nodes.py 45.9 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
comfyanonymous's avatar
comfyanonymous committed
8
9
10
11
12

from PIL import Image
from PIL.PngImagePlugin import PngInfo
import numpy as np

sALTaccount's avatar
sALTaccount committed
13

comfyanonymous's avatar
comfyanonymous committed
14
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
15
16


comfyanonymous's avatar
comfyanonymous committed
17
import comfy.diffusers_convert
comfyanonymous's avatar
comfyanonymous committed
18
19
import comfy.samplers
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
20
21
import comfy.utils

22
import comfy.clip_vision
23

24
import comfy.model_management
25
import importlib
comfyanonymous's avatar
comfyanonymous committed
26

27
import folder_paths
28
29

def before_node_execution():
30
    comfy.model_management.throw_exception_if_processing_interrupted()
31

32
def interrupt_processing(value=True):
33
    comfy.model_management.interrupt_current_processing(value)
34

35
36
MAX_RESOLUTION=8192

comfyanonymous's avatar
comfyanonymous committed
37
38
39
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
40
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
41
42
43
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

44
45
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
46
    def encode(self, clip, text):
comfyanonymous's avatar
comfyanonymous committed
47
48
49
50
51
52
53
54
55
        return ([[clip.encode(text), {}]], )

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

56
57
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
58
59
60
61
62
63
64
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
65
66
67
68
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
comfyanonymous's avatar
comfyanonymous committed
69
70
71
72
73
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

74
75
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
76
    def append(self, conditioning, width, height, x, y, strength, min_sigma=0.0, max_sigma=99.0):
comfyanonymous's avatar
comfyanonymous committed
77
78
79
80
81
82
83
84
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
            n[1]['min_sigma'] = min_sigma
            n[1]['max_sigma'] = max_sigma
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
85
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
86
87
88
89
90
91
92
93
94
95
96

class VAEDecode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

97
98
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
99
    def decode(self, vae, samples):
100
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
class VAEDecodeTiled:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
117
118
119
120
121
122
123
124
125
126
class VAEEncode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

127
128
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
129
    def encode(self, vae, pixels):
130
131
132
133
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
134
135
136
        t = vae.encode(pixels[:,:,:,:3])

        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
137

comfyanonymous's avatar
comfyanonymous committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

class VAEEncodeTiled:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

    def encode(self, vae, pixels):
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
        t = vae.encode_tiled(pixels[:,:,:,:3])

        return ({"samples":t}, )
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
class VAEEncodeForInpaint:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

    def encode(self, vae, pixels, mask):
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
174
175
        mask = torch.nn.functional.interpolate(mask[None,None,], size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")[0][0]

176
        pixels = pixels.clone()
177
178
179
180
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
            mask = mask[:x,:y]

181
        #grow mask by a few pixels to keep things seamless in latent space
182
        kernel_tensor = torch.ones((1, 1, 6, 6))
183
184
        mask_erosion = torch.clamp(torch.nn.functional.conv2d((mask.round())[None], kernel_tensor, padding=3), 0, 1)
        m = (1.0 - mask.round())
185
186
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
187
            pixels[:,:,:,i] *= m
188
189
190
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

191
        return ({"samples":t, "noise_mask": (mask_erosion[0][:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
192
193
194
195

class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
196
197
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
198
199
200
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

201
    CATEGORY = "advanced/loaders"
202

comfyanonymous's avatar
comfyanonymous committed
203
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
204
205
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
206
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
207

208
209
210
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
211
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
212
213
214
215
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

216
    CATEGORY = "loaders"
217

218
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
219
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
220
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
221
222
        return out

sALTaccount's avatar
sALTaccount committed
223
224
225
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
226
        paths = []
sALTaccount's avatar
sALTaccount committed
227
        for search_path in folder_paths.get_folder_paths("diffusers"):
228
            if os.path.exists(search_path):
sALTaccount's avatar
sALTaccount committed
229
                paths += next(os.walk(search_path))[1]
230
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
231
232
233
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

234
    CATEGORY = "advanced/loaders"
sALTaccount's avatar
sALTaccount committed
235
236

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
237
238
239
240
241
242
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
                paths = next(os.walk(search_path))[1]
                if model_path in paths:
                    model_path = os.path.join(search_path, model_path)
                    break
243

244
        return comfy.diffusers_convert.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
245
246


247
248
249
250
251
252
253
254
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

255
    CATEGORY = "loaders"
256
257
258
259
260
261

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

278
279
280
281
282
class LoraLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
283
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
284
285
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
286
287
288
289
290
291
292
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
293
        lora_path = folder_paths.get_full_path("loras", lora_name)
294
295
296
        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
        return (model_lora, clip_lora)

297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
class TomePatchModel:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "_for_testing"

    def patch(self, model, ratio):
        m = model.clone()
        m.set_model_tomesd(ratio)
        return (m, )

comfyanonymous's avatar
comfyanonymous committed
313
314
315
class VAELoader:
    @classmethod
    def INPUT_TYPES(s):
316
        return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
comfyanonymous's avatar
comfyanonymous committed
317
318
319
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

320
321
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
322
323
    #TODO: scale factor?
    def load_vae(self, vae_name):
324
        vae_path = folder_paths.get_full_path("vae", vae_name)
comfyanonymous's avatar
comfyanonymous committed
325
326
327
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
328
329
330
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
331
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
332
333
334
335
336
337
338

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
339
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
comfyanonymous's avatar
comfyanonymous committed
340
341
342
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

343
344
345
346
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
347
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
348
349
350
351
352
353
354

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
355
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
356
357
358
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
359
360
361
362

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
363
364
365
366
367
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
368
369
370
371
372
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

373
    def apply_controlnet(self, conditioning, control_net, image, strength):
comfyanonymous's avatar
comfyanonymous committed
374
375
376
377
378
        c = []
        control_hint = image.movedim(-1,1)
        print(control_hint.shape)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
379
380
381
382
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
comfyanonymous's avatar
comfyanonymous committed
383
384
385
            c.append(n)
        return (c, )

386
387
388
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
389
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
390
391
392
393
394
395
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

396
    def load_clip(self, clip_name):
397
        clip_path = folder_paths.get_full_path("clip", clip_name)
comfyanonymous's avatar
comfyanonymous committed
398
        clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=folder_paths.get_folder_paths("embeddings"))
399
400
        return (clip,)

401
402
403
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
404
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
405
406
407
408
409
410
411
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
412
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
413
        clip_vision = comfy.clip_vision.load(clip_path)
414
415
416
417
418
419
420
421
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
422
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
423
424
    FUNCTION = "encode"

425
    CATEGORY = "conditioning"
426
427
428
429
430
431
432
433

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
434
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
435
436
437
438
439
440
441

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
442
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
443
444
445
446
447
448
449
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
450
451
452
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
453
454
455
456
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
457
    CATEGORY = "conditioning/style_model"
458

459
460
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
        cond = style_model.get_cond(clip_vision_output)
461
        c = []
462
463
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
464
465
466
            c.append(n)
        return (c, )

467
468
469
470
471
472
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
473
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
474
475
476
477
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

478
    CATEGORY = "conditioning"
479

480
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
481
482
483
        c = []
        for t in conditioning:
            o = t[1].copy()
484
            x = (clip_vision_output, strength, noise_augmentation)
485
486
487
488
489
490
491
492
            if "adm" in o:
                o["adm"] = o["adm"][:] + [x]
            else:
                o["adm"] = [x]
            n = [t[0], o]
            c.append(n)
        return (c, )

493
494
495
496
497
498
499
500
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
501
    CATEGORY = "loaders"
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
                              "text": ("STRING", {"multiline": True}),
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
523
    CATEGORY = "conditioning/gligen"
524
525
526
527
528
529
530
531
532
533
534
535
536
537

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
538

comfyanonymous's avatar
comfyanonymous committed
539
540
541
542
543
544
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
545
546
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
comfyanonymous's avatar
comfyanonymous committed
547
548
549
550
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

551
552
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
553
554
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
555
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
556

comfyanonymous's avatar
comfyanonymous committed
557

558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

    CATEGORY = "latent"

    def rotate(self, samples, batch_index):
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
        s["samples"] = s_in[batch_index:batch_index + 1].clone()
        s["batch_index"] = batch_index
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
576

comfyanonymous's avatar
comfyanonymous committed
577
578
class LatentUpscale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
579
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
580
581
582
583

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
584
585
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
586
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
587
588
589
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

590
591
    CATEGORY = "latent"

592
    def upscale(self, samples, upscale_method, width, height, crop):
593
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
594
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
595
596
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
597
598
599
600
601
602
603
604
605
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
606
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
607
608

    def rotate(self, samples, rotation):
609
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
610
611
612
613
614
615
616
617
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

618
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
619
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
620
621
622
623
624
625
626
627
628
629

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
630
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
631
632

    def flip(self, samples, flip_method):
633
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
634
        if flip_method.startswith("x"):
635
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
636
        elif flip_method.startswith("y"):
637
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
638
639

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
640
641
642
643

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
644
645
646
647
648
649
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
650
651
652
653
654
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
655
656
657
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
658
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
682

comfyanonymous's avatar
comfyanonymous committed
683
684
685
686
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
687
688
689
690
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
691
692
693
694
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
695
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
696
697

    def crop(self, samples, width, height, x, y):
698
699
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
        def enforce_image_dim(d, to_d, max_d):
            if to_d > max_d:
                leftover = (to_d - max_d) % 8
                to_d = max_d
                d -= leftover
            return (d, to_d)

        #make sure size is always multiple of 64
        x, to_x = enforce_image_dim(x, to_x, samples.shape[3])
        y, to_y = enforce_image_dim(y, to_y, samples.shape[2])
723
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
724
725
        return (s,)

726
727
728
729
730
731
732
733
734
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

735
    CATEGORY = "latent/inpaint"
736
737
738
739
740
741
742

    def set_mask(self, samples, mask):
        s = samples.copy()
        s["noise_mask"] = mask
        return (s,)


743
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
744
745
    latent_image = latent["samples"]
    noise_mask = None
746
    device = comfy.model_management.get_torch_device()
747

comfyanonymous's avatar
comfyanonymous committed
748
749
750
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
751
752
753
754
755
        batch_index = 0
        if "batch_index" in latent:
            batch_index = latent["batch_index"]

        generator = torch.manual_seed(seed)
comfyanonymous's avatar
comfyanonymous committed
756
        for i in range(batch_index):
757
            noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
comfyanonymous's avatar
comfyanonymous committed
758
        noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
comfyanonymous's avatar
comfyanonymous committed
759

760
761
762
    if "noise_mask" in latent:
        noise_mask = latent['noise_mask']
        noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear")
763
        noise_mask = noise_mask.round()
764
765
766
767
        noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1)
        noise_mask = torch.cat([noise_mask] * noise.shape[0])
        noise_mask = noise_mask.to(device)

768
    real_model = None
769
    comfy.model_management.load_model_gpu(model)
770
771
    real_model = model.model

772
773
774
775
776
777
    noise = noise.to(device)
    latent_image = latent_image.to(device)

    positive_copy = []
    negative_copy = []

comfyanonymous's avatar
comfyanonymous committed
778
    control_nets = []
779
780
781
782
783
784
785
786
787
    def get_models(cond):
        models = []
        for c in cond:
            if 'control' in c[1]:
                models += [c[1]['control']]
            if 'gligen' in c[1]:
                models += [c[1]['gligen'][1]]
        return models

788
789
790
791
792
793
794
795
796
797
798
799
800
    for p in positive:
        t = p[0]
        if t.shape[0] < noise.shape[0]:
            t = torch.cat([t] * noise.shape[0])
        t = t.to(device)
        positive_copy += [[t] + p[1:]]
    for n in negative:
        t = n[0]
        if t.shape[0] < noise.shape[0]:
            t = torch.cat([t] * noise.shape[0])
        t = t.to(device)
        negative_copy += [[t] + n[1:]]

801
802
    models = get_models(positive) + get_models(negative)
    comfy.model_management.load_controlnet_gpu(models)
comfyanonymous's avatar
comfyanonymous committed
803

804
    if sampler_name in comfy.samplers.KSampler.SAMPLERS:
805
        sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
806
807
808
809
    else:
        #other samplers
        pass

810
    samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask)
811
    samples = samples.cpu()
812
813
    for m in models:
        m.cleanup()
comfyanonymous's avatar
comfyanonymous committed
814

815
816
817
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
818

comfyanonymous's avatar
comfyanonymous committed
819
820
821
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
822
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

838
839
    CATEGORY = "sampling"

comfyanonymous's avatar
comfyanonymous committed
840
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
841
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
842

comfyanonymous's avatar
comfyanonymous committed
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
866

comfyanonymous's avatar
comfyanonymous committed
867
868
869
870
871
872
873
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
874
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
875
876
877

class SaveImage:
    def __init__(self):
878
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
879
        self.type = "output"
comfyanonymous's avatar
comfyanonymous committed
880
881
882
883

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
884
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
885
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
886
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
887
888
889
890
891
892
893
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

894
895
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
896
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
897
        def map_filename(filename):
898
            prefix_len = len(os.path.basename(filename_prefix))
899
900
901
902
903
904
            prefix = filename[:prefix_len + 1]
            try:
                digits = int(filename[prefix_len + 1:].split('_')[0])
            except:
                digits = 0
            return (digits, prefix)
comfyanonymous's avatar
Style.  
comfyanonymous committed
905

906
907
908
909
        def compute_vars(input):
            input = input.replace("%width%", str(images[0].shape[1]))
            input = input.replace("%height%", str(images[0].shape[0]))
            return input
comfyanonymous's avatar
Style.  
comfyanonymous committed
910

911
        filename_prefix = compute_vars(filename_prefix)
comfyanonymous's avatar
comfyanonymous committed
912

m957ymj75urz's avatar
m957ymj75urz committed
913
914
915
        subfolder = os.path.dirname(os.path.normpath(filename_prefix))
        filename = os.path.basename(os.path.normpath(filename_prefix))

comfyanonymous's avatar
comfyanonymous committed
916
        full_output_folder = os.path.join(self.output_dir, subfolder)
917

918
        if os.path.commonpath((self.output_dir, os.path.abspath(full_output_folder))) != self.output_dir:
919
            print("Saving image outside the output folder is not allowed.")
comfyanonymous's avatar
comfyanonymous committed
920
921
            return {}

922
        try:
923
            counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1
924
925
        except ValueError:
            counter = 1
926
        except FileNotFoundError:
927
            os.makedirs(full_output_folder, exist_ok=True)
928
            counter = 1
pythongosssss's avatar
pythongosssss committed
929

m957ymj75urz's avatar
m957ymj75urz committed
930
        results = list()
comfyanonymous's avatar
comfyanonymous committed
931
932
        for image in images:
            i = 255. * image.cpu().numpy()
933
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
comfyanonymous's avatar
comfyanonymous committed
934
935
936
937
938
939
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
940

941
            file = f"{filename}_{counter:05}_.png"
942
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
943
944
945
946
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
947
            })
948
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
949

m957ymj75urz's avatar
m957ymj75urz committed
950
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
951

pythongosssss's avatar
pythongosssss committed
952
953
class PreviewImage(SaveImage):
    def __init__(self):
954
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
955
        self.type = "temp"
pythongosssss's avatar
pythongosssss committed
956
957
958

    @classmethod
    def INPUT_TYPES(s):
959
        return {"required":
pythongosssss's avatar
pythongosssss committed
960
961
962
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
963

964
965
966
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
967
        input_dir = folder_paths.get_input_directory()
968
        return {"required":
969
                    {"image": (sorted(os.listdir(input_dir)), )},
970
                }
971
972

    CATEGORY = "image"
973

974
    RETURN_TYPES = ("IMAGE", "MASK")
975
976
    FUNCTION = "load_image"
    def load_image(self, image):
977
        input_dir = folder_paths.get_input_directory()
ltdrdata's avatar
ltdrdata committed
978
        image_path = folder_paths.get_annotated_filepath(image, input_dir)
979
980
        i = Image.open(image_path)
        image = i.convert("RGB")
981
        image = np.array(image).astype(np.float32) / 255.0
982
        image = torch.from_numpy(image)[None,]
983
984
985
986
987
988
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)
989

990
991
    @classmethod
    def IS_CHANGED(s, image):
992
        input_dir = folder_paths.get_input_directory()
ltdrdata's avatar
ltdrdata committed
993
        image_path = folder_paths.get_annotated_filepath(image, input_dir)
994
995
996
997
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
998

999
1000
1001
class LoadImageMask:
    @classmethod
    def INPUT_TYPES(s):
1002
        input_dir = folder_paths.get_input_directory()
1003
        return {"required":
1004
                    {"image": (sorted(os.listdir(input_dir)), ),
1005
1006
1007
                    "channel": (["alpha", "red", "green", "blue"], ),}
                }

1008
    CATEGORY = "mask"
1009
1010
1011
1012

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
1013
        input_dir = folder_paths.get_input_directory()
ltdrdata's avatar
ltdrdata committed
1014
        image_path = folder_paths.get_annotated_filepath(image, input_dir)
1015
        i = Image.open(image_path)
1016
1017
        if i.getbands() != ("R", "G", "B", "A"):
            i = i.convert("RGBA")
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
1031
        input_dir = folder_paths.get_input_directory()
ltdrdata's avatar
ltdrdata committed
1032
        image_path = folder_paths.get_annotated_filepath(image, input_dir)
1033
1034
1035
1036
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1037

comfyanonymous's avatar
comfyanonymous committed
1038
1039
1040
1041
1042
1043
1044
class ImageScale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1045
1046
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1047
1048
1049
1050
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1051
    CATEGORY = "image/upscaling"
1052

comfyanonymous's avatar
comfyanonymous committed
1053
1054
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
1055
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1056
1057
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1058

1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


Guo Y.K's avatar
Guo Y.K committed
1075
1076
1077
1078
1079
1080
1081
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1082
1083
1084
1085
1086
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1087
1088
1089
1090
1091
1092
1093
1094
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1095
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1108

1109
1110
1111
1112
1113
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1114
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1134

Guo Y.K's avatar
Guo Y.K committed
1135
1136
1137
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1138
1139
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1140
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1141
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1142
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1143
1144
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1145
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1146
1147
1148
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
1149
    "LatentFromBatch": LatentFromBatch,
comfyanonymous's avatar
comfyanonymous committed
1150
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1151
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1152
    "LoadImage": LoadImage,
1153
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1154
    "ImageScale": ImageScale,
1155
    "ImageInvert": ImageInvert,
Guo Y.K's avatar
Guo Y.K committed
1156
    "ImagePadForOutpaint": ImagePadForOutpaint,
comfyanonymous's avatar
comfyanonymous committed
1157
1158
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
comfyanonymous's avatar
comfyanonymous committed
1159
    "KSamplerAdvanced": KSamplerAdvanced,
1160
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1161
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
1162
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1163
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1164
    "LatentCrop": LatentCrop,
1165
    "LoraLoader": LoraLoader,
1166
    "CLIPLoader": CLIPLoader,
1167
    "CLIPVisionEncode": CLIPVisionEncode,
1168
    "StyleModelApply": StyleModelApply,
1169
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1170
1171
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
1172
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1173
1174
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1175
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1176
    "VAEEncodeTiled": VAEEncodeTiled,
1177
    "TomePatchModel": TomePatchModel,
1178
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1179
1180
1181
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,

1182
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1183
    "DiffusersLoader": DiffusersLoader,
comfyanonymous's avatar
comfyanonymous committed
1184
1185
}

City's avatar
City committed
1186
1187
1188
1189
1190
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1191
1192
    "CheckpointLoader": "Load Checkpoint (With Config)",
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
    "ConditioningSetArea": "Conditioning (Set Area)",
    "ControlNetApply": "Apply ControlNet",
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
    "LatentComposite": "Latent Composite",
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
def load_custom_node(module_path):
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
            NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
1249
1250
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1251
1252
1253
1254
1255
1256
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)

Hacker 17082006's avatar
Hacker 17082006 committed
1257
def load_custom_nodes():
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
    node_paths = folder_paths.get_folder_paths("custom_nodes")
    for custom_node_path in node_paths:
        possible_modules = os.listdir(custom_node_path)
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
            load_custom_node(module_path)
1268

1269
1270
def init_custom_nodes():
    load_custom_nodes()
1271
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_hypernetwork.py"))
1272
1273
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
1274
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))