nodes.py 47.1 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
8
import math
comfyanonymous's avatar
comfyanonymous committed
9
10
11
12
13

from PIL import Image
from PIL.PngImagePlugin import PngInfo
import numpy as np

sALTaccount's avatar
sALTaccount committed
14

comfyanonymous's avatar
comfyanonymous committed
15
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
16
17


comfyanonymous's avatar
comfyanonymous committed
18
import comfy.diffusers_convert
comfyanonymous's avatar
comfyanonymous committed
19
import comfy.samplers
20
import comfy.sample
comfyanonymous's avatar
comfyanonymous committed
21
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
22
23
import comfy.utils

24
import comfy.clip_vision
25

26
import comfy.model_management
27
import importlib
comfyanonymous's avatar
comfyanonymous committed
28

29
import folder_paths
30
31

def before_node_execution():
32
    comfy.model_management.throw_exception_if_processing_interrupted()
33

34
def interrupt_processing(value=True):
35
    comfy.model_management.interrupt_current_processing(value)
36

37
38
MAX_RESOLUTION=8192

comfyanonymous's avatar
comfyanonymous committed
39
40
41
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
42
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
43
44
45
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

46
47
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
48
    def encode(self, clip, text):
comfyanonymous's avatar
comfyanonymous committed
49
50
51
52
53
54
55
56
57
        return ([[clip.encode(text), {}]], )

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

58
59
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
60
61
62
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

FizzleDorf's avatar
FizzleDorf committed
63
64
65
class ConditioningAverage :
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
66
67
        return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
                              "conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
FizzleDorf's avatar
FizzleDorf committed
68
69
70
71
72
73
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "addWeighted"

    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
74
    def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
FizzleDorf's avatar
FizzleDorf committed
75
        out = []
comfyanonymous's avatar
comfyanonymous committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89

        if len(conditioning_from) > 1:
            print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

        cond_from = conditioning_from[0][0]

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
            t0 = cond_from[:,:t1.shape[1]]
            if t0.shape[1] < t1.shape[1]:
                t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)

            tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
            n = [tw, conditioning_to[i][1].copy()]
FizzleDorf's avatar
FizzleDorf committed
90
91
92
            out.append(n)
        return (out, )

comfyanonymous's avatar
comfyanonymous committed
93
94
95
96
class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
97
98
99
100
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
101
102
103
104
105
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

106
107
    CATEGORY = "conditioning"

108
    def append(self, conditioning, width, height, x, y, strength):
comfyanonymous's avatar
comfyanonymous committed
109
110
111
112
113
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
114
            n[1]['set_area_to_bounds'] = False
comfyanonymous's avatar
comfyanonymous committed
115
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
116
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
117

Jacob Segal's avatar
Jacob Segal committed
118
119
120
121
122
123
class ConditioningSetMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "mask": ("MASK", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
124
                              "set_cond_area": (["default", "mask bounds"],),
Jacob Segal's avatar
Jacob Segal committed
125
126
127
128
129
130
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

131
    def append(self, conditioning, mask, set_cond_area, strength):
Jacob Segal's avatar
Jacob Segal committed
132
        c = []
133
134
135
        set_area_to_bounds = False
        if set_cond_area != "default":
            set_area_to_bounds = True
Jacob Segal's avatar
Jacob Segal committed
136
137
138
139
140
141
        if len(mask.shape) < 3:
            mask = mask.unsqueeze(0)
        for t in conditioning:
            n = [t[0], t[1].copy()]
            _, h, w = mask.shape
            n[1]['mask'] = mask
Jacob Segal's avatar
Jacob Segal committed
142
            n[1]['set_area_to_bounds'] = set_area_to_bounds
143
            n[1]['mask_strength'] = strength
Jacob Segal's avatar
Jacob Segal committed
144
145
146
            c.append(n)
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
147
148
149
150
151
152
153
154
155
156
class VAEDecode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

157
158
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
159
    def decode(self, vae, samples):
160
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
class VAEDecodeTiled:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
177
178
179
180
181
182
183
184
185
186
class VAEEncode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

187
188
    CATEGORY = "latent"

189
190
191
192
    @staticmethod
    def vae_encode_crop_pixels(pixels):
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
193
        if pixels.shape[1] != x or pixels.shape[2] != y:
194
195
196
197
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
        return pixels
198

199
200
201
    def encode(self, vae, pixels):
        pixels = self.vae_encode_crop_pixels(pixels)
        t = vae.encode(pixels[:,:,:,:3])
202
        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
203

comfyanonymous's avatar
comfyanonymous committed
204
205
206
207
208
209
210
211
212
213
214
215
216
class VAEEncodeTiled:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

    def encode(self, vae, pixels):
217
        pixels = VAEEncode.vae_encode_crop_pixels(pixels)
comfyanonymous's avatar
comfyanonymous committed
218
219
        t = vae.encode_tiled(pixels[:,:,:,:3])
        return ({"samples":t}, )
220

221
222
223
224
225
226
class VAEEncodeForInpaint:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
227
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
228
229
230
231
232
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

233
    def encode(self, vae, pixels, mask, grow_mask_by=6):
234
235
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
236
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
237

238
        pixels = pixels.clone()
239
        if pixels.shape[1] != x or pixels.shape[2] != y:
240
241
242
243
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
244

245
        #grow mask by a few pixels to keep things seamless in latent space
246
247
248
249
250
251
252
253
        if grow_mask_by == 0:
            mask_erosion = mask
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)

254
        m = (1.0 - mask.round()).squeeze(1)
255
256
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
257
            pixels[:,:,:,i] *= m
258
259
260
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

261
        return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
262
263
264
265

class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
266
267
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
268
269
270
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

271
    CATEGORY = "advanced/loaders"
272

comfyanonymous's avatar
comfyanonymous committed
273
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
274
275
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
276
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
277

278
279
280
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
281
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
282
283
284
285
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

286
    CATEGORY = "loaders"
287

288
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
289
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
290
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
291
292
        return out

sALTaccount's avatar
sALTaccount committed
293
294
295
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
296
        paths = []
sALTaccount's avatar
sALTaccount committed
297
        for search_path in folder_paths.get_folder_paths("diffusers"):
298
            if os.path.exists(search_path):
sALTaccount's avatar
sALTaccount committed
299
                paths += next(os.walk(search_path))[1]
300
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
301
302
303
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

304
    CATEGORY = "advanced/loaders"
sALTaccount's avatar
sALTaccount committed
305
306

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
307
308
309
310
311
312
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
                paths = next(os.walk(search_path))[1]
                if model_path in paths:
                    model_path = os.path.join(search_path, model_path)
                    break
313

314
        return comfy.diffusers_convert.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
315
316


317
318
319
320
321
322
323
324
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

325
    CATEGORY = "loaders"
326
327
328
329
330
331

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

348
349
350
351
352
class LoraLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
353
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
354
355
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
356
357
358
359
360
361
362
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
363
        lora_path = folder_paths.get_full_path("loras", lora_name)
364
365
366
        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
        return (model_lora, clip_lora)

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
class TomePatchModel:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "_for_testing"

    def patch(self, model, ratio):
        m = model.clone()
        m.set_model_tomesd(ratio)
        return (m, )

comfyanonymous's avatar
comfyanonymous committed
383
384
385
class VAELoader:
    @classmethod
    def INPUT_TYPES(s):
386
        return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
comfyanonymous's avatar
comfyanonymous committed
387
388
389
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

390
391
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
392
393
    #TODO: scale factor?
    def load_vae(self, vae_name):
394
        vae_path = folder_paths.get_full_path("vae", vae_name)
comfyanonymous's avatar
comfyanonymous committed
395
396
397
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
398
399
400
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
401
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
402
403
404
405
406
407
408

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
409
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
comfyanonymous's avatar
comfyanonymous committed
410
411
412
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

413
414
415
416
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
417
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
418
419
420
421
422
423
424

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
425
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
426
427
428
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
429
430
431
432

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
433
434
435
436
437
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
438
439
440
441
442
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

443
    def apply_controlnet(self, conditioning, control_net, image, strength):
comfyanonymous's avatar
comfyanonymous committed
444
445
446
447
448
        c = []
        control_hint = image.movedim(-1,1)
        print(control_hint.shape)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
449
450
451
452
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
comfyanonymous's avatar
comfyanonymous committed
453
454
455
            c.append(n)
        return (c, )

456
457
458
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
459
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
460
461
462
463
464
465
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

466
    def load_clip(self, clip_name):
467
        clip_path = folder_paths.get_full_path("clip", clip_name)
comfyanonymous's avatar
comfyanonymous committed
468
        clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=folder_paths.get_folder_paths("embeddings"))
469
470
        return (clip,)

471
472
473
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
474
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
475
476
477
478
479
480
481
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
482
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
483
        clip_vision = comfy.clip_vision.load(clip_path)
484
485
486
487
488
489
490
491
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
492
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
493
494
    FUNCTION = "encode"

495
    CATEGORY = "conditioning"
496
497
498
499
500
501
502
503

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
504
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
505
506
507
508
509
510
511

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
512
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
513
514
515
516
517
518
519
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
520
521
522
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
523
524
525
526
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
527
    CATEGORY = "conditioning/style_model"
528

529
530
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
        cond = style_model.get_cond(clip_vision_output)
531
        c = []
532
533
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
534
535
536
            c.append(n)
        return (c, )

537
538
539
540
541
542
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
543
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
544
545
546
547
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

548
    CATEGORY = "conditioning"
549

550
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
551
552
553
        c = []
        for t in conditioning:
            o = t[1].copy()
554
            x = (clip_vision_output, strength, noise_augmentation)
555
556
557
558
559
560
561
562
            if "adm" in o:
                o["adm"] = o["adm"][:] + [x]
            else:
                o["adm"] = [x]
            n = [t[0], o]
            c.append(n)
        return (c, )

563
564
565
566
567
568
569
570
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
571
    CATEGORY = "loaders"
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
                              "text": ("STRING", {"multiline": True}),
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
593
    CATEGORY = "conditioning/gligen"
594
595
596
597
598
599
600
601
602
603
604
605
606
607

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
608

comfyanonymous's avatar
comfyanonymous committed
609
610
611
612
613
614
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
615
616
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
617
618
619
620
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

621
622
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
623
624
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
625
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
626

comfyanonymous's avatar
comfyanonymous committed
627

628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

    CATEGORY = "latent"

    def rotate(self, samples, batch_index):
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
        s["samples"] = s_in[batch_index:batch_index + 1].clone()
        s["batch_index"] = batch_index
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
646

comfyanonymous's avatar
comfyanonymous committed
647
648
class LatentUpscale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
649
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
650
651
652
653

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
654
655
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
656
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
657
658
659
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

660
661
    CATEGORY = "latent"

662
    def upscale(self, samples, upscale_method, width, height, crop):
663
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
664
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
665
666
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
667
668
669
670
671
672
673
674
675
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
676
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
677
678

    def rotate(self, samples, rotation):
679
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
680
681
682
683
684
685
686
687
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

688
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
689
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
690
691
692
693
694
695
696
697
698
699

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
700
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
701
702

    def flip(self, samples, flip_method):
703
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
704
        if flip_method.startswith("x"):
705
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
706
        elif flip_method.startswith("y"):
707
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
708
709

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
710
711
712
713

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
714
715
716
717
718
719
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
720
721
722
723
724
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
725
726
727
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
728
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
752

comfyanonymous's avatar
comfyanonymous committed
753
754
755
756
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
757
758
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
759
760
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
761
762
763
764
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
765
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
766
767

    def crop(self, samples, width, height, x, y):
768
769
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
770
771
772
773
774
775
776
777
778
779
780
781
782
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
783
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
784
785
        return (s,)

786
787
788
789
790
791
792
793
794
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

795
    CATEGORY = "latent/inpaint"
796
797
798
799
800
801

    def set_mask(self, samples, mask):
        s = samples.copy()
        s["noise_mask"] = mask
        return (s,)

802
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
803
    device = comfy.model_management.get_torch_device()
804
    latent_image = latent["samples"]
805

comfyanonymous's avatar
comfyanonymous committed
806
807
808
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
809
810
        skip = latent["batch_index"] if "batch_index" in latent else 0
        noise = comfy.sample.prepare_noise(latent_image, seed, skip)
comfyanonymous's avatar
comfyanonymous committed
811

812
    noise_mask = None
813
    if "noise_mask" in latent:
814
        noise_mask = latent["noise_mask"]
comfyanonymous's avatar
comfyanonymous committed
815

816
    pbar = comfy.utils.ProgressBar(steps)
817
818
    def callback(step, x0, x, total_steps):
        pbar.update_absolute(step + 1, total_steps)
819

820
821
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
822
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback)
823
824
825
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
826

comfyanonymous's avatar
comfyanonymous committed
827
828
829
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
830
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

846
847
    CATEGORY = "sampling"

comfyanonymous's avatar
comfyanonymous committed
848
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
849
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
850

comfyanonymous's avatar
comfyanonymous committed
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
874

comfyanonymous's avatar
comfyanonymous committed
875
876
877
878
879
880
881
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
882
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
883
884
885

class SaveImage:
    def __init__(self):
886
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
887
        self.type = "output"
comfyanonymous's avatar
comfyanonymous committed
888
889
890
891

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
892
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
893
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
894
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
895
896
897
898
899
900
901
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

902
903
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
904
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
905
        def map_filename(filename):
906
            prefix_len = len(os.path.basename(filename_prefix))
907
908
909
910
911
912
            prefix = filename[:prefix_len + 1]
            try:
                digits = int(filename[prefix_len + 1:].split('_')[0])
            except:
                digits = 0
            return (digits, prefix)
comfyanonymous's avatar
Style.  
comfyanonymous committed
913

914
915
916
917
        def compute_vars(input):
            input = input.replace("%width%", str(images[0].shape[1]))
            input = input.replace("%height%", str(images[0].shape[0]))
            return input
comfyanonymous's avatar
Style.  
comfyanonymous committed
918

919
        filename_prefix = compute_vars(filename_prefix)
comfyanonymous's avatar
comfyanonymous committed
920

m957ymj75urz's avatar
m957ymj75urz committed
921
922
923
        subfolder = os.path.dirname(os.path.normpath(filename_prefix))
        filename = os.path.basename(os.path.normpath(filename_prefix))

comfyanonymous's avatar
comfyanonymous committed
924
        full_output_folder = os.path.join(self.output_dir, subfolder)
925

926
        if os.path.commonpath((self.output_dir, os.path.abspath(full_output_folder))) != self.output_dir:
927
            print("Saving image outside the output folder is not allowed.")
comfyanonymous's avatar
comfyanonymous committed
928
929
            return {}

930
        try:
931
            counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1
932
933
        except ValueError:
            counter = 1
934
        except FileNotFoundError:
935
            os.makedirs(full_output_folder, exist_ok=True)
936
            counter = 1
pythongosssss's avatar
pythongosssss committed
937

m957ymj75urz's avatar
m957ymj75urz committed
938
        results = list()
comfyanonymous's avatar
comfyanonymous committed
939
940
        for image in images:
            i = 255. * image.cpu().numpy()
941
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
comfyanonymous's avatar
comfyanonymous committed
942
943
944
945
946
947
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
948

949
            file = f"{filename}_{counter:05}_.png"
950
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
951
952
953
954
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
955
            })
956
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
957

m957ymj75urz's avatar
m957ymj75urz committed
958
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
959

pythongosssss's avatar
pythongosssss committed
960
961
class PreviewImage(SaveImage):
    def __init__(self):
962
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
963
        self.type = "temp"
pythongosssss's avatar
pythongosssss committed
964
965
966

    @classmethod
    def INPUT_TYPES(s):
967
        return {"required":
pythongosssss's avatar
pythongosssss committed
968
969
970
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
971

972
973
974
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
975
        input_dir = folder_paths.get_input_directory()
976
        return {"required":
977
                    {"image": (sorted(os.listdir(input_dir)), )},
978
                }
979
980

    CATEGORY = "image"
981

982
    RETURN_TYPES = ("IMAGE", "MASK")
983
984
    FUNCTION = "load_image"
    def load_image(self, image):
985
        image_path = folder_paths.get_annotated_filepath(image)
986
987
        i = Image.open(image_path)
        image = i.convert("RGB")
988
        image = np.array(image).astype(np.float32) / 255.0
989
        image = torch.from_numpy(image)[None,]
990
991
992
993
994
995
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)
996

997
998
    @classmethod
    def IS_CHANGED(s, image):
999
        image_path = folder_paths.get_annotated_filepath(image)
1000
1001
1002
1003
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1004

1005
1006
1007
1008
1009
1010
1011
    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

1012
class LoadImageMask:
1013
    _color_channels = ["alpha", "red", "green", "blue"]
1014
1015
    @classmethod
    def INPUT_TYPES(s):
1016
        input_dir = folder_paths.get_input_directory()
1017
        return {"required":
1018
                    {"image": (sorted(os.listdir(input_dir)), ),
1019
                    "channel": (s._color_channels, ),}
1020
1021
                }

1022
    CATEGORY = "mask"
1023
1024
1025
1026

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
1027
        image_path = folder_paths.get_annotated_filepath(image)
1028
        i = Image.open(image_path)
1029
1030
        if i.getbands() != ("R", "G", "B", "A"):
            i = i.convert("RGBA")
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
1044
        image_path = folder_paths.get_annotated_filepath(image)
1045
1046
1047
1048
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1049

1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
    @classmethod
    def VALIDATE_INPUTS(s, image, channel):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        if channel not in s._color_channels:
            return "Invalid color channel: {}".format(channel)

        return True

comfyanonymous's avatar
comfyanonymous committed
1060
1061
1062
1063
1064
1065
1066
class ImageScale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1067
1068
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1069
1070
1071
1072
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1073
    CATEGORY = "image/upscaling"
1074

comfyanonymous's avatar
comfyanonymous committed
1075
1076
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
1077
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1078
1079
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1080

1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


Guo Y.K's avatar
Guo Y.K committed
1097
1098
1099
1100
1101
1102
1103
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1104
1105
1106
1107
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1108
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1109
1110
1111
1112
1113
1114
1115
1116
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1117
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1130

1131
1132
1133
1134
1135
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1136
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1156

Guo Y.K's avatar
Guo Y.K committed
1157
1158
1159
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1160
1161
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1162
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1163
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1164
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1165
1166
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1167
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1168
1169
1170
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
1171
    "LatentFromBatch": LatentFromBatch,
comfyanonymous's avatar
comfyanonymous committed
1172
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1173
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1174
    "LoadImage": LoadImage,
1175
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1176
    "ImageScale": ImageScale,
1177
    "ImageInvert": ImageInvert,
Guo Y.K's avatar
Guo Y.K committed
1178
    "ImagePadForOutpaint": ImagePadForOutpaint,
FizzleDorf's avatar
FizzleDorf committed
1179
    "ConditioningAverage ": ConditioningAverage ,
comfyanonymous's avatar
comfyanonymous committed
1180
1181
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
Jacob Segal's avatar
Jacob Segal committed
1182
    "ConditioningSetMask": ConditioningSetMask,
comfyanonymous's avatar
comfyanonymous committed
1183
    "KSamplerAdvanced": KSamplerAdvanced,
1184
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1185
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
1186
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1187
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1188
    "LatentCrop": LatentCrop,
1189
    "LoraLoader": LoraLoader,
1190
    "CLIPLoader": CLIPLoader,
1191
    "CLIPVisionEncode": CLIPVisionEncode,
1192
    "StyleModelApply": StyleModelApply,
1193
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1194
1195
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
1196
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1197
1198
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1199
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1200
    "VAEEncodeTiled": VAEEncodeTiled,
1201
    "TomePatchModel": TomePatchModel,
1202
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1203
1204
1205
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,

1206
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1207
    "DiffusersLoader": DiffusersLoader,
comfyanonymous's avatar
comfyanonymous committed
1208
1209
}

City's avatar
City committed
1210
1211
1212
1213
1214
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1215
1216
    "CheckpointLoader": "Load Checkpoint (With Config)",
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
FizzleDorf's avatar
FizzleDorf committed
1231
    "ConditioningAverage ": "Conditioning (Average)",
City's avatar
City committed
1232
    "ConditioningSetArea": "Conditioning (Set Area)",
Jacob Segal's avatar
Jacob Segal committed
1233
    "ConditioningSetMask": "Conditioning (Set Mask)",
City's avatar
City committed
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
    "ControlNetApply": "Apply ControlNet",
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
    "LatentComposite": "Latent Composite",
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
def load_custom_node(module_path):
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
            NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
1275
1276
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1277
1278
1279
1280
1281
1282
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)

Hacker 17082006's avatar
Hacker 17082006 committed
1283
def load_custom_nodes():
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
    node_paths = folder_paths.get_folder_paths("custom_nodes")
    for custom_node_path in node_paths:
        possible_modules = os.listdir(custom_node_path)
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
            load_custom_node(module_path)
1294

1295
1296
def init_custom_nodes():
    load_custom_nodes()
1297
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_hypernetwork.py"))
1298
1299
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
1300
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))