nodes.py 56.5 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
8
import math
9
import time
comfyanonymous's avatar
comfyanonymous committed
10

11
from PIL import Image, ImageOps
comfyanonymous's avatar
comfyanonymous committed
12
13
from PIL.PngImagePlugin import PngInfo
import numpy as np
14
import safetensors.torch
comfyanonymous's avatar
comfyanonymous committed
15

comfyanonymous's avatar
comfyanonymous committed
16
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
17
18


19
import comfy.diffusers_load
comfyanonymous's avatar
comfyanonymous committed
20
import comfy.samplers
21
import comfy.sample
comfyanonymous's avatar
comfyanonymous committed
22
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
23
24
import comfy.utils

25
import comfy.clip_vision
26

27
import comfy.model_management
28
import importlib
comfyanonymous's avatar
comfyanonymous committed
29

30
import folder_paths
31
import latent_preview
space-nuko's avatar
space-nuko committed
32

33
def before_node_execution():
34
    comfy.model_management.throw_exception_if_processing_interrupted()
35

36
def interrupt_processing(value=True):
37
    comfy.model_management.interrupt_current_processing(value)
38

39
40
MAX_RESOLUTION=8192

comfyanonymous's avatar
comfyanonymous committed
41
42
43
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
44
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
45
46
47
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

48
49
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
50
    def encode(self, clip, text):
51
52
53
        tokens = clip.tokenize(text)
        cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
        return ([[cond, {"pooled_output": pooled}]], )
comfyanonymous's avatar
comfyanonymous committed
54
55
56
57
58
59
60
61

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

62
63
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
64
65
66
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

FizzleDorf's avatar
FizzleDorf committed
67
68
69
class ConditioningAverage :
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
70
71
        return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
                              "conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
FizzleDorf's avatar
FizzleDorf committed
72
73
74
75
76
77
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "addWeighted"

    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
78
    def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
FizzleDorf's avatar
FizzleDorf committed
79
        out = []
comfyanonymous's avatar
comfyanonymous committed
80
81
82
83
84

        if len(conditioning_from) > 1:
            print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

        cond_from = conditioning_from[0][0]
85
        pooled_output_from = conditioning_from[0][1].get("pooled_output", None)
comfyanonymous's avatar
comfyanonymous committed
86
87
88

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
89
            pooled_output_to = conditioning_to[i][1].get("pooled_output", pooled_output_from)
comfyanonymous's avatar
comfyanonymous committed
90
91
92
93
94
            t0 = cond_from[:,:t1.shape[1]]
            if t0.shape[1] < t1.shape[1]:
                t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)

            tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
95
96
97
98
99
100
101
            t_to = conditioning_to[i][1].copy()
            if pooled_output_from is not None and pooled_output_to is not None:
                t_to["pooled_output"] = torch.mul(pooled_output_to, conditioning_to_strength) + torch.mul(pooled_output_from, (1.0 - conditioning_to_strength))
            elif pooled_output_from is not None:
                t_to["pooled_output"] = pooled_output_from

            n = [tw, t_to]
FizzleDorf's avatar
FizzleDorf committed
102
103
104
            out.append(n)
        return (out, )

comfyanonymous's avatar
comfyanonymous committed
105
106
107
108
class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
109
110
111
112
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
113
114
115
116
117
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

118
119
    CATEGORY = "conditioning"

120
    def append(self, conditioning, width, height, x, y, strength):
comfyanonymous's avatar
comfyanonymous committed
121
122
123
124
125
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
126
            n[1]['set_area_to_bounds'] = False
comfyanonymous's avatar
comfyanonymous committed
127
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
128
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
129

Jacob Segal's avatar
Jacob Segal committed
130
131
132
133
134
135
class ConditioningSetMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "mask": ("MASK", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
136
                              "set_cond_area": (["default", "mask bounds"],),
Jacob Segal's avatar
Jacob Segal committed
137
138
139
140
141
142
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

143
    def append(self, conditioning, mask, set_cond_area, strength):
Jacob Segal's avatar
Jacob Segal committed
144
        c = []
145
146
147
        set_area_to_bounds = False
        if set_cond_area != "default":
            set_area_to_bounds = True
Jacob Segal's avatar
Jacob Segal committed
148
149
150
151
152
153
        if len(mask.shape) < 3:
            mask = mask.unsqueeze(0)
        for t in conditioning:
            n = [t[0], t[1].copy()]
            _, h, w = mask.shape
            n[1]['mask'] = mask
Jacob Segal's avatar
Jacob Segal committed
154
            n[1]['set_area_to_bounds'] = set_area_to_bounds
155
            n[1]['mask_strength'] = strength
Jacob Segal's avatar
Jacob Segal committed
156
157
158
            c.append(n)
        return (c, )

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
class ConditioningZeroOut:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "zero_out"

    CATEGORY = "advanced/conditioning"

    def zero_out(self, conditioning):
        c = []
        for t in conditioning:
            d = t[1].copy()
            if "pooled_output" in d:
                d["pooled_output"] = torch.zeros_like(d["pooled_output"])
            n = [torch.zeros_like(t[0]), d]
            c.append(n)
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
178
179
180
181
182
183
184
class VAEDecode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

185
186
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
187
    def decode(self, vae, samples):
188
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
189

190
191
192
193
194
195
196
197
198
199
200
201
class VAEDecodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
202
203
204
205
206
207
208
class VAEEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

209
210
    CATEGORY = "latent"

211
212
213
214
    @staticmethod
    def vae_encode_crop_pixels(pixels):
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
215
        if pixels.shape[1] != x or pixels.shape[2] != y:
216
217
218
219
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
        return pixels
220

221
222
223
    def encode(self, vae, pixels):
        pixels = self.vae_encode_crop_pixels(pixels)
        t = vae.encode(pixels[:,:,:,:3])
224
        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
225

comfyanonymous's avatar
comfyanonymous committed
226
227
228
229
230
231
232
233
234
235
class VAEEncodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

    def encode(self, vae, pixels):
236
        pixels = VAEEncode.vae_encode_crop_pixels(pixels)
comfyanonymous's avatar
comfyanonymous committed
237
238
        t = vae.encode_tiled(pixels[:,:,:,:3])
        return ({"samples":t}, )
239

240
241
242
class VAEEncodeForInpaint:
    @classmethod
    def INPUT_TYPES(s):
243
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
244
245
246
247
248
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

249
    def encode(self, vae, pixels, mask, grow_mask_by=6):
250
251
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
252
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
253

254
        pixels = pixels.clone()
255
        if pixels.shape[1] != x or pixels.shape[2] != y:
256
257
258
259
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
260

261
        #grow mask by a few pixels to keep things seamless in latent space
262
263
264
265
266
267
268
269
        if grow_mask_by == 0:
            mask_erosion = mask
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)

270
        m = (1.0 - mask.round()).squeeze(1)
271
272
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
273
            pixels[:,:,:,i] *= m
274
275
276
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

277
        return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
278

Dr.Lt.Data's avatar
Dr.Lt.Data committed
279
280
class SaveLatent:
    def __init__(self):
281
        self.output_dir = folder_paths.get_output_directory()
Dr.Lt.Data's avatar
Dr.Lt.Data committed
282
283
284
285

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ),
286
                              "filename_prefix": ("STRING", {"default": "latents/ComfyUI"})},
Dr.Lt.Data's avatar
Dr.Lt.Data committed
287
288
289
290
291
292
293
294
295
296
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
    RETURN_TYPES = ()
    FUNCTION = "save"

    OUTPUT_NODE = True

    CATEGORY = "_for_testing"

    def save(self, samples, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
297
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
298
299
300
301
302
303

        # support save metadata for latent sharing
        prompt_info = ""
        if prompt is not None:
            prompt_info = json.dumps(prompt)

304
        metadata = {"prompt": prompt_info}
Dr.Lt.Data's avatar
Dr.Lt.Data committed
305
306
307
308
309
310
311
        if extra_pnginfo is not None:
            for x in extra_pnginfo:
                metadata[x] = json.dumps(extra_pnginfo[x])

        file = f"{filename}_{counter:05}_.latent"
        file = os.path.join(full_output_folder, file)

312
313
        output = {}
        output["latent_tensor"] = samples["samples"]
314
        output["latent_format_version_0"] = torch.tensor([])
315

316
        comfy.utils.save_torch_file(output, file, metadata=metadata)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
317
318
319
320
321
322
        return {}


class LoadLatent:
    @classmethod
    def INPUT_TYPES(s):
323
324
        input_dir = folder_paths.get_input_directory()
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.endswith(".latent")]
Dr.Lt.Data's avatar
Dr.Lt.Data committed
325
326
327
328
329
330
331
332
        return {"required": {"latent": [sorted(files), ]}, }

    CATEGORY = "_for_testing"

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "load"

    def load(self, latent):
333
334
        latent_path = folder_paths.get_annotated_filepath(latent)
        latent = safetensors.torch.load_file(latent_path, device="cpu")
335
336
337
338
        multiplier = 1.0
        if "latent_format_version_0" not in latent:
            multiplier = 1.0 / 0.18215
        samples = {"samples": latent["latent_tensor"].float() * multiplier}
339
        return (samples, )
Dr.Lt.Data's avatar
Dr.Lt.Data committed
340

341
342
343
344
345
346
347
348
349
350
351
352
353
354
    @classmethod
    def IS_CHANGED(s, latent):
        image_path = folder_paths.get_annotated_filepath(latent)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

    @classmethod
    def VALIDATE_INPUTS(s, latent):
        if not folder_paths.exists_annotated_filepath(latent):
            return "Invalid latent file: {}".format(latent)
        return True

Dr.Lt.Data's avatar
Dr.Lt.Data committed
355

comfyanonymous's avatar
comfyanonymous committed
356
357
358
class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
359
360
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
361
362
363
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

364
    CATEGORY = "advanced/loaders"
365

comfyanonymous's avatar
comfyanonymous committed
366
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
367
368
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
369
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
370

371
372
373
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
374
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
375
376
377
378
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

379
    CATEGORY = "loaders"
380

381
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
382
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
383
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
384
385
        return out

sALTaccount's avatar
sALTaccount committed
386
387
388
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
389
        paths = []
sALTaccount's avatar
sALTaccount committed
390
        for search_path in folder_paths.get_folder_paths("diffusers"):
391
            if os.path.exists(search_path):
392
393
394
395
                for root, subdir, files in os.walk(search_path, followlinks=True):
                    if "model_index.json" in files:
                        paths.append(os.path.relpath(root, start=search_path))

396
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
397
398
399
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

400
    CATEGORY = "advanced/loaders/deprecated"
sALTaccount's avatar
sALTaccount committed
401
402

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
403
404
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
405
406
407
                path = os.path.join(search_path, model_path)
                if os.path.exists(path):
                    model_path = path
sALTaccount's avatar
sALTaccount committed
408
                    break
409

410
        return comfy.diffusers_load.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
411
412


413
414
415
416
417
418
419
420
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

421
    CATEGORY = "loaders"
422
423
424
425
426
427

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

444
class LoraLoader:
445
446
447
    def __init__(self):
        self.loaded_lora = None

448
449
450
451
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
452
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
453
454
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
455
456
457
458
459
460
461
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
462
463
464
        if strength_model == 0 and strength_clip == 0:
            return (model, clip)

465
        lora_path = folder_paths.get_full_path("loras", lora_name)
466
467
468
469
470
471
472
473
474
475
476
477
        lora = None
        if self.loaded_lora is not None:
            if self.loaded_lora[0] == lora_path:
                lora = self.loaded_lora[1]
            else:
                del self.loaded_lora

        if lora is None:
            lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
            self.loaded_lora = (lora_path, lora)

        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
478
479
        return (model_lora, clip_lora)

comfyanonymous's avatar
comfyanonymous committed
480
481
482
class VAELoader:
    @classmethod
    def INPUT_TYPES(s):
483
        return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
comfyanonymous's avatar
comfyanonymous committed
484
485
486
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

487
488
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
489
490
    #TODO: scale factor?
    def load_vae(self, vae_name):
491
        vae_path = folder_paths.get_full_path("vae", vae_name)
comfyanonymous's avatar
comfyanonymous committed
492
493
494
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
495
496
497
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
498
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
499
500
501
502
503
504
505

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
506
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
comfyanonymous's avatar
comfyanonymous committed
507
508
509
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

510
511
512
513
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
514
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
515
516
517
518
519
520
521

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
522
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
523
524
525
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
526
527
528
529

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
530
531
532
533
534
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
535
536
537
538
539
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

540
    def apply_controlnet(self, conditioning, control_net, image, strength):
541
542
543
        if strength == 0:
            return (conditioning, )

comfyanonymous's avatar
comfyanonymous committed
544
545
546
547
        c = []
        control_hint = image.movedim(-1,1)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
548
549
550
551
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
comfyanonymous's avatar
comfyanonymous committed
552
553
554
            c.append(n)
        return (c, )

555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
class UNETLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "unet_name": (folder_paths.get_filename_list("unet"), ),
                             }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "load_unet"

    CATEGORY = "advanced/loaders"

    def load_unet(self, unet_name):
        unet_path = folder_paths.get_full_path("unet", unet_name)
        model = comfy.sd.load_unet(unet_path)
        return (model,)

570
571
572
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
573
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
574
575
576
577
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

578
    CATEGORY = "advanced/loaders"
579

580
    def load_clip(self, clip_name):
581
        clip_path = folder_paths.get_full_path("clip", clip_name)
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return (clip,)

class DualCLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_name1": (folder_paths.get_filename_list("clip"), ), "clip_name2": (folder_paths.get_filename_list("clip"), ),
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "advanced/loaders"

    def load_clip(self, clip_name1, clip_name2):
        clip_path1 = folder_paths.get_full_path("clip", clip_name1)
        clip_path2 = folder_paths.get_full_path("clip", clip_name2)
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"))
599
600
        return (clip,)

601
602
603
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
604
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
605
606
607
608
609
610
611
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
612
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
613
        clip_vision = comfy.clip_vision.load(clip_path)
614
615
616
617
618
619
620
621
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
622
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
623
624
    FUNCTION = "encode"

625
    CATEGORY = "conditioning"
626
627
628
629
630
631
632
633

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
634
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
635
636
637
638
639
640
641

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
642
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
643
644
645
646
647
648
649
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
650
651
652
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
653
654
655
656
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
657
    CATEGORY = "conditioning/style_model"
658

659
660
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
        cond = style_model.get_cond(clip_vision_output)
661
        c = []
662
663
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
664
665
666
            c.append(n)
        return (c, )

667
668
669
670
671
672
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
673
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
674
675
676
677
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

678
    CATEGORY = "conditioning"
679

680
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
681
682
683
        if strength == 0:
            return (conditioning, )

684
685
686
        c = []
        for t in conditioning:
            o = t[1].copy()
687
688
689
            x = {"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation}
            if "unclip_conditioning" in o:
                o["unclip_conditioning"] = o["unclip_conditioning"][:] + [x]
690
            else:
691
                o["unclip_conditioning"] = [x]
692
693
694
695
            n = [t[0], o]
            c.append(n)
        return (c, )

696
697
698
699
700
701
702
703
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
704
    CATEGORY = "loaders"
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
                              "text": ("STRING", {"multiline": True}),
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
726
    CATEGORY = "conditioning/gligen"
727
728
729
730
731
732
733
734
735
736
737
738
739
740

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
741

comfyanonymous's avatar
comfyanonymous committed
742
743
744
745
746
747
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
748
749
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
750
751
752
753
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

754
755
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
756
757
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
758
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
759

comfyanonymous's avatar
comfyanonymous committed
760

761
762
763
764
765
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
766
                              "length": ("INT", {"default": 1, "min": 1, "max": 64}),
767
768
                              }}
    RETURN_TYPES = ("LATENT",)
769
    FUNCTION = "frombatch"
770

771
    CATEGORY = "latent/batch"
772

773
    def frombatch(self, samples, batch_index, length):
774
775
776
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
        length = min(s_in.shape[0] - batch_index, length)
        s["samples"] = s_in[batch_index:batch_index + length].clone()
        if "noise_mask" in samples:
            masks = samples["noise_mask"]
            if masks.shape[0] == 1:
                s["noise_mask"] = masks.clone()
            else:
                if masks.shape[0] < s_in.shape[0]:
                    masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
                s["noise_mask"] = masks[batch_index:batch_index + length].clone()
        if "batch_index" not in s:
            s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
        else:
            s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
        return (s,)
    
class RepeatLatentBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "amount": ("INT", {"default": 1, "min": 1, "max": 64}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "repeat"

    CATEGORY = "latent/batch"

    def repeat(self, samples, amount):
        s = samples.copy()
        s_in = samples["samples"]
        
        s["samples"] = s_in.repeat((amount, 1,1,1))
        if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
            masks = samples["noise_mask"]
            if masks.shape[0] < s_in.shape[0]:
                masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
            s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
        if "batch_index" in s:
            offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
            s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
817
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
818

comfyanonymous's avatar
comfyanonymous committed
819
class LatentUpscale:
comfyanonymous's avatar
comfyanonymous committed
820
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
821
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
822
823
824
825

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
826
827
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
828
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
829
830
831
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

832
833
    CATEGORY = "latent"

834
    def upscale(self, samples, upscale_method, width, height, crop):
835
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
836
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
837
838
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
839
class LatentUpscaleBy:
comfyanonymous's avatar
comfyanonymous committed
840
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
comfyanonymous's avatar
comfyanonymous committed
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.5, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

    CATEGORY = "latent"

    def upscale(self, samples, upscale_method, scale_by):
        s = samples.copy()
        width = round(samples["samples"].shape[3] * scale_by)
        height = round(samples["samples"].shape[2] * scale_by)
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled")
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
858
859
860
861
862
863
864
865
866
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
867
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
868
869

    def rotate(self, samples, rotation):
870
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
871
872
873
874
875
876
877
878
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

879
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
880
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
881
882
883
884
885
886
887
888
889
890

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
891
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
892
893

    def flip(self, samples, flip_method):
894
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
895
        if flip_method.startswith("x"):
896
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
897
        elif flip_method.startswith("y"):
898
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
899
900

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
901
902
903
904

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
905
906
907
908
909
910
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
911
912
913
914
915
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
916
917
918
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
919
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
943

comfyanonymous's avatar
comfyanonymous committed
944
945
946
947
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
948
949
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
950
951
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
952
953
954
955
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
956
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
957
958

    def crop(self, samples, width, height, x, y):
959
960
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
961
962
963
964
965
966
967
968
969
970
971
972
973
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
974
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
975
976
        return (s,)

977
978
979
980
981
982
983
984
985
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

986
    CATEGORY = "latent/inpaint"
987
988
989

    def set_mask(self, samples, mask):
        s = samples.copy()
990
        s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
991
992
        return (s,)

space-nuko's avatar
space-nuko committed
993

space-nuko's avatar
space-nuko committed
994
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
995
    device = comfy.model_management.get_torch_device()
996
    latent_image = latent["samples"]
997

comfyanonymous's avatar
comfyanonymous committed
998
999
1000
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
1001
1002
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
comfyanonymous's avatar
comfyanonymous committed
1003

1004
    noise_mask = None
1005
    if "noise_mask" in latent:
1006
        noise_mask = latent["noise_mask"]
comfyanonymous's avatar
comfyanonymous committed
1007

space-nuko's avatar
space-nuko committed
1008
1009
1010
1011
    preview_format = "JPEG"
    if preview_format not in ["JPEG", "PNG"]:
        preview_format = "JPEG"

1012
    previewer = latent_preview.get_previewer(device, model.model.latent_format)
space-nuko's avatar
space-nuko committed
1013

1014
    pbar = comfy.utils.ProgressBar(steps)
1015
    def callback(step, x0, x, total_steps):
space-nuko's avatar
space-nuko committed
1016
        preview_bytes = None
1017
        if previewer:
1018
            preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
space-nuko's avatar
space-nuko committed
1019
        pbar.update_absolute(step + 1, total_steps, preview_bytes)
1020

1021
1022
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
1023
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, seed=seed)
1024
1025
1026
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
1027

comfyanonymous's avatar
comfyanonymous committed
1028
1029
1030
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
1031
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
space-nuko's avatar
space-nuko committed
1042
1043
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1044
1045
1046
1047

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

1048
1049
    CATEGORY = "sampling"

space-nuko's avatar
space-nuko committed
1050
1051
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
1052

comfyanonymous's avatar
comfyanonymous committed
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
space-nuko's avatar
space-nuko committed
1070
1071
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1072
1073
1074
1075
1076

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
1077

space-nuko's avatar
space-nuko committed
1078
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
comfyanonymous's avatar
comfyanonymous committed
1079
1080
1081
1082
1083
1084
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
space-nuko's avatar
space-nuko committed
1085
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
1086
1087
1088

class SaveImage:
    def __init__(self):
1089
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1090
        self.type = "output"
comfyanonymous's avatar
comfyanonymous committed
1091
1092
1093
1094

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
1095
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
1096
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
1097
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
1098
1099
1100
1101
1102
1103
1104
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

1105
1106
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
1107
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
1108
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
m957ymj75urz's avatar
m957ymj75urz committed
1109
        results = list()
comfyanonymous's avatar
comfyanonymous committed
1110
1111
        for image in images:
            i = 255. * image.cpu().numpy()
1112
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
comfyanonymous's avatar
comfyanonymous committed
1113
1114
1115
1116
1117
1118
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
1119

1120
            file = f"{filename}_{counter:05}_.png"
1121
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
1122
1123
1124
1125
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
1126
            })
1127
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
1128

m957ymj75urz's avatar
m957ymj75urz committed
1129
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
1130

pythongosssss's avatar
pythongosssss committed
1131
1132
class PreviewImage(SaveImage):
    def __init__(self):
1133
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1134
        self.type = "temp"
pythongosssss's avatar
pythongosssss committed
1135
1136
1137

    @classmethod
    def INPUT_TYPES(s):
1138
        return {"required":
pythongosssss's avatar
pythongosssss committed
1139
1140
1141
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
1142

1143
1144
1145
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
1146
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1147
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1148
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1149
                    {"image": (sorted(files), )},
1150
                }
1151
1152

    CATEGORY = "image"
1153

1154
    RETURN_TYPES = ("IMAGE", "MASK")
1155
1156
    FUNCTION = "load_image"
    def load_image(self, image):
1157
        image_path = folder_paths.get_annotated_filepath(image)
1158
        i = Image.open(image_path)
1159
        i = ImageOps.exif_transpose(i)
1160
        image = i.convert("RGB")
1161
        image = np.array(image).astype(np.float32) / 255.0
1162
        image = torch.from_numpy(image)[None,]
1163
1164
1165
1166
1167
1168
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)
1169

1170
1171
    @classmethod
    def IS_CHANGED(s, image):
1172
        image_path = folder_paths.get_annotated_filepath(image)
1173
1174
1175
1176
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1177

1178
1179
1180
1181
1182
1183
1184
    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

1185
class LoadImageMask:
1186
    _color_channels = ["alpha", "red", "green", "blue"]
1187
1188
    @classmethod
    def INPUT_TYPES(s):
1189
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1190
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1191
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1192
                    {"image": (sorted(files), ),
1193
                     "channel": (s._color_channels, ), }
1194
1195
                }

1196
    CATEGORY = "mask"
1197
1198
1199
1200

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
1201
        image_path = folder_paths.get_annotated_filepath(image)
1202
        i = Image.open(image_path)
1203
        i = ImageOps.exif_transpose(i)
1204
1205
        if i.getbands() != ("R", "G", "B", "A"):
            i = i.convert("RGBA")
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
1219
        image_path = folder_paths.get_annotated_filepath(image)
1220
1221
1222
1223
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1224

1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
    @classmethod
    def VALIDATE_INPUTS(s, image, channel):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        if channel not in s._color_channels:
            return "Invalid color channel: {}".format(channel)

        return True

comfyanonymous's avatar
comfyanonymous committed
1235
class ImageScale:
comfyanonymous's avatar
comfyanonymous committed
1236
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic"]
comfyanonymous's avatar
comfyanonymous committed
1237
1238
1239
1240
1241
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1242
1243
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1244
1245
1246
1247
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1248
    CATEGORY = "image/upscaling"
1249

comfyanonymous's avatar
comfyanonymous committed
1250
1251
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
1252
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1253
1254
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1255

comfyanonymous's avatar
comfyanonymous committed
1256
class ImageScaleBy:
comfyanonymous's avatar
comfyanonymous committed
1257
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic"]
comfyanonymous's avatar
comfyanonymous committed
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

    CATEGORY = "image/upscaling"

    def upscale(self, image, upscale_method, scale_by):
        samples = image.movedim(-1,1)
        width = round(samples.shape[3] * scale_by)
        height = round(samples.shape[2] * scale_by)
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
        s = s.movedim(1,-1)
        return (s,)

1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


Guo Y.K's avatar
Guo Y.K committed
1292
1293
1294
1295
1296
1297
1298
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1299
1300
1301
1302
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1303
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1304
1305
1306
1307
1308
1309
1310
1311
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1312
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1325

1326
1327
1328
1329
1330
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1331
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1351

Guo Y.K's avatar
Guo Y.K committed
1352
1353
1354
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1355
1356
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1357
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1358
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1359
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1360
1361
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1362
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1363
1364
1365
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
comfyanonymous's avatar
comfyanonymous committed
1366
    "LatentUpscaleBy": LatentUpscaleBy,
1367
    "LatentFromBatch": LatentFromBatch,
1368
    "RepeatLatentBatch": RepeatLatentBatch,
comfyanonymous's avatar
comfyanonymous committed
1369
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1370
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1371
    "LoadImage": LoadImage,
1372
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1373
    "ImageScale": ImageScale,
comfyanonymous's avatar
comfyanonymous committed
1374
    "ImageScaleBy": ImageScaleBy,
1375
    "ImageInvert": ImageInvert,
Guo Y.K's avatar
Guo Y.K committed
1376
    "ImagePadForOutpaint": ImagePadForOutpaint,
FizzleDorf's avatar
FizzleDorf committed
1377
    "ConditioningAverage ": ConditioningAverage ,
comfyanonymous's avatar
comfyanonymous committed
1378
1379
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
Jacob Segal's avatar
Jacob Segal committed
1380
    "ConditioningSetMask": ConditioningSetMask,
comfyanonymous's avatar
comfyanonymous committed
1381
    "KSamplerAdvanced": KSamplerAdvanced,
1382
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1383
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
1384
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1385
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1386
    "LatentCrop": LatentCrop,
1387
    "LoraLoader": LoraLoader,
1388
    "CLIPLoader": CLIPLoader,
1389
    "UNETLoader": UNETLoader,
1390
    "DualCLIPLoader": DualCLIPLoader,
1391
    "CLIPVisionEncode": CLIPVisionEncode,
1392
    "StyleModelApply": StyleModelApply,
1393
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1394
1395
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
1396
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1397
1398
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1399
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1400
    "VAEEncodeTiled": VAEEncodeTiled,
1401
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1402
1403
1404
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,

1405
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1406
    "DiffusersLoader": DiffusersLoader,
Dr.Lt.Data's avatar
Dr.Lt.Data committed
1407
1408

    "LoadLatent": LoadLatent,
1409
    "SaveLatent": SaveLatent,
1410
1411

    "ConditioningZeroOut": ConditioningZeroOut,
comfyanonymous's avatar
comfyanonymous committed
1412
1413
}

City's avatar
City committed
1414
1415
1416
1417
1418
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1419
1420
    "CheckpointLoader": "Load Checkpoint (With Config)",
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
FizzleDorf's avatar
FizzleDorf committed
1435
    "ConditioningAverage ": "Conditioning (Average)",
City's avatar
City committed
1436
    "ConditioningSetArea": "Conditioning (Set Area)",
Jacob Segal's avatar
Jacob Segal committed
1437
    "ConditioningSetMask": "Conditioning (Set Mask)",
City's avatar
City committed
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
    "ControlNetApply": "Apply ControlNet",
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
comfyanonymous's avatar
comfyanonymous committed
1449
    "LatentUpscaleBy": "Upscale Latent By",
City's avatar
City committed
1450
    "LatentComposite": "Latent Composite",
1451
1452
    "LatentFromBatch" : "Latent From Batch",
    "RepeatLatentBatch": "Repeat Latent Batch",
City's avatar
City committed
1453
1454
1455
1456
1457
1458
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
comfyanonymous's avatar
comfyanonymous committed
1459
    "ImageScaleBy": "Upscale Image By",
City's avatar
City committed
1460
1461
1462
1463
1464
1465
1466
1467
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
def load_custom_node(module_path):
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
            NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
1483
1484
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1485
            return True
1486
1487
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
1488
            return False
1489
1490
1491
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)
1492
        return False
1493

Hacker 17082006's avatar
Hacker 17082006 committed
1494
def load_custom_nodes():
1495
    node_paths = folder_paths.get_folder_paths("custom_nodes")
1496
    node_import_times = []
1497
1498
1499
1500
1501
1502
1503
1504
    for custom_node_path in node_paths:
        possible_modules = os.listdir(custom_node_path)
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1505
            if module_path.endswith(".disabled"): continue
1506
            time_before = time.perf_counter()
1507
            success = load_custom_node(module_path)
1508
            node_import_times.append((time.perf_counter() - time_before, module_path, success))
1509

1510
    if len(node_import_times) > 0:
comfyanonymous's avatar
comfyanonymous committed
1511
        print("\nImport times for custom nodes:")
1512
        for n in sorted(node_import_times):
1513
1514
1515
1516
1517
            if n[2]:
                import_message = ""
            else:
                import_message = " (IMPORT FAILED)"
            print("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
1518
        print()
1519

1520
def init_custom_nodes():
1521
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_hypernetwork.py"))
1522
1523
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
1524
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))
1525
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_rebatch.py"))
1526
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_model_merging.py"))
1527
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_tomesd.py"))
1528
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_clip_sdxl.py"))
1529
    load_custom_nodes()