"doc/src/vscode:/vscode.git/clone" did not exist on "6416f066e7642b418d5ffb3637167c66aaad8627"
nodes.py 49.7 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
8
import math
9
import time
comfyanonymous's avatar
comfyanonymous committed
10
11
12
13
14

from PIL import Image
from PIL.PngImagePlugin import PngInfo
import numpy as np

sALTaccount's avatar
sALTaccount committed
15

comfyanonymous's avatar
comfyanonymous committed
16
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
17
18


comfyanonymous's avatar
comfyanonymous committed
19
import comfy.diffusers_convert
comfyanonymous's avatar
comfyanonymous committed
20
import comfy.samplers
21
import comfy.sample
comfyanonymous's avatar
comfyanonymous committed
22
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
23
24
import comfy.utils

25
import comfy.clip_vision
26

27
import comfy.model_management
28
import importlib
comfyanonymous's avatar
comfyanonymous committed
29

30
import folder_paths
31
32

def before_node_execution():
33
    comfy.model_management.throw_exception_if_processing_interrupted()
34

35
def interrupt_processing(value=True):
36
    comfy.model_management.interrupt_current_processing(value)
37

38
39
MAX_RESOLUTION=8192

comfyanonymous's avatar
comfyanonymous committed
40
41
42
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
43
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
44
45
46
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

47
48
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
49
    def encode(self, clip, text):
comfyanonymous's avatar
comfyanonymous committed
50
51
52
53
54
55
56
57
58
        return ([[clip.encode(text), {}]], )

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

59
60
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
61
62
63
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

FizzleDorf's avatar
FizzleDorf committed
64
65
66
class ConditioningAverage :
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
67
68
        return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
                              "conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
FizzleDorf's avatar
FizzleDorf committed
69
70
71
72
73
74
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "addWeighted"

    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
75
    def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
FizzleDorf's avatar
FizzleDorf committed
76
        out = []
comfyanonymous's avatar
comfyanonymous committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90

        if len(conditioning_from) > 1:
            print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

        cond_from = conditioning_from[0][0]

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
            t0 = cond_from[:,:t1.shape[1]]
            if t0.shape[1] < t1.shape[1]:
                t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)

            tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
            n = [tw, conditioning_to[i][1].copy()]
FizzleDorf's avatar
FizzleDorf committed
91
92
93
            out.append(n)
        return (out, )

comfyanonymous's avatar
comfyanonymous committed
94
95
96
97
class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
98
99
100
101
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
102
103
104
105
106
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

107
108
    CATEGORY = "conditioning"

109
    def append(self, conditioning, width, height, x, y, strength):
comfyanonymous's avatar
comfyanonymous committed
110
111
112
113
114
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
115
            n[1]['set_area_to_bounds'] = False
comfyanonymous's avatar
comfyanonymous committed
116
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
117
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
118

Jacob Segal's avatar
Jacob Segal committed
119
120
121
122
123
124
class ConditioningSetMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "mask": ("MASK", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
125
                              "set_cond_area": (["default", "mask bounds"],),
Jacob Segal's avatar
Jacob Segal committed
126
127
128
129
130
131
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

132
    def append(self, conditioning, mask, set_cond_area, strength):
Jacob Segal's avatar
Jacob Segal committed
133
        c = []
134
135
136
        set_area_to_bounds = False
        if set_cond_area != "default":
            set_area_to_bounds = True
Jacob Segal's avatar
Jacob Segal committed
137
138
139
140
141
142
        if len(mask.shape) < 3:
            mask = mask.unsqueeze(0)
        for t in conditioning:
            n = [t[0], t[1].copy()]
            _, h, w = mask.shape
            n[1]['mask'] = mask
Jacob Segal's avatar
Jacob Segal committed
143
            n[1]['set_area_to_bounds'] = set_area_to_bounds
144
            n[1]['mask_strength'] = strength
Jacob Segal's avatar
Jacob Segal committed
145
146
147
            c.append(n)
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
148
149
150
151
152
153
154
class VAEDecode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

155
156
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
157
    def decode(self, vae, samples):
158
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
159

160
161
162
163
164
165
166
167
168
169
170
171
class VAEDecodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
172
173
174
175
176
177
178
class VAEEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

179
180
    CATEGORY = "latent"

181
182
183
184
    @staticmethod
    def vae_encode_crop_pixels(pixels):
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
185
        if pixels.shape[1] != x or pixels.shape[2] != y:
186
187
188
189
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
        return pixels
190

191
192
193
    def encode(self, vae, pixels):
        pixels = self.vae_encode_crop_pixels(pixels)
        t = vae.encode(pixels[:,:,:,:3])
194
        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
195

comfyanonymous's avatar
comfyanonymous committed
196
197
198
199
200
201
202
203
204
205
class VAEEncodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

    def encode(self, vae, pixels):
206
        pixels = VAEEncode.vae_encode_crop_pixels(pixels)
comfyanonymous's avatar
comfyanonymous committed
207
208
        t = vae.encode_tiled(pixels[:,:,:,:3])
        return ({"samples":t}, )
209

210
211
212
class VAEEncodeForInpaint:
    @classmethod
    def INPUT_TYPES(s):
213
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
214
215
216
217
218
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

219
    def encode(self, vae, pixels, mask, grow_mask_by=6):
220
221
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
222
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
223

224
        pixels = pixels.clone()
225
        if pixels.shape[1] != x or pixels.shape[2] != y:
226
227
228
229
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
230

231
        #grow mask by a few pixels to keep things seamless in latent space
232
233
234
235
236
237
238
239
        if grow_mask_by == 0:
            mask_erosion = mask
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)

240
        m = (1.0 - mask.round()).squeeze(1)
241
242
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
243
            pixels[:,:,:,i] *= m
244
245
246
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

247
        return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
248
249
250
251

class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
252
253
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
254
255
256
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

257
    CATEGORY = "advanced/loaders"
258

comfyanonymous's avatar
comfyanonymous committed
259
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
260
261
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
262
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
263

264
265
266
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
267
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
268
269
270
271
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

272
    CATEGORY = "loaders"
273

274
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
275
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
276
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
277
278
        return out

sALTaccount's avatar
sALTaccount committed
279
280
281
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
282
        paths = []
sALTaccount's avatar
sALTaccount committed
283
        for search_path in folder_paths.get_folder_paths("diffusers"):
284
            if os.path.exists(search_path):
285
286
287
288
                for root, subdir, files in os.walk(search_path, followlinks=True):
                    if "model_index.json" in files:
                        paths.append(os.path.relpath(root, start=search_path))

289
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
290
291
292
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

293
    CATEGORY = "advanced/loaders"
sALTaccount's avatar
sALTaccount committed
294
295

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
296
297
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
298
299
300
                path = os.path.join(search_path, model_path)
                if os.path.exists(path):
                    model_path = path
sALTaccount's avatar
sALTaccount committed
301
                    break
302

303
        return comfy.diffusers_convert.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
304
305


306
307
308
309
310
311
312
313
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

314
    CATEGORY = "loaders"
315
316
317
318
319
320

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

337
338
339
340
341
class LoraLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
342
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
343
344
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
345
346
347
348
349
350
351
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
352
        lora_path = folder_paths.get_full_path("loras", lora_name)
353
354
355
        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
        return (model_lora, clip_lora)

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
class TomePatchModel:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "_for_testing"

    def patch(self, model, ratio):
        m = model.clone()
        m.set_model_tomesd(ratio)
        return (m, )

comfyanonymous's avatar
comfyanonymous committed
372
373
374
class VAELoader:
    @classmethod
    def INPUT_TYPES(s):
375
        return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
comfyanonymous's avatar
comfyanonymous committed
376
377
378
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

379
380
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
381
382
    #TODO: scale factor?
    def load_vae(self, vae_name):
383
        vae_path = folder_paths.get_full_path("vae", vae_name)
comfyanonymous's avatar
comfyanonymous committed
384
385
386
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
387
388
389
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
390
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
391
392
393
394
395
396
397

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
398
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
comfyanonymous's avatar
comfyanonymous committed
399
400
401
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

402
403
404
405
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
406
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
407
408
409
410
411
412
413

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
414
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
415
416
417
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
418
419
420
421

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
422
423
424
425
426
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
427
428
429
430
431
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

432
    def apply_controlnet(self, conditioning, control_net, image, strength):
comfyanonymous's avatar
comfyanonymous committed
433
434
435
436
        c = []
        control_hint = image.movedim(-1,1)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
437
438
439
440
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
comfyanonymous's avatar
comfyanonymous committed
441
442
443
            c.append(n)
        return (c, )

444
445
446
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
447
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
448
449
450
451
452
453
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

454
    def load_clip(self, clip_name):
455
        clip_path = folder_paths.get_full_path("clip", clip_name)
comfyanonymous's avatar
comfyanonymous committed
456
        clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=folder_paths.get_folder_paths("embeddings"))
457
458
        return (clip,)

459
460
461
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
462
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
463
464
465
466
467
468
469
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
470
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
471
        clip_vision = comfy.clip_vision.load(clip_path)
472
473
474
475
476
477
478
479
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
480
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
481
482
    FUNCTION = "encode"

483
    CATEGORY = "conditioning"
484
485
486
487
488
489
490
491

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
492
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
493
494
495
496
497
498
499

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
500
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
501
502
503
504
505
506
507
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
508
509
510
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
511
512
513
514
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
515
    CATEGORY = "conditioning/style_model"
516

517
518
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
        cond = style_model.get_cond(clip_vision_output)
519
        c = []
520
521
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
522
523
524
            c.append(n)
        return (c, )

525
526
527
528
529
530
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
531
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
532
533
534
535
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

536
    CATEGORY = "conditioning"
537

538
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
539
540
541
        c = []
        for t in conditioning:
            o = t[1].copy()
542
            x = (clip_vision_output, strength, noise_augmentation)
543
544
545
546
547
548
549
550
            if "adm" in o:
                o["adm"] = o["adm"][:] + [x]
            else:
                o["adm"] = [x]
            n = [t[0], o]
            c.append(n)
        return (c, )

551
552
553
554
555
556
557
558
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
559
    CATEGORY = "loaders"
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
                              "text": ("STRING", {"multiline": True}),
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
581
    CATEGORY = "conditioning/gligen"
582
583
584
585
586
587
588
589
590
591
592
593
594
595

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
596

comfyanonymous's avatar
comfyanonymous committed
597
598
599
600
601
602
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
603
604
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
605
606
607
608
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

609
610
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
611
612
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
613
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
614

comfyanonymous's avatar
comfyanonymous committed
615

616
617
618
619
620
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
621
                              "length": ("INT", {"default": 1, "min": 1, "max": 64}),
622
623
                              }}
    RETURN_TYPES = ("LATENT",)
624
    FUNCTION = "frombatch"
625

626
    CATEGORY = "latent/batch"
627

628
    def frombatch(self, samples, batch_index, length):
629
630
631
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
        length = min(s_in.shape[0] - batch_index, length)
        s["samples"] = s_in[batch_index:batch_index + length].clone()
        if "noise_mask" in samples:
            masks = samples["noise_mask"]
            if masks.shape[0] == 1:
                s["noise_mask"] = masks.clone()
            else:
                if masks.shape[0] < s_in.shape[0]:
                    masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
                s["noise_mask"] = masks[batch_index:batch_index + length].clone()
        if "batch_index" not in s:
            s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
        else:
            s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
        return (s,)
    
class RepeatLatentBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "amount": ("INT", {"default": 1, "min": 1, "max": 64}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "repeat"

    CATEGORY = "latent/batch"

    def repeat(self, samples, amount):
        s = samples.copy()
        s_in = samples["samples"]
        
        s["samples"] = s_in.repeat((amount, 1,1,1))
        if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
            masks = samples["noise_mask"]
            if masks.shape[0] < s_in.shape[0]:
                masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
            s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
        if "batch_index" in s:
            offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
            s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
672
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
673

comfyanonymous's avatar
comfyanonymous committed
674
675
class LatentUpscale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
676
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
677
678
679
680

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
681
682
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
683
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
684
685
686
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

687
688
    CATEGORY = "latent"

689
    def upscale(self, samples, upscale_method, width, height, crop):
690
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
691
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
692
693
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
694
695
696
697
698
699
700
701
702
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
703
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
704
705

    def rotate(self, samples, rotation):
706
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
707
708
709
710
711
712
713
714
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

715
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
716
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
717
718
719
720
721
722
723
724
725
726

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
727
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
728
729

    def flip(self, samples, flip_method):
730
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
731
        if flip_method.startswith("x"):
732
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
733
        elif flip_method.startswith("y"):
734
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
735
736

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
737
738
739
740

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
741
742
743
744
745
746
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
747
748
749
750
751
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
752
753
754
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
755
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
779

comfyanonymous's avatar
comfyanonymous committed
780
781
782
783
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
784
785
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
786
787
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
788
789
790
791
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
792
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
793
794

    def crop(self, samples, width, height, x, y):
795
796
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
797
798
799
800
801
802
803
804
805
806
807
808
809
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
810
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
811
812
        return (s,)

813
814
815
816
817
818
819
820
821
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

822
    CATEGORY = "latent/inpaint"
823
824
825

    def set_mask(self, samples, mask):
        s = samples.copy()
826
        s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
827
828
        return (s,)

829
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
830
    device = comfy.model_management.get_torch_device()
831
    latent_image = latent["samples"]
832

comfyanonymous's avatar
comfyanonymous committed
833
834
835
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
836
837
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
comfyanonymous's avatar
comfyanonymous committed
838

839
    noise_mask = None
840
    if "noise_mask" in latent:
841
        noise_mask = latent["noise_mask"]
comfyanonymous's avatar
comfyanonymous committed
842

843
    pbar = comfy.utils.ProgressBar(steps)
844
845
    def callback(step, x0, x, total_steps):
        pbar.update_absolute(step + 1, total_steps)
846

847
848
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
849
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback)
850
851
852
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
853

comfyanonymous's avatar
comfyanonymous committed
854
855
856
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
857
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

873
874
    CATEGORY = "sampling"

comfyanonymous's avatar
comfyanonymous committed
875
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
876
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
877

comfyanonymous's avatar
comfyanonymous committed
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
901

comfyanonymous's avatar
comfyanonymous committed
902
903
904
905
906
907
908
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
909
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
910
911
912

class SaveImage:
    def __init__(self):
913
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
914
        self.type = "output"
comfyanonymous's avatar
comfyanonymous committed
915
916
917
918

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
919
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
920
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
921
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
922
923
924
925
926
927
928
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

929
930
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
931
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
932
        def map_filename(filename):
933
            prefix_len = len(os.path.basename(filename_prefix))
934
935
936
937
938
939
            prefix = filename[:prefix_len + 1]
            try:
                digits = int(filename[prefix_len + 1:].split('_')[0])
            except:
                digits = 0
            return (digits, prefix)
comfyanonymous's avatar
Style.  
comfyanonymous committed
940

941
942
943
944
        def compute_vars(input):
            input = input.replace("%width%", str(images[0].shape[1]))
            input = input.replace("%height%", str(images[0].shape[0]))
            return input
comfyanonymous's avatar
Style.  
comfyanonymous committed
945

946
        filename_prefix = compute_vars(filename_prefix)
comfyanonymous's avatar
comfyanonymous committed
947

m957ymj75urz's avatar
m957ymj75urz committed
948
949
950
        subfolder = os.path.dirname(os.path.normpath(filename_prefix))
        filename = os.path.basename(os.path.normpath(filename_prefix))

comfyanonymous's avatar
comfyanonymous committed
951
        full_output_folder = os.path.join(self.output_dir, subfolder)
952

953
        if os.path.commonpath((self.output_dir, os.path.abspath(full_output_folder))) != self.output_dir:
954
            print("Saving image outside the output folder is not allowed.")
comfyanonymous's avatar
comfyanonymous committed
955
956
            return {}

957
        try:
958
            counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1
959
960
        except ValueError:
            counter = 1
961
        except FileNotFoundError:
962
            os.makedirs(full_output_folder, exist_ok=True)
963
            counter = 1
pythongosssss's avatar
pythongosssss committed
964

m957ymj75urz's avatar
m957ymj75urz committed
965
        results = list()
comfyanonymous's avatar
comfyanonymous committed
966
967
        for image in images:
            i = 255. * image.cpu().numpy()
968
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
comfyanonymous's avatar
comfyanonymous committed
969
970
971
972
973
974
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
975

976
            file = f"{filename}_{counter:05}_.png"
977
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
978
979
980
981
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
982
            })
983
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
984

m957ymj75urz's avatar
m957ymj75urz committed
985
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
986

pythongosssss's avatar
pythongosssss committed
987
988
class PreviewImage(SaveImage):
    def __init__(self):
989
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
990
        self.type = "temp"
pythongosssss's avatar
pythongosssss committed
991
992
993

    @classmethod
    def INPUT_TYPES(s):
994
        return {"required":
pythongosssss's avatar
pythongosssss committed
995
996
997
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
998

999
1000
1001
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
1002
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1003
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1004
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1005
                    {"image": (sorted(files), )},
1006
                }
1007
1008

    CATEGORY = "image"
1009

1010
    RETURN_TYPES = ("IMAGE", "MASK")
1011
1012
    FUNCTION = "load_image"
    def load_image(self, image):
1013
        image_path = folder_paths.get_annotated_filepath(image)
1014
1015
        i = Image.open(image_path)
        image = i.convert("RGB")
1016
        image = np.array(image).astype(np.float32) / 255.0
1017
        image = torch.from_numpy(image)[None,]
1018
1019
1020
1021
1022
1023
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)
1024

1025
1026
    @classmethod
    def IS_CHANGED(s, image):
1027
        image_path = folder_paths.get_annotated_filepath(image)
1028
1029
1030
1031
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1032

1033
1034
1035
1036
1037
1038
1039
    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

1040
class LoadImageMask:
1041
    _color_channels = ["alpha", "red", "green", "blue"]
1042
1043
    @classmethod
    def INPUT_TYPES(s):
1044
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1045
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1046
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1047
                    {"image": (sorted(files), ),
1048
                     "channel": (s._color_channels, ), }
1049
1050
                }

1051
    CATEGORY = "mask"
1052
1053
1054
1055

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
1056
        image_path = folder_paths.get_annotated_filepath(image)
1057
        i = Image.open(image_path)
1058
1059
        if i.getbands() != ("R", "G", "B", "A"):
            i = i.convert("RGBA")
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
1073
        image_path = folder_paths.get_annotated_filepath(image)
1074
1075
1076
1077
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1078

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
    @classmethod
    def VALIDATE_INPUTS(s, image, channel):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        if channel not in s._color_channels:
            return "Invalid color channel: {}".format(channel)

        return True

comfyanonymous's avatar
comfyanonymous committed
1089
1090
1091
1092
1093
1094
1095
class ImageScale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1096
1097
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1098
1099
1100
1101
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1102
    CATEGORY = "image/upscaling"
1103

comfyanonymous's avatar
comfyanonymous committed
1104
1105
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
1106
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1107
1108
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1109

1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


Guo Y.K's avatar
Guo Y.K committed
1126
1127
1128
1129
1130
1131
1132
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1133
1134
1135
1136
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1137
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1138
1139
1140
1141
1142
1143
1144
1145
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1146
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1159

1160
1161
1162
1163
1164
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1165
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1185

Guo Y.K's avatar
Guo Y.K committed
1186
1187
1188
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1189
1190
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1191
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1192
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1193
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1194
1195
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1196
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1197
1198
1199
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
1200
    "LatentFromBatch": LatentFromBatch,
1201
    "RepeatLatentBatch": RepeatLatentBatch,
comfyanonymous's avatar
comfyanonymous committed
1202
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1203
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1204
    "LoadImage": LoadImage,
1205
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1206
    "ImageScale": ImageScale,
1207
    "ImageInvert": ImageInvert,
Guo Y.K's avatar
Guo Y.K committed
1208
    "ImagePadForOutpaint": ImagePadForOutpaint,
FizzleDorf's avatar
FizzleDorf committed
1209
    "ConditioningAverage ": ConditioningAverage ,
comfyanonymous's avatar
comfyanonymous committed
1210
1211
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
Jacob Segal's avatar
Jacob Segal committed
1212
    "ConditioningSetMask": ConditioningSetMask,
comfyanonymous's avatar
comfyanonymous committed
1213
    "KSamplerAdvanced": KSamplerAdvanced,
1214
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1215
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
1216
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1217
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1218
    "LatentCrop": LatentCrop,
1219
    "LoraLoader": LoraLoader,
1220
    "CLIPLoader": CLIPLoader,
1221
    "CLIPVisionEncode": CLIPVisionEncode,
1222
    "StyleModelApply": StyleModelApply,
1223
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1224
1225
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
1226
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1227
1228
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1229
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1230
    "VAEEncodeTiled": VAEEncodeTiled,
1231
    "TomePatchModel": TomePatchModel,
1232
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1233
1234
1235
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,

1236
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1237
    "DiffusersLoader": DiffusersLoader,
comfyanonymous's avatar
comfyanonymous committed
1238
1239
}

City's avatar
City committed
1240
1241
1242
1243
1244
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1245
1246
    "CheckpointLoader": "Load Checkpoint (With Config)",
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
FizzleDorf's avatar
FizzleDorf committed
1261
    "ConditioningAverage ": "Conditioning (Average)",
City's avatar
City committed
1262
    "ConditioningSetArea": "Conditioning (Set Area)",
Jacob Segal's avatar
Jacob Segal committed
1263
    "ConditioningSetMask": "Conditioning (Set Mask)",
City's avatar
City committed
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
    "ControlNetApply": "Apply ControlNet",
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
    "LatentComposite": "Latent Composite",
1276
1277
    "LatentFromBatch" : "Latent From Batch",
    "RepeatLatentBatch": "Repeat Latent Batch",
City's avatar
City committed
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
def load_custom_node(module_path):
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
            NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
1307
1308
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1309
            return True
1310
1311
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
1312
            return False
1313
1314
1315
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)
1316
        return False
1317

Hacker 17082006's avatar
Hacker 17082006 committed
1318
def load_custom_nodes():
1319
    node_paths = folder_paths.get_folder_paths("custom_nodes")
1320
    node_import_times = []
1321
1322
1323
1324
1325
1326
1327
1328
    for custom_node_path in node_paths:
        possible_modules = os.listdir(custom_node_path)
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1329
            time_before = time.perf_counter()
1330
            success = load_custom_node(module_path)
1331
            node_import_times.append((time.perf_counter() - time_before, module_path, success))
1332

1333
    if len(node_import_times) > 0:
comfyanonymous's avatar
comfyanonymous committed
1334
        print("\nImport times for custom nodes:")
1335
        for n in sorted(node_import_times):
1336
1337
1338
1339
1340
            if n[2]:
                import_message = ""
            else:
                import_message = " (IMPORT FAILED)"
            print("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
1341
        print()
1342

1343
def init_custom_nodes():
1344
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_hypernetwork.py"))
1345
1346
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
1347
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))
1348
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_rebatch.py"))
1349
    load_custom_nodes()