model_management.interrupt_current_processing(value)
69

70
MAX_RESOLUTION=8192
space-nuko's avatar
space-nuko committed
71
MAX_PREVIEW_RESOLUTION = 512
72

comfyanonymous's avatar
comfyanonymous committed
73
74
75
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
76
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
77
78
79
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

80
81
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
82
    def encode(self, clip, text):
comfyanonymous's avatar
comfyanonymous committed
83
84
85
86
87
88
89
90
91
        return ([[clip.encode(text), {}]], )

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

92
93
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
94
95
96
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

FizzleDorf's avatar
FizzleDorf committed
97
98
99
class ConditioningAverage :
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
100
101
        return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
                              "conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
FizzleDorf's avatar
FizzleDorf committed
102
103
104
105
106
107
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "addWeighted"

    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
108
    def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
FizzleDorf's avatar
FizzleDorf committed
109
        out = []
comfyanonymous's avatar
comfyanonymous committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123

        if len(conditioning_from) > 1:
            print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

        cond_from = conditioning_from[0][0]

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
            t0 = cond_from[:,:t1.shape[1]]
            if t0.shape[1] < t1.shape[1]:
                t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)

            tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
            n = [tw, conditioning_to[i][1].copy()]
FizzleDorf's avatar
FizzleDorf committed
124
125
126
            out.append(n)
        return (out, )

comfyanonymous's avatar
comfyanonymous committed
127
128
129
130
class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
131
132
133
134
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
135
136
137
138
139
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

140
141
    CATEGORY = "conditioning"

142
    def append(self, conditioning, width, height, x, y, strength):
comfyanonymous's avatar
comfyanonymous committed
143
144
145
146
147
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
148
            n[1]['set_area_to_bounds'] = False
comfyanonymous's avatar
comfyanonymous committed
149
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
150
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
151

Jacob Segal's avatar
Jacob Segal committed
152
153
154
155
156
157
class ConditioningSetMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "mask": ("MASK", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
158
                              "set_cond_area": (["default", "mask bounds"],),
Jacob Segal's avatar
Jacob Segal committed
159
160
161
162
163
164
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

165
    def append(self, conditioning, mask, set_cond_area, strength):
Jacob Segal's avatar
Jacob Segal committed
166
        c = []
167
168
169
        set_area_to_bounds = False
        if set_cond_area != "default":
            set_area_to_bounds = True
Jacob Segal's avatar
Jacob Segal committed
170
171
172
173
174
175
        if len(mask.shape) < 3:
            mask = mask.unsqueeze(0)
        for t in conditioning:
            n = [t[0], t[1].copy()]
            _, h, w = mask.shape
            n[1]['mask'] = mask
Jacob Segal's avatar
Jacob Segal committed
176
            n[1]['set_area_to_bounds'] = set_area_to_bounds
177
            n[1]['mask_strength'] = strength
Jacob Segal's avatar
Jacob Segal committed
178
179
180
            c.append(n)
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
181
182
183
184
185
186
187
class VAEDecode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

188
189
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
190
    def decode(self, vae, samples):
191
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
192

193
194
195
196
197
198
199
200
201
202
203
204
class VAEDecodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
205
206
207
208
209
210
211
class VAEEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

212
213
    CATEGORY = "latent"

214
215
216
217
    @staticmethod
    def vae_encode_crop_pixels(pixels):
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
218
        if pixels.shape[1] != x or pixels.shape[2] != y:
219
220
221
222
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
        return pixels
223

224
225
226
    def encode(self, vae, pixels):
        pixels = self.vae_encode_crop_pixels(pixels)
        t = vae.encode(pixels[:,:,:,:3])
227
        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
228

comfyanonymous's avatar
comfyanonymous committed
229
230
231
232
233
234
235
236
237
238
class VAEEncodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

    def encode(self, vae, pixels):
239
        pixels = VAEEncode.vae_encode_crop_pixels(pixels)
comfyanonymous's avatar
comfyanonymous committed
240
241
        t = vae.encode_tiled(pixels[:,:,:,:3])
        return ({"samples":t}, )
242

243
244
245
class VAEEncodeForInpaint:
    @classmethod
    def INPUT_TYPES(s):
246
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
247
248
249
250
251
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

252
    def encode(self, vae, pixels, mask, grow_mask_by=6):
253
254
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
255
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
256

257
        pixels = pixels.clone()
258
        if pixels.shape[1] != x or pixels.shape[2] != y:
259
260
261
262
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
263

264
        #grow mask by a few pixels to keep things seamless in latent space
265
266
267
268
269
270
271
272
        if grow_mask_by == 0:
            mask_erosion = mask
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)

273
        m = (1.0 - mask.round()).squeeze(1)
274
275
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
276
            pixels[:,:,:,i] *= m
277
278
279
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

280
        return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
281

282
283
284
285
286
287
class TAESDPreviewerImpl(LatentPreviewer):
    def __init__(self, taesd):
        self.taesd = taesd

    def decode_latent_to_preview(self, device, x0):
        x_sample = self.taesd.decoder(x0.to(device))[0].detach()
space-nuko's avatar
space-nuko committed
288
289
        # x_sample = self.taesd.unscale_latents(x_sample).div(4).add(0.5)  # returns value in [-2, 2]
        x_sample = x_sample.sub(0.5).mul(2)
space-nuko's avatar
space-nuko committed
290
291
292
293
294
295
296

        x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
        x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
        x_sample = x_sample.astype(np.uint8)

        preview_image = Image.fromarray(x_sample)
        return preview_image
297

Dr.Lt.Data's avatar
Dr.Lt.Data committed
298
299
class SaveLatent:
    def __init__(self):
300
        self.output_dir = folder_paths.get_output_directory()
Dr.Lt.Data's avatar
Dr.Lt.Data committed
301
302
303
304

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ),
305
                              "filename_prefix": ("STRING", {"default": "latents/ComfyUI"})},
Dr.Lt.Data's avatar
Dr.Lt.Data committed
306
307
308
309
310
311
312
313
314
315
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
    RETURN_TYPES = ()
    FUNCTION = "save"

    OUTPUT_NODE = True

    CATEGORY = "_for_testing"

    def save(self, samples, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
316
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
317
318
319
320
321
322

        # support save metadata for latent sharing
        prompt_info = ""
        if prompt is not None:
            prompt_info = json.dumps(prompt)

323
        metadata = {"prompt": prompt_info}
Dr.Lt.Data's avatar
Dr.Lt.Data committed
324
325
326
327
328
329
330
        if extra_pnginfo is not None:
            for x in extra_pnginfo:
                metadata[x] = json.dumps(extra_pnginfo[x])

        file = f"{filename}_{counter:05}_.latent"
        file = os.path.join(full_output_folder, file)

331
332
333
334
        output = {}
        output["latent_tensor"] = samples["samples"]

        safetensors.torch.save_file(output, file, metadata=metadata)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
335
336
337
338
339
340
341

        return {}


class LoadLatent:
    @classmethod
    def INPUT_TYPES(s):
342
343
        input_dir = folder_paths.get_input_directory()
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.endswith(".latent")]
Dr.Lt.Data's avatar
Dr.Lt.Data committed
344
345
346
347
348
349
350
351
        return {"required": {"latent": [sorted(files), ]}, }

    CATEGORY = "_for_testing"

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "load"

    def load(self, latent):
352
353
        latent_path = folder_paths.get_annotated_filepath(latent)
        latent = safetensors.torch.load_file(latent_path, device="cpu")
354
        samples = {"samples": latent["latent_tensor"].float()}
355
        return (samples, )
Dr.Lt.Data's avatar
Dr.Lt.Data committed
356

357
358
359
360
361
362
363
364
365
366
367
368
369
370
    @classmethod
    def IS_CHANGED(s, latent):
        image_path = folder_paths.get_annotated_filepath(latent)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

    @classmethod
    def VALIDATE_INPUTS(s, latent):
        if not folder_paths.exists_annotated_filepath(latent):
            return "Invalid latent file: {}".format(latent)
        return True

Dr.Lt.Data's avatar
Dr.Lt.Data committed
371

comfyanonymous's avatar
comfyanonymous committed
372
373
374
class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
375
376
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
377
378
379
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

380
    CATEGORY = "advanced/loaders"
381

comfyanonymous's avatar
comfyanonymous committed
382
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
383
384
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
385
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
386

387
388
389
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
390
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
391
392
393
394
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

395
    CATEGORY = "loaders"
396

397
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
398
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
399
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
400
401
        return out

sALTaccount's avatar
sALTaccount committed
402
403
404
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
405
        paths = []
sALTaccount's avatar
sALTaccount committed
406
        for search_path in folder_paths.get_folder_paths("diffusers"):
407
            if os.path.exists(search_path):
408
409
410
411
                for root, subdir, files in os.walk(search_path, followlinks=True):
                    if "model_index.json" in files:
                        paths.append(os.path.relpath(root, start=search_path))

412
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
413
414
415
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

416
    CATEGORY = "advanced/loaders"
sALTaccount's avatar
sALTaccount committed
417
418

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
419
420
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
421
422
423
                path = os.path.join(search_path, model_path)
                if os.path.exists(path):
                    model_path = path
sALTaccount's avatar
sALTaccount committed
424
                    break
425

426
        return comfy.diffusers_load.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
427
428


429
430
431
432
433
434
435
436
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

437
    CATEGORY = "loaders"
438
439
440
441
442
443

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

460
461
462
463
464
class LoraLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
465
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
466
467
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
468
469
470
471
472
473
474
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
475
476
477
        if strength_model == 0 and strength_clip == 0:
            return (model, clip)

478
        lora_path = folder_paths.get_full_path("loras", lora_name)
479
480
481
        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
        return (model_lora, clip_lora)

482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
class TomePatchModel:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "_for_testing"

    def patch(self, model, ratio):
        m = model.clone()
        m.set_model_tomesd(ratio)
        return (m, )

comfyanonymous's avatar
comfyanonymous committed
498
499
500
class VAELoader:
    @classmethod
    def INPUT_TYPES(s):
501
        return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
comfyanonymous's avatar
comfyanonymous committed
502
503
504
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

505
506
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
507
508
    #TODO: scale factor?
    def load_vae(self, vae_name):
509
        vae_path = folder_paths.get_full_path("vae", vae_name)
comfyanonymous's avatar
comfyanonymous committed
510
511
512
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
513
514
515
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
516
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
517
518
519
520
521
522
523

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
524
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
comfyanonymous's avatar
comfyanonymous committed
525
526
527
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

528
529
530
531
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
532
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
533
534
535
536
537
538
539

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
540
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
541
542
543
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
544
545
546
547

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
548
549
550
551
552
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
553
554
555
556
557
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

558
    def apply_controlnet(self, conditioning, control_net, image, strength):
559
560
561
        if strength == 0:
            return (conditioning, )

comfyanonymous's avatar
comfyanonymous committed
562
563
564
565
        c = []
        control_hint = image.movedim(-1,1)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
566
567
568
569
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
comfyanonymous's avatar
comfyanonymous committed
570
571
572
            c.append(n)
        return (c, )

573
574
575
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
576
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
577
578
579
580
581
582
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

583
    def load_clip(self, clip_name):
584
        clip_path = folder_paths.get_full_path("clip", clip_name)
comfyanonymous's avatar
comfyanonymous committed
585
        clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=folder_paths.get_folder_paths("embeddings"))
586
587
        return (clip,)

588
589
590
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
591
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
592
593
594
595
596
597
598
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
599
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
600
        clip_vision = comfy.clip_vision.load(clip_path)
601
602
603
604
605
606
607
608
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
609
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
610
611
    FUNCTION = "encode"

612
    CATEGORY = "conditioning"
613
614
615
616
617
618
619
620

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
621
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
622
623
624
625
626
627
628

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
629
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
630
631
632
633
634
635
636
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
637
638
639
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
640
641
642
643
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
644
    CATEGORY = "conditioning/style_model"
645

646
647
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
        cond = style_model.get_cond(clip_vision_output)
648
        c = []
649
650
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
651
652
653
            c.append(n)
        return (c, )

654
655
656
657
658
659
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
660
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
661
662
663
664
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

665
    CATEGORY = "conditioning"
666

667
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
668
669
670
        if strength == 0:
            return (conditioning, )

671
672
673
        c = []
        for t in conditioning:
            o = t[1].copy()
674
            x = (clip_vision_output, strength, noise_augmentation)
675
676
677
678
679
680
681
682
            if "adm" in o:
                o["adm"] = o["adm"][:] + [x]
            else:
                o["adm"] = [x]
            n = [t[0], o]
            c.append(n)
        return (c, )

683
684
685
686
687
688
689
690
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
691
    CATEGORY = "loaders"
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
                              "text": ("STRING", {"multiline": True}),
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
713
    CATEGORY = "conditioning/gligen"
714
715
716
717
718
719
720
721
722
723
724
725
726
727

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
728

comfyanonymous's avatar
comfyanonymous committed
729
730
731
732
733
734
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
735
736
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
737
738
739
740
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

741
742
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
743
744
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
745
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
746

comfyanonymous's avatar
comfyanonymous committed
747

748
749
750
751
752
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
753
                              "length": ("INT", {"default": 1, "min": 1, "max": 64}),
754
755
                              }}
    RETURN_TYPES = ("LATENT",)
756
    FUNCTION = "frombatch"
757

758
    CATEGORY = "latent/batch"
759

760
    def frombatch(self, samples, batch_index, length):
761
762
763
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
        length = min(s_in.shape[0] - batch_index, length)
        s["samples"] = s_in[batch_index:batch_index + length].clone()
        if "noise_mask" in samples:
            masks = samples["noise_mask"]
            if masks.shape[0] == 1:
                s["noise_mask"] = masks.clone()
            else:
                if masks.shape[0] < s_in.shape[0]:
                    masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
                s["noise_mask"] = masks[batch_index:batch_index + length].clone()
        if "batch_index" not in s:
            s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
        else:
            s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
        return (s,)
    
class RepeatLatentBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "amount": ("INT", {"default": 1, "min": 1, "max": 64}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "repeat"

    CATEGORY = "latent/batch"

    def repeat(self, samples, amount):
        s = samples.copy()
        s_in = samples["samples"]
        
        s["samples"] = s_in.repeat((amount, 1,1,1))
        if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
            masks = samples["noise_mask"]
            if masks.shape[0] < s_in.shape[0]:
                masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
            s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
        if "batch_index" in s:
            offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
            s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
804
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
805

comfyanonymous's avatar
comfyanonymous committed
806
class LatentUpscale:
807
    upscale_methods = ["nearest-exact", "bilinear", "area", "bislerp"]
808
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
809
810
811
812

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
813
814
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
815
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
816
817
818
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

819
820
    CATEGORY = "latent"

821
    def upscale(self, samples, upscale_method, width, height, crop):
822
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
823
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
824
825
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
class LatentUpscaleBy:
    upscale_methods = ["nearest-exact", "bilinear", "area", "bislerp"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.5, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

    CATEGORY = "latent"

    def upscale(self, samples, upscale_method, scale_by):
        s = samples.copy()
        width = round(samples["samples"].shape[3] * scale_by)
        height = round(samples["samples"].shape[2] * scale_by)
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled")
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
845
846
847
848
849
850
851
852
853
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
854
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
855
856

    def rotate(self, samples, rotation):
857
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
858
859
860
861
862
863
864
865
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

866
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
867
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
868
869
870
871
872
873
874
875
876
877

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
878
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
879
880

    def flip(self, samples, flip_method):
881
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
882
        if flip_method.startswith("x"):
883
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
884
        elif flip_method.startswith("y"):
885
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
886
887

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
888
889
890
891

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
892
893
894
895
896
897
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
898
899
900
901
902
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
903
904
905
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
906
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
930

comfyanonymous's avatar
comfyanonymous committed
931
932
933
934
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
935
936
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
937
938
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
939
940
941
942
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
943
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
944
945

    def crop(self, samples, width, height, x, y):
946
947
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
948
949
950
951
952
953
954
955
956
957
958
959
960
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
961
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
962
963
        return (s,)

964
965
966
967
968
969
970
971
972
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

973
    CATEGORY = "latent/inpaint"
974
975
976

    def set_mask(self, samples, mask):
        s = samples.copy()
977
        s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
978
979
        return (s,)

space-nuko's avatar
space-nuko committed
980

981
def decode_latent_to_preview_image(previewer, device, preview_format, x0):
space-nuko's avatar
space-nuko committed
982
983
    preview_image = previewer.decode_latent_to_preview(device, x0)
    preview_image = ImageOps.contain(preview_image, (MAX_PREVIEW_RESOLUTION, MAX_PREVIEW_RESOLUTION), Image.ANTIALIAS)
space-nuko's avatar
space-nuko committed
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

    preview_type = 1
    if preview_format == "JPEG":
        preview_type = 1
    elif preview_format == "PNG":
        preview_type = 2

    bytesIO = BytesIO()
    header = struct.pack(">I", preview_type)
    bytesIO.write(header)
    preview_image.save(bytesIO, format=preview_format)
    preview_bytes = bytesIO.getvalue()

    return preview_bytes


space-nuko's avatar
space-nuko committed
1000
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
1001
    device = comfy.model_management.get_torch_device()
1002
    latent_image = latent["samples"]
1003

comfyanonymous's avatar
comfyanonymous committed
1004
1005
1006
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
1007
1008
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
comfyanonymous's avatar
comfyanonymous committed
1009

1010
    noise_mask = None
1011
    if "noise_mask" in latent:
1012
        noise_mask = latent["noise_mask"]
comfyanonymous's avatar
comfyanonymous committed
1013

space-nuko's avatar
space-nuko committed
1014
1015
1016
1017
    preview_format = "JPEG"
    if preview_format not in ["JPEG", "PNG"]:
        preview_format = "JPEG"

space-nuko's avatar
space-nuko committed
1018
1019
1020
    previewer = None
    if not args.disable_previews:
        # TODO previewer methods
space-nuko's avatar
space-nuko committed
1021
1022
1023
1024
1025
        taesd_encoder_path = folder_paths.get_full_path("taesd", "taesd_encoder.pth")
        taesd_decoder_path = folder_paths.get_full_path("taesd", "taesd_decoder.pth")

        method = args.default_preview_method

space-nuko's avatar
Fix  
space-nuko committed
1026
        if method == LatentPreviewMethod.Auto:
space-nuko's avatar
space-nuko committed
1027
1028
1029
1030
1031
1032
1033
            method = LatentPreviewMethod.Latent2RGB
            if taesd_encoder_path and taesd_encoder_path:
                method = LatentPreviewMethod.TAESD

        if method == LatentPreviewMethod.TAESD:
            if taesd_encoder_path and taesd_encoder_path:
                taesd = TAESD(taesd_encoder_path, taesd_decoder_path).to(device)
space-nuko's avatar
space-nuko committed
1034
1035
1036
1037
1038
1039
                previewer = TAESDPreviewerImpl(taesd)
            else:
                print("Warning: TAESD previews enabled, but could not find models/taesd/taesd_encoder.pth and models/taesd/taesd_decoder.pth")

        if previewer is None:
            previewer = Latent2RGBPreviewer()
space-nuko's avatar
space-nuko committed
1040

1041
    pbar = comfy.utils.ProgressBar(steps)
1042
    def callback(step, x0, x, total_steps):
space-nuko's avatar
space-nuko committed
1043
        preview_bytes = None
1044
1045
        if previewer:
            preview_bytes = decode_latent_to_preview_image(previewer, device, preview_format, x0)
space-nuko's avatar
space-nuko committed
1046
        pbar.update_absolute(step + 1, total_steps, preview_bytes)
1047

1048
1049
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
1050
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback)
1051
1052
1053
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
1054

comfyanonymous's avatar
comfyanonymous committed
1055
1056
1057
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
1058
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
space-nuko's avatar
space-nuko committed
1069
1070
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1071
1072
1073
1074

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

1075
1076
    CATEGORY = "sampling"

space-nuko's avatar
space-nuko committed
1077
1078
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
1079

comfyanonymous's avatar
comfyanonymous committed
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
space-nuko's avatar
space-nuko committed
1097
1098
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1099
1100
1101
1102
1103

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
1104

space-nuko's avatar
space-nuko committed
1105
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
comfyanonymous's avatar
comfyanonymous committed
1106
1107
1108
1109
1110
1111
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
space-nuko's avatar
space-nuko committed
1112
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
1113
1114
1115

class SaveImage:
    def __init__(self):
1116
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1117
        self.type = "output"
comfyanonymous's avatar
comfyanonymous committed
1118
1119
1120
1121

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
1122
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
1123
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
1124
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
1125
1126
1127
1128
1129
1130
1131
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

1132
1133
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
1134
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
1135
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
m957ymj75urz's avatar
m957ymj75urz committed
1136
        results = list()
comfyanonymous's avatar
comfyanonymous committed
1137
1138
        for image in images:
            i = 255. * image.cpu().numpy()
1139
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
comfyanonymous's avatar
comfyanonymous committed
1140
1141
1142
1143
1144
1145
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
1146

1147
            file = f"{filename}_{counter:05}_.png"
1148
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
1149
1150
1151
1152
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
1153
            })
1154
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
1155

m957ymj75urz's avatar
m957ymj75urz committed
1156
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
1157

pythongosssss's avatar
pythongosssss committed
1158
1159
class PreviewImage(SaveImage):
    def __init__(self):
1160
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1161
        self.type = "temp"
pythongosssss's avatar
pythongosssss committed
1162
1163
1164

    @classmethod
    def INPUT_TYPES(s):
1165
        return {"required":
pythongosssss's avatar
pythongosssss committed
1166
1167
1168
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
1169

1170
1171
1172
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
1173
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1174
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1175
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1176
                    {"image": (sorted(files), )},
1177
                }
1178
1179

    CATEGORY = "image"
1180

1181
    RETURN_TYPES = ("IMAGE", "MASK")
1182
1183
    FUNCTION = "load_image"
    def load_image(self, image):
1184
        image_path = folder_paths.get_annotated_filepath(image)
1185
        i = Image.open(image_path)
1186
        i = ImageOps.exif_transpose(i)
1187
        image = i.convert("RGB")
1188
        image = np.array(image).astype(np.float32) / 255.0
1189
        image = torch.from_numpy(image)[None,]
1190
1191
1192
1193
1194
1195
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)
1196

1197
1198
    @classmethod
    def IS_CHANGED(s, image):
1199
        image_path = folder_paths.get_annotated_filepath(image)
1200
1201
1202
1203
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1204

1205
1206
1207
1208
1209
1210
1211
    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

1212
class LoadImageMask:
1213
    _color_channels = ["alpha", "red", "green", "blue"]
1214
1215
    @classmethod
    def INPUT_TYPES(s):
1216
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1217
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1218
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1219
                    {"image": (sorted(files), ),
1220
                     "channel": (s._color_channels, ), }
1221
1222
                }

1223
    CATEGORY = "mask"
1224
1225
1226
1227

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
1228
        image_path = folder_paths.get_annotated_filepath(image)
1229
        i = Image.open(image_path)
1230
        i = ImageOps.exif_transpose(i)
1231
1232
        if i.getbands() != ("R", "G", "B", "A"):
            i = i.convert("RGBA")
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
1246
        image_path = folder_paths.get_annotated_filepath(image)
1247
1248
1249
1250
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1251

1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
    @classmethod
    def VALIDATE_INPUTS(s, image, channel):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        if channel not in s._color_channels:
            return "Invalid color channel: {}".format(channel)

        return True

comfyanonymous's avatar
comfyanonymous committed
1262
1263
1264
1265
1266
1267
1268
class ImageScale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1269
1270
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1271
1272
1273
1274
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1275
    CATEGORY = "image/upscaling"
1276

comfyanonymous's avatar
comfyanonymous committed
1277
1278
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
1279
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1280
1281
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1282

1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


Guo Y.K's avatar
Guo Y.K committed
1299
1300
1301
1302
1303
1304
1305
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1306
1307
1308
1309
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1310
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1311
1312
1313
1314
1315
1316
1317
1318
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1319
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1332

1333
1334
1335
1336
1337
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1338
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1358

Guo Y.K's avatar
Guo Y.K committed
1359
1360
1361
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1362
1363
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1364
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1365
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1366
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1367
1368
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1369
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1370
1371
1372
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
comfyanonymous's avatar
comfyanonymous committed
1373
    "LatentUpscaleBy": LatentUpscaleBy,
1374
    "LatentFromBatch": LatentFromBatch,
1375
    "RepeatLatentBatch": RepeatLatentBatch,
comfyanonymous's avatar
comfyanonymous committed
1376
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1377
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1378
    "LoadImage": LoadImage,
1379
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1380
    "ImageScale": ImageScale,
1381
    "ImageInvert": ImageInvert,
Guo Y.K's avatar
Guo Y.K committed
1382
    "ImagePadForOutpaint": ImagePadForOutpaint,
FizzleDorf's avatar
FizzleDorf committed
1383
    "ConditioningAverage ": ConditioningAverage ,
comfyanonymous's avatar
comfyanonymous committed
1384
1385
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
Jacob Segal's avatar
Jacob Segal committed
1386
    "ConditioningSetMask": ConditioningSetMask,
comfyanonymous's avatar
comfyanonymous committed
1387
    "KSamplerAdvanced": KSamplerAdvanced,
1388
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1389
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
1390
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1391
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1392
    "LatentCrop": LatentCrop,
1393
    "LoraLoader": LoraLoader,
1394
    "CLIPLoader": CLIPLoader,
1395
    "CLIPVisionEncode": CLIPVisionEncode,
1396
    "StyleModelApply": StyleModelApply,
1397
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1398
1399
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
1400
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1401
1402
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1403
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1404
    "VAEEncodeTiled": VAEEncodeTiled,
1405
    "TomePatchModel": TomePatchModel,
1406
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1407
1408
1409
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,

1410
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1411
    "DiffusersLoader": DiffusersLoader,
Dr.Lt.Data's avatar
Dr.Lt.Data committed
1412
1413
1414

    "LoadLatent": LoadLatent,
    "SaveLatent": SaveLatent
comfyanonymous's avatar
comfyanonymous committed
1415
1416
}

City's avatar
City committed
1417
1418
1419
1420
1421
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1422
1423
    "CheckpointLoader": "Load Checkpoint (With Config)",
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
FizzleDorf's avatar
FizzleDorf committed
1438
    "ConditioningAverage ": "Conditioning (Average)",
City's avatar
City committed
1439
    "ConditioningSetArea": "Conditioning (Set Area)",
Jacob Segal's avatar
Jacob Segal committed
1440
    "ConditioningSetMask": "Conditioning (Set Mask)",
City's avatar
City committed
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
    "ControlNetApply": "Apply ControlNet",
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
comfyanonymous's avatar
comfyanonymous committed
1452
    "LatentUpscaleBy": "Upscale Latent By",
City's avatar
City committed
1453
    "LatentComposite": "Latent Composite",
1454
1455
    "LatentFromBatch" : "Latent From Batch",
    "RepeatLatentBatch": "Repeat Latent Batch",
City's avatar
City committed
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
def load_custom_node(module_path):
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
            NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
1485
1486
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1487
            return True
1488
1489
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
1490
            return False
1491
1492
1493
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)
1494
        return False
1495

Hacker 17082006's avatar
Hacker 17082006 committed
1496
def load_custom_nodes():
1497
    node_paths = folder_paths.get_folder_paths("custom_nodes")
1498
    node_import_times = []
1499
1500
1501
1502
1503
1504
1505
1506
    for custom_node_path in node_paths:
        possible_modules = os.listdir(custom_node_path)
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1507
            if module_path.endswith(".disabled"): continue
1508
            time_before = time.perf_counter()
1509
            success = load_custom_node(module_path)
1510
            node_import_times.append((time.perf_counter() - time_before, module_path, success))
1511

1512
    if len(node_import_times) > 0:
comfyanonymous's avatar
comfyanonymous committed
1513
        print("\nImport times for custom nodes:")
1514
        for n in sorted(node_import_times):
1515
1516
1517
1518
1519
            if n[2]:
                import_message = ""
            else:
                import_message = " (IMPORT FAILED)"
            print("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
1520
        print()
1521

1522
def init_custom_nodes():
1523
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_hypernetwork.py"))
1524
1525
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
1526
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))
1527
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_rebatch.py"))
1528
    load_custom_nodes()