"magic_pdf/vscode:/vscode.git/clone" did not exist on "61572264a79e9e9c77854a7651486e7342188fb9"
nodes.py 74.4 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
8
import math
9
import time
10
import random
11
import logging
comfyanonymous's avatar
comfyanonymous committed
12

13
from PIL import Image, ImageOps, ImageSequence, ImageFile
comfyanonymous's avatar
comfyanonymous committed
14
from PIL.PngImagePlugin import PngInfo
15

comfyanonymous's avatar
comfyanonymous committed
16
import numpy as np
17
import safetensors.torch
comfyanonymous's avatar
comfyanonymous committed
18

19
20
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))

21
import comfy.diffusers_load
comfyanonymous's avatar
comfyanonymous committed
22
import comfy.samplers
23
import comfy.sample
comfyanonymous's avatar
comfyanonymous committed
24
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
25
import comfy.utils
26
import comfy.controlnet
comfyanonymous's avatar
comfyanonymous committed
27

28
import comfy.clip_vision
29

30
import comfy.model_management
31
32
from comfy.cli_args import args

33
import importlib
comfyanonymous's avatar
comfyanonymous committed
34

35
import folder_paths
36
import latent_preview
37
import node_helpers
space-nuko's avatar
space-nuko committed
38

39
def before_node_execution():
40
    comfy.model_management.throw_exception_if_processing_interrupted()
41

42
def interrupt_processing(value=True):
43
    comfy.model_management.interrupt_current_processing(value)
44

comfyanonymous's avatar
comfyanonymous committed
45
MAX_RESOLUTION=16384
46

comfyanonymous's avatar
comfyanonymous committed
47
48
49
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
50
        return {"required": {"text": ("STRING", {"multiline": True, "dynamicPrompts": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
51
52
53
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

54
55
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
56
    def encode(self, clip, text):
57
58
59
        tokens = clip.tokenize(text)
        cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
        return ([[cond, {"pooled_output": pooled}]], )
comfyanonymous's avatar
comfyanonymous committed
60
61
62
63
64
65
66
67

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

68
69
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
70
71
72
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

FizzleDorf's avatar
FizzleDorf committed
73
74
75
class ConditioningAverage :
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
76
77
        return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
                              "conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
FizzleDorf's avatar
FizzleDorf committed
78
79
80
81
82
83
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "addWeighted"

    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
84
    def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
FizzleDorf's avatar
FizzleDorf committed
85
        out = []
comfyanonymous's avatar
comfyanonymous committed
86
87

        if len(conditioning_from) > 1:
88
            logging.warning("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
comfyanonymous's avatar
comfyanonymous committed
89
90

        cond_from = conditioning_from[0][0]
91
        pooled_output_from = conditioning_from[0][1].get("pooled_output", None)
comfyanonymous's avatar
comfyanonymous committed
92
93
94

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
95
            pooled_output_to = conditioning_to[i][1].get("pooled_output", pooled_output_from)
comfyanonymous's avatar
comfyanonymous committed
96
97
98
99
100
            t0 = cond_from[:,:t1.shape[1]]
            if t0.shape[1] < t1.shape[1]:
                t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)

            tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
101
102
103
104
105
106
107
            t_to = conditioning_to[i][1].copy()
            if pooled_output_from is not None and pooled_output_to is not None:
                t_to["pooled_output"] = torch.mul(pooled_output_to, conditioning_to_strength) + torch.mul(pooled_output_from, (1.0 - conditioning_to_strength))
            elif pooled_output_from is not None:
                t_to["pooled_output"] = pooled_output_from

            n = [tw, t_to]
FizzleDorf's avatar
FizzleDorf committed
108
109
110
            out.append(n)
        return (out, )

111
112
113
114
115
116
117
118
119
120
class ConditioningConcat:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "conditioning_to": ("CONDITIONING",),
            "conditioning_from": ("CONDITIONING",),
            }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "concat"

121
    CATEGORY = "conditioning"
122
123
124
125
126

    def concat(self, conditioning_to, conditioning_from):
        out = []

        if len(conditioning_from) > 1:
127
            logging.warning("Warning: ConditioningConcat conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
128
129
130
131
132
133
134
135
136
137
138

        cond_from = conditioning_from[0][0]

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
            tw = torch.cat((t1, cond_from),1)
            n = [tw, conditioning_to[i][1].copy()]
            out.append(n)

        return (out, )

comfyanonymous's avatar
comfyanonymous committed
139
140
141
142
class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
143
144
145
146
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
147
148
149
150
151
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

152
153
    CATEGORY = "conditioning"

154
    def append(self, conditioning, width, height, x, y, strength):
155
156
157
        c = node_helpers.conditioning_set_values(conditioning, {"area": (height // 8, width // 8, y // 8, x // 8),
                                                                "strength": strength,
                                                                "set_area_to_bounds": False})
comfyanonymous's avatar
comfyanonymous committed
158
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
class ConditioningSetAreaPercentage:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "width": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
                              "height": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
                              "x": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
                              "y": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

    def append(self, conditioning, width, height, x, y, strength):
176
177
178
        c = node_helpers.conditioning_set_values(conditioning, {"area": ("percentage", height, width, y, x),
                                                                "strength": strength,
                                                                "set_area_to_bounds": False})
179
180
        return (c, )

181
182
183
184
185
186
187
188
189
190
191
192
class ConditioningSetAreaStrength:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

    def append(self, conditioning, strength):
193
        c = node_helpers.conditioning_set_values(conditioning, {"strength": strength})
194
195
196
        return (c, )


Jacob Segal's avatar
Jacob Segal committed
197
198
199
200
201
202
class ConditioningSetMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "mask": ("MASK", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
203
                              "set_cond_area": (["default", "mask bounds"],),
Jacob Segal's avatar
Jacob Segal committed
204
205
206
207
208
209
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

210
211
212
213
    def append(self, conditioning, mask, set_cond_area, strength):
        set_area_to_bounds = False
        if set_cond_area != "default":
            set_area_to_bounds = True
Jacob Segal's avatar
Jacob Segal committed
214
215
        if len(mask.shape) < 3:
            mask = mask.unsqueeze(0)
216
217
218
219

        c = node_helpers.conditioning_set_values(conditioning, {"mask": mask,
                                                                "set_area_to_bounds": set_area_to_bounds,
                                                                "mask_strength": strength})
Jacob Segal's avatar
Jacob Segal committed
220
221
        return (c, )

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
class ConditioningZeroOut:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "zero_out"

    CATEGORY = "advanced/conditioning"

    def zero_out(self, conditioning):
        c = []
        for t in conditioning:
            d = t[1].copy()
            if "pooled_output" in d:
                d["pooled_output"] = torch.zeros_like(d["pooled_output"])
            n = [torch.zeros_like(t[0]), d]
            c.append(n)
        return (c, )

241
242
243
244
class ConditioningSetTimestepRange:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
245
246
                             "start": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                             "end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
247
248
249
250
251
252
253
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "set_range"

    CATEGORY = "advanced/conditioning"

    def set_range(self, conditioning, start, end):
254
255
        c = node_helpers.conditioning_set_values(conditioning, {"start_percent": start,
                                                                "end_percent": end})
256
257
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
258
259
260
261
262
263
264
class VAEDecode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

265
266
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
267
    def decode(self, vae, samples):
268
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
269

270
271
272
class VAEDecodeTiled:
    @classmethod
    def INPUT_TYPES(s):
273
        return {"required": {"samples": ("LATENT", ), "vae": ("VAE", ),
comfyanonymous's avatar
comfyanonymous committed
274
                             "tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64})
275
                            }}
276
277
278
279
280
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

281
    def decode(self, vae, samples, tile_size):
282
        return (vae.decode_tiled(samples["samples"], tile_x=tile_size // 8, tile_y=tile_size // 8, ), )
283

comfyanonymous's avatar
comfyanonymous committed
284
285
286
287
288
289
290
class VAEEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

291
292
    CATEGORY = "latent"

293
294
    def encode(self, vae, pixels):
        t = vae.encode(pixels[:,:,:,:3])
295
        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
296

comfyanonymous's avatar
comfyanonymous committed
297
298
299
class VAEEncodeTiled:
    @classmethod
    def INPUT_TYPES(s):
300
        return {"required": {"pixels": ("IMAGE", ), "vae": ("VAE", ),
301
                             "tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64})
302
                            }}
comfyanonymous's avatar
comfyanonymous committed
303
304
305
306
307
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

308
309
    def encode(self, vae, pixels, tile_size):
        t = vae.encode_tiled(pixels[:,:,:,:3], tile_x=tile_size, tile_y=tile_size, )
comfyanonymous's avatar
comfyanonymous committed
310
        return ({"samples":t}, )
311

312
313
314
class VAEEncodeForInpaint:
    @classmethod
    def INPUT_TYPES(s):
315
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
316
317
318
319
320
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

321
    def encode(self, vae, pixels, mask, grow_mask_by=6):
322
323
        x = (pixels.shape[1] // vae.downscale_ratio) * vae.downscale_ratio
        y = (pixels.shape[2] // vae.downscale_ratio) * vae.downscale_ratio
324
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
325

326
        pixels = pixels.clone()
327
        if pixels.shape[1] != x or pixels.shape[2] != y:
328
329
            x_offset = (pixels.shape[1] % vae.downscale_ratio) // 2
            y_offset = (pixels.shape[2] % vae.downscale_ratio) // 2
330
331
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
332

333
        #grow mask by a few pixels to keep things seamless in latent space
334
335
336
337
338
339
340
341
        if grow_mask_by == 0:
            mask_erosion = mask
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)

342
        m = (1.0 - mask.round()).squeeze(1)
343
344
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
345
            pixels[:,:,:,i] *= m
346
347
348
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

349
        return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
350

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

class InpaintModelConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"positive": ("CONDITIONING", ),
                             "negative": ("CONDITIONING", ),
                             "vae": ("VAE", ),
                             "pixels": ("IMAGE", ),
                             "mask": ("MASK", ),
                             }}

    RETURN_TYPES = ("CONDITIONING","CONDITIONING","LATENT")
    RETURN_NAMES = ("positive", "negative", "latent")
    FUNCTION = "encode"

    CATEGORY = "conditioning/inpaint"

    def encode(self, positive, negative, pixels, vae, mask):
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")

        orig_pixels = pixels
        pixels = orig_pixels.clone()
        if pixels.shape[1] != x or pixels.shape[2] != y:
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]

        m = (1.0 - mask.round()).squeeze(1)
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
            pixels[:,:,:,i] *= m
            pixels[:,:,:,i] += 0.5
        concat_latent = vae.encode(pixels)
        orig_latent = vae.encode(orig_pixels)

        out_latent = {}

        out_latent["samples"] = orig_latent
        out_latent["noise_mask"] = mask

        out = []
        for conditioning in [positive, negative]:
396
397
            c = node_helpers.conditioning_set_values(conditioning, {"concat_latent_image": concat_latent,
                                                                    "concat_mask": mask})
398
399
400
401
            out.append(c)
        return (out[0], out[1], out_latent)


Dr.Lt.Data's avatar
Dr.Lt.Data committed
402
403
class SaveLatent:
    def __init__(self):
404
        self.output_dir = folder_paths.get_output_directory()
Dr.Lt.Data's avatar
Dr.Lt.Data committed
405
406
407
408

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ),
409
                              "filename_prefix": ("STRING", {"default": "latents/ComfyUI"})},
Dr.Lt.Data's avatar
Dr.Lt.Data committed
410
411
412
413
414
415
416
417
418
419
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
    RETURN_TYPES = ()
    FUNCTION = "save"

    OUTPUT_NODE = True

    CATEGORY = "_for_testing"

    def save(self, samples, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
420
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
421
422
423
424
425
426

        # support save metadata for latent sharing
        prompt_info = ""
        if prompt is not None:
            prompt_info = json.dumps(prompt)

427
428
429
430
431
432
        metadata = None
        if not args.disable_metadata:
            metadata = {"prompt": prompt_info}
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata[x] = json.dumps(extra_pnginfo[x])
Dr.Lt.Data's avatar
Dr.Lt.Data committed
433
434

        file = f"{filename}_{counter:05}_.latent"
435
436
437
438
439
440
441
442

        results = list()
        results.append({
            "filename": file,
            "subfolder": subfolder,
            "type": "output"
        })

Dr.Lt.Data's avatar
Dr.Lt.Data committed
443
444
        file = os.path.join(full_output_folder, file)

445
446
        output = {}
        output["latent_tensor"] = samples["samples"]
447
        output["latent_format_version_0"] = torch.tensor([])
448

449
        comfy.utils.save_torch_file(output, file, metadata=metadata)
450
        return { "ui": { "latents": results } }
Dr.Lt.Data's avatar
Dr.Lt.Data committed
451
452
453
454
455


class LoadLatent:
    @classmethod
    def INPUT_TYPES(s):
456
457
        input_dir = folder_paths.get_input_directory()
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.endswith(".latent")]
Dr.Lt.Data's avatar
Dr.Lt.Data committed
458
459
460
461
462
463
464
465
        return {"required": {"latent": [sorted(files), ]}, }

    CATEGORY = "_for_testing"

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "load"

    def load(self, latent):
466
467
        latent_path = folder_paths.get_annotated_filepath(latent)
        latent = safetensors.torch.load_file(latent_path, device="cpu")
468
469
470
471
        multiplier = 1.0
        if "latent_format_version_0" not in latent:
            multiplier = 1.0 / 0.18215
        samples = {"samples": latent["latent_tensor"].float() * multiplier}
472
        return (samples, )
Dr.Lt.Data's avatar
Dr.Lt.Data committed
473

474
475
476
477
478
479
480
481
482
483
484
485
486
487
    @classmethod
    def IS_CHANGED(s, latent):
        image_path = folder_paths.get_annotated_filepath(latent)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

    @classmethod
    def VALIDATE_INPUTS(s, latent):
        if not folder_paths.exists_annotated_filepath(latent):
            return "Invalid latent file: {}".format(latent)
        return True

Dr.Lt.Data's avatar
Dr.Lt.Data committed
488

comfyanonymous's avatar
comfyanonymous committed
489
490
491
class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
492
493
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
494
495
496
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

497
    CATEGORY = "advanced/loaders"
498

499
    def load_checkpoint(self, config_name, ckpt_name):
500
501
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
502
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
503

504
505
506
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
507
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
508
509
510
511
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

512
    CATEGORY = "loaders"
513

514
    def load_checkpoint(self, ckpt_name):
515
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
516
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
517
        return out[:3]
518

sALTaccount's avatar
sALTaccount committed
519
520
521
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
522
        paths = []
sALTaccount's avatar
sALTaccount committed
523
        for search_path in folder_paths.get_folder_paths("diffusers"):
524
            if os.path.exists(search_path):
525
526
527
528
                for root, subdir, files in os.walk(search_path, followlinks=True):
                    if "model_index.json" in files:
                        paths.append(os.path.relpath(root, start=search_path))

529
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
530
531
532
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

533
    CATEGORY = "advanced/loaders/deprecated"
sALTaccount's avatar
sALTaccount committed
534
535

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
536
537
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
538
539
540
                path = os.path.join(search_path, model_path)
                if os.path.exists(path):
                    model_path = path
sALTaccount's avatar
sALTaccount committed
541
                    break
542

543
        return comfy.diffusers_load.load_diffusers(model_path, output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
544
545


546
547
548
549
550
551
552
553
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

554
    CATEGORY = "loaders"
555
556
557
558
559
560

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

577
class LoraLoader:
578
579
580
    def __init__(self):
        self.loaded_lora = None

581
582
583
584
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
585
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
586
587
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01}),
588
589
590
591
592
593
594
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
595
596
597
        if strength_model == 0 and strength_clip == 0:
            return (model, clip)

598
        lora_path = folder_paths.get_full_path("loras", lora_name)
599
600
601
602
603
        lora = None
        if self.loaded_lora is not None:
            if self.loaded_lora[0] == lora_path:
                lora = self.loaded_lora[1]
            else:
604
605
606
                temp = self.loaded_lora
                self.loaded_lora = None
                del temp
607
608
609
610
611
612

        if lora is None:
            lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
            self.loaded_lora = (lora_path, lora)

        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
613
614
        return (model_lora, clip_lora)

615
616
617
618
619
class LoraLoaderModelOnly(LoraLoader):
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
620
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01}),
621
622
623
624
625
626
627
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "load_lora_model_only"

    def load_lora_model_only(self, model, lora_name, strength_model):
        return (self.load_lora(model, None, lora_name, strength_model, 0)[0],)

comfyanonymous's avatar
comfyanonymous committed
628
class VAELoader:
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
    @staticmethod
    def vae_list():
        vaes = folder_paths.get_filename_list("vae")
        approx_vaes = folder_paths.get_filename_list("vae_approx")
        sdxl_taesd_enc = False
        sdxl_taesd_dec = False
        sd1_taesd_enc = False
        sd1_taesd_dec = False

        for v in approx_vaes:
            if v.startswith("taesd_decoder."):
                sd1_taesd_dec = True
            elif v.startswith("taesd_encoder."):
                sd1_taesd_enc = True
            elif v.startswith("taesdxl_decoder."):
                sdxl_taesd_dec = True
            elif v.startswith("taesdxl_encoder."):
                sdxl_taesd_enc = True
        if sd1_taesd_dec and sd1_taesd_enc:
            vaes.append("taesd")
        if sdxl_taesd_dec and sdxl_taesd_enc:
            vaes.append("taesdxl")
        return vaes

    @staticmethod
    def load_taesd(name):
        sd = {}
        approx_vaes = folder_paths.get_filename_list("vae_approx")

        encoder = next(filter(lambda a: a.startswith("{}_encoder.".format(name)), approx_vaes))
        decoder = next(filter(lambda a: a.startswith("{}_decoder.".format(name)), approx_vaes))

        enc = comfy.utils.load_torch_file(folder_paths.get_full_path("vae_approx", encoder))
        for k in enc:
            sd["taesd_encoder.{}".format(k)] = enc[k]

        dec = comfy.utils.load_torch_file(folder_paths.get_full_path("vae_approx", decoder))
        for k in dec:
            sd["taesd_decoder.{}".format(k)] = dec[k]

        if name == "taesd":
            sd["vae_scale"] = torch.tensor(0.18215)
        elif name == "taesdxl":
            sd["vae_scale"] = torch.tensor(0.13025)
        return sd

comfyanonymous's avatar
comfyanonymous committed
675
676
    @classmethod
    def INPUT_TYPES(s):
677
        return {"required": { "vae_name": (s.vae_list(), )}}
comfyanonymous's avatar
comfyanonymous committed
678
679
680
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

681
682
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
683
684
    #TODO: scale factor?
    def load_vae(self, vae_name):
685
686
687
688
689
        if vae_name in ["taesd", "taesdxl"]:
            sd = self.load_taesd(vae_name)
        else:
            vae_path = folder_paths.get_full_path("vae", vae_name)
            sd = comfy.utils.load_torch_file(vae_path)
comfyanonymous's avatar
comfyanonymous committed
690
        vae = comfy.sd.VAE(sd=sd)
comfyanonymous's avatar
comfyanonymous committed
691
692
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
693
694
695
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
696
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
697
698
699
700
701
702
703

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
704
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
705
        controlnet = comfy.controlnet.load_controlnet(controlnet_path)
comfyanonymous's avatar
comfyanonymous committed
706
707
        return (controlnet,)

708
709
710
711
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
712
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
713
714
715
716
717
718
719

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
720
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
721
        controlnet = comfy.controlnet.load_controlnet(controlnet_path, model)
722
723
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
724
725
726
727

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
728
729
730
731
732
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
733
734
735
736
737
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

738
    def apply_controlnet(self, conditioning, control_net, image, strength):
739
740
741
        if strength == 0:
            return (conditioning, )

comfyanonymous's avatar
comfyanonymous committed
742
743
744
745
        c = []
        control_hint = image.movedim(-1,1)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
746
747
748
749
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
750
            n[1]['control_apply_to_uncond'] = True
comfyanonymous's avatar
comfyanonymous committed
751
752
753
            c.append(n)
        return (c, )

754
755
756
757
758
759
760
761
762

class ControlNetApplyAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"positive": ("CONDITIONING", ),
                             "negative": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
763
764
                             "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                             "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
765
766
767
768
769
770
771
772
                             }}

    RETURN_TYPES = ("CONDITIONING","CONDITIONING")
    RETURN_NAMES = ("positive", "negative")
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

773
    def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent):
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
        if strength == 0:
            return (positive, negative)

        control_hint = image.movedim(-1,1)
        cnets = {}

        out = []
        for conditioning in [positive, negative]:
            c = []
            for t in conditioning:
                d = t[1].copy()

                prev_cnet = d.get('control', None)
                if prev_cnet in cnets:
                    c_net = cnets[prev_cnet]
                else:
790
                    c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_percent, end_percent))
791
792
793
794
795
796
797
798
799
800
801
                    c_net.set_previous_controlnet(prev_cnet)
                    cnets[prev_cnet] = c_net

                d['control'] = c_net
                d['control_apply_to_uncond'] = False
                n = [t[0], d]
                c.append(n)
            out.append(c)
        return (out[0], out[1])


802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
class UNETLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "unet_name": (folder_paths.get_filename_list("unet"), ),
                             }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "load_unet"

    CATEGORY = "advanced/loaders"

    def load_unet(self, unet_name):
        unet_path = folder_paths.get_full_path("unet", unet_name)
        model = comfy.sd.load_unet(unet_path)
        return (model,)

817
818
819
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
820
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
821
                              "type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio"], ),
822
823
824
825
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

826
    CATEGORY = "advanced/loaders"
827

828
829
830
    def load_clip(self, clip_name, type="stable_diffusion"):
        if type == "stable_cascade":
            clip_type = comfy.sd.CLIPType.STABLE_CASCADE
831
832
        elif type == "sd3":
            clip_type = comfy.sd.CLIPType.SD3
833
834
835
836
        elif type == "stable_audio":
            clip_type = comfy.sd.CLIPType.STABLE_AUDIO
        else:
            clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION
837

838
        clip_path = folder_paths.get_full_path("clip", clip_name)
839
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type)
840
841
842
843
844
        return (clip,)

class DualCLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
845
846
847
        return {"required": { "clip_name1": (folder_paths.get_filename_list("clip"), ),
                              "clip_name2": (folder_paths.get_filename_list("clip"), ),
                              "type": (["sdxl", "sd3"], ),
848
849
850
851
852
853
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "advanced/loaders"

854
    def load_clip(self, clip_name1, clip_name2, type):
855
856
        clip_path1 = folder_paths.get_full_path("clip", clip_name1)
        clip_path2 = folder_paths.get_full_path("clip", clip_name2)
857
858
859
860
861
862
        if type == "sdxl":
            clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION
        elif type == "sd3":
            clip_type = comfy.sd.CLIPType.SD3

        clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type)
863
864
        return (clip,)

865
866
867
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
868
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
869
870
871
872
873
874
875
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
876
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
877
        clip_vision = comfy.clip_vision.load(clip_path)
878
879
880
881
882
883
884
885
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
886
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
887
888
    FUNCTION = "encode"

889
    CATEGORY = "conditioning"
890
891
892
893
894
895
896
897

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
898
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
899
900
901
902
903
904
905

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
906
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
907
908
909
910
911
912
913
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
914
915
916
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
917
918
919
920
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
921
    CATEGORY = "conditioning/style_model"
922

923
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
924
        cond = style_model.get_cond(clip_vision_output).flatten(start_dim=0, end_dim=1).unsqueeze(dim=0)
925
        c = []
926
927
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
928
929
930
            c.append(n)
        return (c, )

931
932
933
934
935
936
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
937
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
938
939
940
941
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

942
    CATEGORY = "conditioning"
943

944
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
945
946
947
        if strength == 0:
            return (conditioning, )

948
949
950
        c = []
        for t in conditioning:
            o = t[1].copy()
951
952
953
            x = {"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation}
            if "unclip_conditioning" in o:
                o["unclip_conditioning"] = o["unclip_conditioning"][:] + [x]
954
            else:
955
                o["unclip_conditioning"] = [x]
956
957
958
959
            n = [t[0], o]
            c.append(n)
        return (c, )

960
961
962
963
964
965
966
967
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
968
    CATEGORY = "loaders"
969
970
971
972
973
974
975
976
977
978
979
980

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
981
                              "text": ("STRING", {"multiline": True, "dynamicPrompts": True}),
982
983
984
985
986
987
988
989
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
990
    CATEGORY = "conditioning/gligen"
991
992
993

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
994
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled="unprojected")
995
996
997
998
999
1000
1001
1002
1003
1004
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
1005

comfyanonymous's avatar
comfyanonymous committed
1006
class EmptyLatentImage:
1007
1008
    def __init__(self):
        self.device = comfy.model_management.intermediate_device()
comfyanonymous's avatar
comfyanonymous committed
1009
1010
1011

    @classmethod
    def INPUT_TYPES(s):
1012
1013
        return {"required": { "width": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
1014
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}}
comfyanonymous's avatar
comfyanonymous committed
1015
1016
1017
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

1018
1019
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
1020
    def generate(self, width, height, batch_size=1):
1021
        latent = torch.zeros([batch_size, 4, height // 8, width // 8], device=self.device)
1022
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
1023

comfyanonymous's avatar
comfyanonymous committed
1024

1025
1026
1027
1028
1029
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
1030
                              "length": ("INT", {"default": 1, "min": 1, "max": 64}),
1031
1032
                              }}
    RETURN_TYPES = ("LATENT",)
1033
    FUNCTION = "frombatch"
1034

1035
    CATEGORY = "latent/batch"
1036

1037
    def frombatch(self, samples, batch_index, length):
1038
1039
1040
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
        length = min(s_in.shape[0] - batch_index, length)
        s["samples"] = s_in[batch_index:batch_index + length].clone()
        if "noise_mask" in samples:
            masks = samples["noise_mask"]
            if masks.shape[0] == 1:
                s["noise_mask"] = masks.clone()
            else:
                if masks.shape[0] < s_in.shape[0]:
                    masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
                s["noise_mask"] = masks[batch_index:batch_index + length].clone()
        if "batch_index" not in s:
            s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
        else:
            s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
        return (s,)
    
class RepeatLatentBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "amount": ("INT", {"default": 1, "min": 1, "max": 64}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "repeat"

    CATEGORY = "latent/batch"

    def repeat(self, samples, amount):
        s = samples.copy()
        s_in = samples["samples"]
        
        s["samples"] = s_in.repeat((amount, 1,1,1))
        if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
            masks = samples["noise_mask"]
            if masks.shape[0] < s_in.shape[0]:
                masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
            s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
        if "batch_index" in s:
            offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
            s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
1081
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1082

comfyanonymous's avatar
comfyanonymous committed
1083
class LatentUpscale:
comfyanonymous's avatar
comfyanonymous committed
1084
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
1085
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
1086
1087
1088
1089

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
1090
1091
                              "width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1092
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
1093
1094
1095
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

1096
1097
    CATEGORY = "latent"

1098
    def upscale(self, samples, upscale_method, width, height, crop):
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
        if width == 0 and height == 0:
            s = samples
        else:
            s = samples.copy()

            if width == 0:
                height = max(64, height)
                width = max(64, round(samples["samples"].shape[3] * height / samples["samples"].shape[2]))
            elif height == 0:
                width = max(64, width)
                height = max(64, round(samples["samples"].shape[2] * width / samples["samples"].shape[3]))
            else:
                width = max(64, width)
                height = max(64, height)

            s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1115
1116
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
1117
class LatentUpscaleBy:
comfyanonymous's avatar
comfyanonymous committed
1118
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
comfyanonymous's avatar
comfyanonymous committed
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.5, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

    CATEGORY = "latent"

    def upscale(self, samples, upscale_method, scale_by):
        s = samples.copy()
        width = round(samples["samples"].shape[3] * scale_by)
        height = round(samples["samples"].shape[2] * scale_by)
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled")
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
1136
1137
1138
1139
1140
1141
1142
1143
1144
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
1145
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
1146
1147

    def rotate(self, samples, rotation):
1148
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
1149
1150
1151
1152
1153
1154
1155
1156
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

1157
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
1158
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
1169
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
1170
1171

    def flip(self, samples, flip_method):
1172
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
1173
        if flip_method.startswith("x"):
1174
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
1175
        elif flip_method.startswith("y"):
1176
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
1177
1178

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1179
1180
1181
1182

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
1183
1184
1185
1186
1187
1188
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
1189
1190
1191
1192
1193
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
1194
1195
1196
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
1197
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
1221

1222
1223
1224
1225
class LatentBlend:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
1226
1227
            "samples1": ("LATENT",),
            "samples2": ("LATENT",),
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
            "blend_factor": ("FLOAT", {
                "default": 0.5,
                "min": 0,
                "max": 1,
                "step": 0.01
            }),
        }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "blend"

    CATEGORY = "_for_testing"

1241
    def blend(self, samples1, samples2, blend_factor:float, blend_mode: str="normal"):
1242

1243
1244
1245
        samples_out = samples1.copy()
        samples1 = samples1["samples"]
        samples2 = samples2["samples"]
1246

1247
1248
1249
1250
        if samples1.shape != samples2.shape:
            samples2.permute(0, 3, 1, 2)
            samples2 = comfy.utils.common_upscale(samples2, samples1.shape[3], samples1.shape[2], 'bicubic', crop='center')
            samples2.permute(0, 2, 3, 1)
1251

1252
1253
        samples_blended = self.blend_mode(samples1, samples2, blend_mode)
        samples_blended = samples1 * blend_factor + samples_blended * (1 - blend_factor)
1254
1255
1256
1257
1258
1259
1260
1261
1262
        samples_out["samples"] = samples_blended
        return (samples_out,)

    def blend_mode(self, img1, img2, mode):
        if mode == "normal":
            return img2
        else:
            raise ValueError(f"Unsupported blend mode: {mode}")

comfyanonymous's avatar
comfyanonymous committed
1263
1264
1265
1266
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
1267
1268
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
1269
1270
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
1271
1272
1273
1274
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
1275
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
1276
1277

    def crop(self, samples, width, height, x, y):
1278
1279
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
1293
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
1294
1295
        return (s,)

1296
1297
1298
1299
1300
1301
1302
1303
1304
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

1305
    CATEGORY = "latent/inpaint"
1306
1307
1308

    def set_mask(self, samples, mask):
        s = samples.copy()
1309
        s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
1310
1311
        return (s,)

space-nuko's avatar
space-nuko committed
1312
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
1313
    latent_image = latent["samples"]
1314
1315
    latent_image = comfy.sample.fix_empty_latent_channels(model, latent_image)

comfyanonymous's avatar
comfyanonymous committed
1316
1317
1318
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
1319
1320
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
comfyanonymous's avatar
comfyanonymous committed
1321

1322
    noise_mask = None
1323
    if "noise_mask" in latent:
1324
        noise_mask = latent["noise_mask"]
comfyanonymous's avatar
comfyanonymous committed
1325

1326
    callback = latent_preview.prepare_callback(model, steps)
1327
    disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
1328
1329
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
comfyanonymous's avatar
comfyanonymous committed
1330
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
1331
1332
1333
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
1334

comfyanonymous's avatar
comfyanonymous committed
1335
1336
1337
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
1338
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1339
1340
1341
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
1342
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
comfyanonymous's avatar
comfyanonymous committed
1343
1344
1345
1346
1347
1348
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
space-nuko's avatar
space-nuko committed
1349
1350
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1351
1352
1353
1354

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

1355
1356
    CATEGORY = "sampling"

space-nuko's avatar
space-nuko committed
1357
1358
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
1359

comfyanonymous's avatar
comfyanonymous committed
1360
1361
1362
1363
1364
1365
1366
1367
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
1368
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
comfyanonymous's avatar
comfyanonymous committed
1369
1370
1371
1372
1373
1374
1375
1376
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
space-nuko's avatar
space-nuko committed
1377
1378
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1379
1380
1381
1382
1383

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
1384

space-nuko's avatar
space-nuko committed
1385
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
comfyanonymous's avatar
comfyanonymous committed
1386
1387
1388
1389
1390
1391
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
space-nuko's avatar
space-nuko committed
1392
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
1393
1394
1395

class SaveImage:
    def __init__(self):
1396
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1397
        self.type = "output"
1398
        self.prefix_append = ""
1399
        self.compress_level = 4
comfyanonymous's avatar
comfyanonymous committed
1400
1401
1402
1403

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
1404
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
1405
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
1406
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
1407
1408
1409
1410
1411
1412
1413
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

1414
1415
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
1416
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
1417
        filename_prefix += self.prefix_append
1418
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
m957ymj75urz's avatar
m957ymj75urz committed
1419
        results = list()
1420
        for (batch_number, image) in enumerate(images):
comfyanonymous's avatar
comfyanonymous committed
1421
            i = 255. * image.cpu().numpy()
1422
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
1423
1424
1425
1426
1427
1428
1429
1430
            metadata = None
            if not args.disable_metadata:
                metadata = PngInfo()
                if prompt is not None:
                    metadata.add_text("prompt", json.dumps(prompt))
                if extra_pnginfo is not None:
                    for x in extra_pnginfo:
                        metadata.add_text(x, json.dumps(extra_pnginfo[x]))
1431

1432
1433
            filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
            file = f"{filename_with_batch_num}_{counter:05}_.png"
1434
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=self.compress_level)
m957ymj75urz's avatar
m957ymj75urz committed
1435
1436
1437
1438
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
1439
            })
1440
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
1441

m957ymj75urz's avatar
m957ymj75urz committed
1442
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
1443

pythongosssss's avatar
pythongosssss committed
1444
1445
class PreviewImage(SaveImage):
    def __init__(self):
1446
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1447
        self.type = "temp"
1448
        self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
1449
        self.compress_level = 1
pythongosssss's avatar
pythongosssss committed
1450
1451
1452

    @classmethod
    def INPUT_TYPES(s):
1453
        return {"required":
pythongosssss's avatar
pythongosssss committed
1454
1455
1456
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
1457

1458
1459
1460
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
1461
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1462
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1463
        return {"required":
1464
                    {"image": (sorted(files), {"image_upload": True})},
1465
                }
1466
1467

    CATEGORY = "image"
1468

1469
    RETURN_TYPES = ("IMAGE", "MASK")
1470
1471
    FUNCTION = "load_image"
    def load_image(self, image):
1472
        image_path = folder_paths.get_annotated_filepath(image)
1473
        
1474
        img = node_helpers.pillow(Image.open, image_path)
1475
        
1476
1477
        output_images = []
        output_masks = []
1478
1479
1480
1481
        w, h = None, None

        excluded_formats = ['MPO']
        
1482
        for i in ImageSequence.Iterator(img):
1483
            i = node_helpers.pillow(ImageOps.exif_transpose, i)
1484

1485
1486
            if i.mode == 'I':
                i = i.point(lambda i: i * (1 / 255))
1487
            image = i.convert("RGB")
1488
1489
1490
1491
1492
1493
1494
1495

            if len(output_images) == 0:
                w = image.size[0]
                h = image.size[1]
            
            if image.size[0] != w or image.size[1] != h:
                continue
            
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
            image = np.array(image).astype(np.float32) / 255.0
            image = torch.from_numpy(image)[None,]
            if 'A' in i.getbands():
                mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
                mask = 1. - torch.from_numpy(mask)
            else:
                mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
            output_images.append(image)
            output_masks.append(mask.unsqueeze(0))

1506
        if len(output_images) > 1 and img.format not in excluded_formats:
1507
1508
            output_image = torch.cat(output_images, dim=0)
            output_mask = torch.cat(output_masks, dim=0)
1509
        else:
1510
1511
1512
1513
            output_image = output_images[0]
            output_mask = output_masks[0]

        return (output_image, output_mask)
1514

1515
1516
    @classmethod
    def IS_CHANGED(s, image):
1517
        image_path = folder_paths.get_annotated_filepath(image)
1518
1519
1520
1521
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1522

1523
1524
1525
1526
1527
1528
1529
    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

1530
class LoadImageMask:
1531
    _color_channels = ["alpha", "red", "green", "blue"]
1532
1533
    @classmethod
    def INPUT_TYPES(s):
1534
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1535
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1536
        return {"required":
1537
                    {"image": (sorted(files), {"image_upload": True}),
1538
                     "channel": (s._color_channels, ), }
1539
1540
                }

1541
    CATEGORY = "mask"
1542
1543
1544
1545

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
1546
        image_path = folder_paths.get_annotated_filepath(image)
1547
1548
        i = node_helpers.pillow(Image.open, image_path)
        i = node_helpers.pillow(ImageOps.exif_transpose, i)
1549
        if i.getbands() != ("R", "G", "B", "A"):
1550
1551
            if i.mode == 'I':
                i = i.point(lambda i: i * (1 / 255))
1552
            i = i.convert("RGBA")
1553
1554
1555
1556
1557
1558
1559
1560
1561
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
1562
        return (mask.unsqueeze(0),)
1563
1564
1565

    @classmethod
    def IS_CHANGED(s, image, channel):
1566
        image_path = folder_paths.get_annotated_filepath(image)
1567
1568
1569
1570
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1571

1572
    @classmethod
1573
    def VALIDATE_INPUTS(s, image):
1574
1575
1576
1577
1578
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

comfyanonymous's avatar
comfyanonymous committed
1579
class ImageScale:
1580
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
comfyanonymous's avatar
comfyanonymous committed
1581
1582
1583
1584
1585
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1586
1587
                              "width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1588
1589
1590
1591
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1592
    CATEGORY = "image/upscaling"
1593

comfyanonymous's avatar
comfyanonymous committed
1594
    def upscale(self, image, upscale_method, width, height, crop):
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
        if width == 0 and height == 0:
            s = image
        else:
            samples = image.movedim(-1,1)

            if width == 0:
                width = max(1, round(samples.shape[3] * height / samples.shape[2]))
            elif height == 0:
                height = max(1, round(samples.shape[2] * width / samples.shape[3]))

            s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
            s = s.movedim(1,-1)
comfyanonymous's avatar
comfyanonymous committed
1607
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1608

comfyanonymous's avatar
comfyanonymous committed
1609
class ImageScaleBy:
1610
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
comfyanonymous's avatar
comfyanonymous committed
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

    CATEGORY = "image/upscaling"

    def upscale(self, image, upscale_method, scale_by):
        samples = image.movedim(-1,1)
        width = round(samples.shape[3] * scale_by)
        height = round(samples.shape[2] * scale_by)
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
        s = s.movedim(1,-1)
        return (s,)

1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)

1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
class ImageBatch:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image1": ("IMAGE",), "image2": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "batch"

    CATEGORY = "image"

    def batch(self, image1, image2):
        if image1.shape[1:] != image2.shape[1:]:
            image2 = comfy.utils.common_upscale(image2.movedim(-1,1), image1.shape[2], image1.shape[1], "bilinear", "center").movedim(1,-1)
        s = torch.cat((image1, image2), dim=0)
        return (s,)
1660

comfyanonymous's avatar
comfyanonymous committed
1661
1662
1663
1664
1665
1666
1667
1668
class EmptyImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1669
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
comfyanonymous's avatar
comfyanonymous committed
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
                              "color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}),
                              }}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "generate"

    CATEGORY = "image"

    def generate(self, width, height, batch_size=1, color=0):
        r = torch.full([batch_size, height, width, 1], ((color >> 16) & 0xFF) / 0xFF)
        g = torch.full([batch_size, height, width, 1], ((color >> 8) & 0xFF) / 0xFF)
        b = torch.full([batch_size, height, width, 1], ((color) & 0xFF) / 0xFF)
        return (torch.cat((r, g, b), dim=-1), )

Guo Y.K's avatar
Guo Y.K committed
1683
1684
1685
1686
1687
1688
1689
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1690
1691
1692
1693
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1694
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1695
1696
1697
1698
1699
1700
1701
1702
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1703
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1704
1705
        d1, d2, d3, d4 = image.size()

1706
        new_image = torch.ones(
Guo Y.K's avatar
Guo Y.K committed
1707
1708
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
1709
1710
        ) * 0.5

Guo Y.K's avatar
Guo Y.K committed
1711
1712
1713
1714
1715
1716
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1717

1718
1719
1720
1721
1722
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1723
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1743

Guo Y.K's avatar
Guo Y.K committed
1744
1745
1746
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1747
1748
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1749
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1750
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1751
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1752
1753
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1754
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1755
1756
1757
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
comfyanonymous's avatar
comfyanonymous committed
1758
    "LatentUpscaleBy": LatentUpscaleBy,
1759
    "LatentFromBatch": LatentFromBatch,
1760
    "RepeatLatentBatch": RepeatLatentBatch,
comfyanonymous's avatar
comfyanonymous committed
1761
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1762
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1763
    "LoadImage": LoadImage,
1764
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1765
    "ImageScale": ImageScale,
comfyanonymous's avatar
comfyanonymous committed
1766
    "ImageScaleBy": ImageScaleBy,
1767
    "ImageInvert": ImageInvert,
1768
    "ImageBatch": ImageBatch,
Guo Y.K's avatar
Guo Y.K committed
1769
    "ImagePadForOutpaint": ImagePadForOutpaint,
comfyanonymous's avatar
comfyanonymous committed
1770
    "EmptyImage": EmptyImage,
comfyanonymous's avatar
comfyanonymous committed
1771
    "ConditioningAverage": ConditioningAverage ,
comfyanonymous's avatar
comfyanonymous committed
1772
    "ConditioningCombine": ConditioningCombine,
1773
    "ConditioningConcat": ConditioningConcat,
comfyanonymous's avatar
comfyanonymous committed
1774
    "ConditioningSetArea": ConditioningSetArea,
1775
    "ConditioningSetAreaPercentage": ConditioningSetAreaPercentage,
1776
    "ConditioningSetAreaStrength": ConditioningSetAreaStrength,
Jacob Segal's avatar
Jacob Segal committed
1777
    "ConditioningSetMask": ConditioningSetMask,
comfyanonymous's avatar
comfyanonymous committed
1778
    "KSamplerAdvanced": KSamplerAdvanced,
1779
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1780
    "LatentComposite": LatentComposite,
1781
    "LatentBlend": LatentBlend,
comfyanonymous's avatar
comfyanonymous committed
1782
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1783
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1784
    "LatentCrop": LatentCrop,
1785
    "LoraLoader": LoraLoader,
1786
    "CLIPLoader": CLIPLoader,
1787
    "UNETLoader": UNETLoader,
1788
    "DualCLIPLoader": DualCLIPLoader,
1789
    "CLIPVisionEncode": CLIPVisionEncode,
1790
    "StyleModelApply": StyleModelApply,
1791
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1792
    "ControlNetApply": ControlNetApply,
1793
    "ControlNetApplyAdvanced": ControlNetApplyAdvanced,
comfyanonymous's avatar
comfyanonymous committed
1794
    "ControlNetLoader": ControlNetLoader,
1795
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1796
1797
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1798
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1799
    "VAEEncodeTiled": VAEEncodeTiled,
1800
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1801
1802
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,
1803
    "InpaintModelConditioning": InpaintModelConditioning,
1804

1805
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1806
    "DiffusersLoader": DiffusersLoader,
Dr.Lt.Data's avatar
Dr.Lt.Data committed
1807
1808

    "LoadLatent": LoadLatent,
1809
    "SaveLatent": SaveLatent,
1810
1811

    "ConditioningZeroOut": ConditioningZeroOut,
1812
    "ConditioningSetTimestepRange": ConditioningSetTimestepRange,
1813
    "LoraLoaderModelOnly": LoraLoaderModelOnly,
comfyanonymous's avatar
comfyanonymous committed
1814
1815
}

City's avatar
City committed
1816
1817
1818
1819
1820
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
1821
    "CheckpointLoader": "Load Checkpoint With Config (DEPRECATED)",
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1822
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
FizzleDorf's avatar
FizzleDorf committed
1837
    "ConditioningAverage ": "Conditioning (Average)",
1838
    "ConditioningConcat": "Conditioning (Concat)",
City's avatar
City committed
1839
    "ConditioningSetArea": "Conditioning (Set Area)",
1840
    "ConditioningSetAreaPercentage": "Conditioning (Set Area with Percentage)",
Jacob Segal's avatar
Jacob Segal committed
1841
    "ConditioningSetMask": "Conditioning (Set Mask)",
City's avatar
City committed
1842
    "ControlNetApply": "Apply ControlNet",
1843
    "ControlNetApplyAdvanced": "Apply ControlNet (Advanced)",
City's avatar
City committed
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
comfyanonymous's avatar
comfyanonymous committed
1854
    "LatentUpscaleBy": "Upscale Latent By",
City's avatar
City committed
1855
    "LatentComposite": "Latent Composite",
1856
    "LatentBlend": "Latent Blend",
1857
1858
    "LatentFromBatch" : "Latent From Batch",
    "RepeatLatentBatch": "Repeat Latent Batch",
City's avatar
City committed
1859
1860
1861
1862
1863
1864
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
comfyanonymous's avatar
comfyanonymous committed
1865
    "ImageScaleBy": "Upscale Image By",
City's avatar
City committed
1866
1867
1868
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
1869
    "ImageBatch": "Batch Images",
City's avatar
City committed
1870
1871
1872
1873
1874
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1875
1876
EXTENSION_WEB_DIRS = {}

1877
def load_custom_node(module_path, ignore=set()):
1878
1879
1880
1881
1882
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
1883
        logging.debug("Trying to load custom node {}".format(module_path))
1884
1885
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
1886
            module_dir = os.path.split(module_path)[0]
1887
1888
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
1889
1890
            module_dir = module_path

1891
1892
1893
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
1894
1895
1896
1897
1898
1899

        if hasattr(module, "WEB_DIRECTORY") and getattr(module, "WEB_DIRECTORY") is not None:
            web_dir = os.path.abspath(os.path.join(module_dir, getattr(module, "WEB_DIRECTORY")))
            if os.path.isdir(web_dir):
                EXTENSION_WEB_DIRS[module_name] = web_dir

1900
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
1901
1902
1903
            for name in module.NODE_CLASS_MAPPINGS:
                if name not in ignore:
                    NODE_CLASS_MAPPINGS[name] = module.NODE_CLASS_MAPPINGS[name]
1904
1905
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1906
            return True
1907
        else:
1908
            logging.warning(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
1909
            return False
1910
    except Exception as e:
1911
        logging.warning(traceback.format_exc())
1912
        logging.warning(f"Cannot import {module_path} module for custom nodes: {e}")
1913
        return False
1914

Hacker 17082006's avatar
Hacker 17082006 committed
1915
def load_custom_nodes():
1916
    base_node_names = set(NODE_CLASS_MAPPINGS.keys())
1917
    node_paths = folder_paths.get_folder_paths("custom_nodes")
1918
    node_import_times = []
1919
    for custom_node_path in node_paths:
Enrico Fasoli's avatar
Enrico Fasoli committed
1920
        possible_modules = os.listdir(os.path.realpath(custom_node_path))
1921
1922
1923
1924
1925
1926
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1927
            if module_path.endswith(".disabled"): continue
1928
            time_before = time.perf_counter()
1929
            success = load_custom_node(module_path, base_node_names)
1930
            node_import_times.append((time.perf_counter() - time_before, module_path, success))
1931

1932
    if len(node_import_times) > 0:
comfyanonymous's avatar
comfyanonymous committed
1933
        logging.info("\nImport times for custom nodes:")
1934
        for n in sorted(node_import_times):
1935
1936
1937
1938
            if n[2]:
                import_message = ""
            else:
                import_message = " (IMPORT FAILED)"
comfyanonymous's avatar
comfyanonymous committed
1939
1940
            logging.info("{:6.1f} seconds{}: {}".format(n[0], import_message, n[1]))
        logging.info("")
1941

1942
def init_custom_nodes():
1943
1944
1945
1946
1947
1948
1949
    extras_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras")
    extras_files = [
        "nodes_latent.py",
        "nodes_hypernetwork.py",
        "nodes_upscale_model.py",
        "nodes_post_processing.py",
        "nodes_mask.py",
1950
        "nodes_compositing.py",
1951
1952
1953
1954
1955
1956
        "nodes_rebatch.py",
        "nodes_model_merging.py",
        "nodes_tomesd.py",
        "nodes_clip_sdxl.py",
        "nodes_canny.py",
        "nodes_freelunch.py",
1957
1958
        "nodes_custom_sampler.py",
        "nodes_hypertile.py",
1959
        "nodes_model_advanced.py",
1960
        "nodes_model_downscale.py",
comfyanonymous's avatar
comfyanonymous committed
1961
        "nodes_images.py",
1962
        "nodes_video_model.py",
1963
        "nodes_sag.py",
Hari's avatar
Hari committed
1964
        "nodes_perpneg.py",
1965
        "nodes_stable3d.py",
1966
        "nodes_sdupscale.py",
1967
        "nodes_photomaker.py",
1968
        "nodes_cond.py",
1969
        "nodes_morphology.py",
comfyanonymous's avatar
comfyanonymous committed
1970
        "nodes_stable_cascade.py",
1971
        "nodes_differential_diffusion.py",
1972
        "nodes_ip2p.py",
1973
        "nodes_model_merging_model_specific.py",
comfyanonymous's avatar
comfyanonymous committed
1974
        "nodes_pag.py",
1975
        "nodes_align_your_steps.py",
1976
        "nodes_attention_multiply.py",
comfyanonymous's avatar
comfyanonymous committed
1977
        "nodes_advanced_samplers.py",
pythongosssss's avatar
pythongosssss committed
1978
        "nodes_webcam.py",
1979
        "nodes_audio.py",
comfyanonymous's avatar
comfyanonymous committed
1980
        "nodes_sd3.py",
1981
1982
    ]

1983
    import_failed = []
1984
    for node_file in extras_files:
1985
1986
        if not load_custom_node(os.path.join(extras_dir, node_file)):
            import_failed.append(node_file)
1987

1988
    load_custom_nodes()
1989
1990

    if len(import_failed) > 0:
1991
        logging.warning("WARNING: some comfy_extras/ nodes did not import correctly. This may be because they are missing some dependencies.\n")
1992
        for node in import_failed:
1993
1994
            logging.warning("IMPORT FAILED: {}".format(node))
        logging.warning("\nThis issue might be caused by new missing dependencies added the last time you updated ComfyUI.")
1995
        if args.windows_standalone_build:
1996
            logging.warning("Please run the update script: update/update_comfyui.bat")
1997
        else:
1998
1999
            logging.warning("Please do a: pip install -r requirements.txt")
        logging.warning("")