onnx.cpp 96.6 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
19
#include <migraphx/pad_calc.hpp>
Paul's avatar
Paul committed
20
21

namespace migraphx {
Paul's avatar
Paul committed
22
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
23

24
25
namespace onnx = onnx_for_migraphx;

Paul's avatar
Paul committed
26
27
28
struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
29
30
31
32
33
34
    struct node_info
    {
        attribute_map attributes{};
        std::size_t num_outputs = 1;
    };
    using node_map = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
35
    using op_func =
36
        std::function<std::vector<instruction_ref>(node_info, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
37
38
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
39
40
41
42
    program prog                  = program();
    bool is_pytorch               = false;
    std::size_t default_dim_value = 1;
    std::unordered_map<std::string, std::vector<std::size_t>> map_input_dims;
43
    bool skip_unknown_operators = false;
Paul's avatar
Paul committed
44
45

    std::unordered_map<std::string, op_func> ops;
46
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
47
48
49

    onnx_parser()
    {
50
        // sort onnx operator alphabetically through name
Khalique's avatar
Khalique committed
51
        add_generic_op("Abs", op::abs{});
52
53
54
55
56
57
58
59
60
        add_generic_op("Acos", op::acos{});
        add_generic_op("Acosh", op::acosh{});
        add_generic_op("Asin", op::asin{});
        add_generic_op("Asinh", op::asinh{});
        add_generic_op("Atan", op::atan{});
        add_generic_op("Atanh", op::atanh{});
        add_generic_op("Ceil", op::ceil{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Cosh", op::cosh{});
Shucai Xiao's avatar
Shucai Xiao committed
61
        add_generic_op("Erf", op::erf{});
62
        add_generic_op("Exp", op::exp{});
Khalique's avatar
Khalique committed
63
        add_generic_op("Dropout", op::identity{});
64
        add_generic_op("Floor", op::floor{});
Khalique's avatar
Khalique committed
65
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
66
67
        add_generic_op("Log", op::log{});
        add_generic_op("Neg", op::neg{});
kahmed10's avatar
kahmed10 committed
68
        add_generic_op("Reciprocal", op::recip{});
69
70
71
72
        add_generic_op("Relu", op::relu{});
        add_generic_op("Round", op::round{});
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Sign", op::sign{});
Shucai Xiao's avatar
Shucai Xiao committed
73
        add_generic_op("Sin", op::sin{});
74
        add_generic_op("Sinh", op::sinh{});
75
        add_generic_op("Sqrt", op::sqrt{});
76
77
        add_generic_op("Tan", op::tan{});
        add_generic_op("Tanh", op::tanh{});
Paul's avatar
Paul committed
78

Khalique's avatar
Khalique committed
79
80
81
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
Shucai Xiao's avatar
Shucai Xiao committed
82
        add_binary_op("Pow", op::pow{});
Shucai Xiao's avatar
Shucai Xiao committed
83
        add_binary_op("PRelu", op::prelu{});
84
        add_binary_op("Sub", op::sub{});
Khalique's avatar
Khalique committed
85

Khalique's avatar
Khalique committed
86
87
88
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
89

90
        add_mem_op("ATen", &onnx_parser::parse_aten);
91
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
92
93
        add_mem_op("ArgMax", &onnx_parser::parse_arg_op<op::argmax>);
        add_mem_op("ArgMin", &onnx_parser::parse_arg_op<op::argmin>);
94
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
95
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
96
        add_mem_op("Clip", &onnx_parser::parse_clip);
97
        add_mem_op("Concat", &onnx_parser::parse_concat);
Paul's avatar
Paul committed
98
        add_mem_op("Constant", &onnx_parser::parse_constant);
99
100
101
102
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
        add_mem_op("Conv", &onnx_parser::parse_conv<op::convolution>);
        add_mem_op("ConvInteger", &onnx_parser::parse_conv<op::quant_convolution>);
kahmed10's avatar
kahmed10 committed
103
        add_mem_op("ConvTranspose", &onnx_parser::parse_conv_transpose);
104
105
        add_mem_op("Elu", &onnx_parser::parse_elu);
        add_mem_op("Expand", &onnx_parser::parse_expand);
Paul's avatar
Paul committed
106
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
107
        add_mem_op("Gather", &onnx_parser::parse_gather);
Shucai Xiao's avatar
Shucai Xiao committed
108
        add_mem_op("GatherElements", &onnx_parser::parse_gather_elements);
Paul's avatar
Paul committed
109
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
110
111
112
113
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GRU", &onnx_parser::parse_gru);
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
kahmed10's avatar
kahmed10 committed
114
        add_mem_op("InstanceNormalization", &onnx_parser::parse_instancenorm);
115
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
116
        add_mem_op("LogSoftmax", &onnx_parser::parse_softmax<op::logsoftmax>);
117
        add_mem_op("LRN", &onnx_parser::parse_lrn);
118
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
119
120
121
        add_mem_op("MatMul", &onnx_parser::parse_matmul<op::dot>);
        add_mem_op("MatMulInteger", &onnx_parser::parse_matmul<op::quant_dot>);
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
kahmed10's avatar
kahmed10 committed
122
        add_mem_op("OneHot", &onnx_parser::parse_onehot);
123
        add_mem_op("Pad", &onnx_parser::parse_pad);
kahmed10's avatar
kahmed10 committed
124
        add_mem_op("Range", &onnx_parser::parse_range);
Shucai Xiao's avatar
Shucai Xiao committed
125
126
127
128
129
        add_mem_op("ReduceL1", &onnx_parser::parse_reduce_l1);
        add_mem_op("ReduceL2", &onnx_parser::parse_reduce_l2);
        add_mem_op("ReduceLogSum", &onnx_parser::parse_reduce_log_sum);
        add_mem_op("ReduceLogSumExp", &onnx_parser::parse_reduce_log_sum_exp);
        add_mem_op("ReduceMax", &onnx_parser::parse_reduce_oper<op::reduce_max>);
Shucai Xiao's avatar
Shucai Xiao committed
130
        add_mem_op("ReduceMean", &onnx_parser::parse_reduce_oper<op::reduce_mean>);
Shucai Xiao's avatar
Shucai Xiao committed
131
        add_mem_op("ReduceMin", &onnx_parser::parse_reduce_oper<op::reduce_min>);
Shucai Xiao's avatar
Shucai Xiao committed
132
133
134
        add_mem_op("ReduceProd", &onnx_parser::parse_reduce_oper<op::reduce_prod>);
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_oper<op::reduce_sum>);
        add_mem_op("ReduceSumSquare", &onnx_parser::parse_reduce_sum_square);
135
136
137
138
139
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
        add_mem_op("RNN", &onnx_parser::parse_rnn);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("Slice", &onnx_parser::parse_slice);
        add_mem_op("Softmax", &onnx_parser::parse_softmax<op::softmax>);
140
        add_mem_op("Split", &onnx_parser::parse_split);
141
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
kahmed10's avatar
kahmed10 committed
142
        add_mem_op("Tile", &onnx_parser::parse_tile);
143
144
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
145
146
147
148
149
150
151

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
152
153
154
155
156
157
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
158
159
160
161
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
162
163
164
165
166
167
168
169
170
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
171
172
173
174
175
176
177
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
178
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
179
180
181
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
182

183
    template <class T>
Khalique's avatar
Khalique committed
184
    void add_binary_op(std::string name, T x)
185
    {
186
        add_op(name, [this, x](node_info info, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
187
            if(args.size() != 2)
Paul's avatar
Paul committed
188
                MIGRAPHX_THROW("binary operators should have 2 operands");
189
            if(contains(info.attributes, "broadcast") and contains(info.attributes, "axis"))
190
            {
191
                uint64_t broadcasted = parse_value(info.attributes.at("broadcast")).at<uint64_t>();
192
193
                if(broadcasted != 0)
                {
194
                    uint64_t axis = parse_value(info.attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
195
196
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
197
198
                    return prog.add_instruction(x, args[0], l);
                }
199
                return prog.add_instruction(x, args);
200
            }
Paul's avatar
Paul committed
201
            else
202
            {
Khalique's avatar
Khalique committed
203
                return add_broadcastable_binary_op(args[0], args[1], x);
204
205
206
207
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
208
209
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
210
211
212
213
214
215
216
217
218
219
220
221
222
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
223
        if(s0.size() > s1.size())
224
225
226
227
228
229
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
230
231
232
233
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
234
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
235
                           if(a != b and a != 1 and b != 1)
236
                           {
Shucai Xiao's avatar
Shucai Xiao committed
237
238
239
240
241
242
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
243
244
245
246

        return out_lens;
    }

Shucai Xiao's avatar
Shucai Xiao committed
247
248
    instruction_ref make_contiguous(instruction_ref ins)
    {
Shucai Xiao's avatar
Shucai Xiao committed
249
        if(ins->get_shape().standard())
Shucai Xiao's avatar
Shucai Xiao committed
250
251
252
253
254
255
256
        {
            return ins;
        }

        return prog.add_instruction(op::contiguous{}, ins);
    }

Khalique's avatar
Khalique committed
257
258
259
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
260
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
261
262
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
263
264
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
265
            auto out_lens = compute_broadcasted_lens(s0, s1);
266
267
268
269
270
271
272
273
274

            auto l0 = arg0;
            if(arg0->get_shape().lens() != out_lens)
                l0 = prog.add_instruction(op::multibroadcast{out_lens}, arg0);

            auto l1 = arg1;
            if(arg1->get_shape().lens() != out_lens)
                l1 = prog.add_instruction(op::multibroadcast{out_lens}, arg1);

Khalique's avatar
Khalique committed
275
276
277
278
279
280
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
281
282
    }

Paul's avatar
Paul committed
283
    template <class T>
Paul's avatar
Paul committed
284
285
    void add_generic_op(std::string name, T x)
    {
286
        add_op(name, [this, x](const node_info&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
287
288
289
290
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
291
    template <class T>
Khalique's avatar
Khalique committed
292
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
293
    {
294
        add_op(name, [this, x](const node_info&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
295
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
296
297
298
299
300
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
301
        });
Khalique's avatar
Khalique committed
302
303
    }

kahmed10's avatar
kahmed10 committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
    template <class T>
    std::vector<int64_t> to_int64_vector(const std::vector<T>& input_vector)
    {
        std::vector<int64_t> output_vector(input_vector.begin(), input_vector.end());
        return output_vector;
    }

    instruction_ref
    add_bias(const std::vector<instruction_ref>& args, instruction_ref curr_ins, uint64_t axis)
    {
        if(args.size() == 3)
        {
            auto bias_bcast =
                prog.add_instruction(op::broadcast{axis, curr_ins->get_shape().lens()}, args[2]);
            return prog.add_instruction(op::add{}, curr_ins, bias_bcast);
        }
        return curr_ins;
    }

kahmed10's avatar
kahmed10 committed
323
    bool is_asym_padding(const std::vector<int64_t>& padding)
324
    {
325
326
327
328
329
330
331
        assert(padding.size() % 2 == 0);
        size_t pad_ndims = padding.size() / 2;

        for(size_t i = 0; i < pad_ndims; i++)
        {
            if(padding[i] != padding[i + pad_ndims])
            {
kahmed10's avatar
kahmed10 committed
332
                return true;
333
334
            }
        }
kahmed10's avatar
kahmed10 committed
335
336
        return false;
    }
337

kahmed10's avatar
kahmed10 committed
338
339
340
341
342
343
344
345
346
347
348
    template <class Op>
    void check_asym_padding(instruction_ref& ins,
                            const std::vector<int64_t>& padding,
                            Op& op,
                            float pad_val = 0)
    {
        size_t pad_ndims  = padding.size() / 2;
        auto left_pad_it  = padding.begin();
        auto right_pad_it = left_pad_it + pad_ndims;

        if(is_asym_padding(padding))
349
        {
350
351
352
353
354
355
            std::vector<int64_t> asym_pads{0, 0, 0, 0}; // don't pad N and C
            // add left pads
            asym_pads.insert(asym_pads.begin() + 2, left_pad_it, right_pad_it);
            // add right pads
            asym_pads.insert(asym_pads.begin() + pad_ndims + 4, right_pad_it, padding.end());
            ins = prog.add_instruction(op::pad{asym_pads, pad_val}, ins);
356
357
358
        }
        else
        {
359
            op.padding = std::vector<size_t>(left_pad_it, right_pad_it);
360
361
362
        }
    }

363
364
    instruction_ref
    parse_clip(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
365
    {
kahmed10's avatar
kahmed10 committed
366
367
368
369
370
371
372
        auto input_lens = args[0]->get_shape().lens();
        instruction_ref min_arg;
        instruction_ref max_arg;
        bool min_used = false;
        bool max_used = false;

        if(args.size() == 3)
Khalique's avatar
Khalique committed
373
        {
kahmed10's avatar
kahmed10 committed
374
375
376
377
            min_arg  = args[1];
            max_arg  = args[2];
            min_used = true;
            max_used = true;
Khalique's avatar
Khalique committed
378
        }
kahmed10's avatar
kahmed10 committed
379
        else if(args.size() == 2)
Khalique's avatar
Khalique committed
380
        {
kahmed10's avatar
kahmed10 committed
381
382
383
384
385
386
387
388
389
390
391
392
393
            min_arg  = args[1];
            min_used = true;
        }
        // if using previous opset for attributes
        else if(contains(info.attributes, "min") and contains(info.attributes, "max"))
        {

            float min_val = parse_value(info.attributes.at("min")).at<float>();
            float max_val = parse_value(info.attributes.at("max")).at<float>();
            min_arg       = prog.add_literal(min_val);
            max_arg       = prog.add_literal(max_val);
            min_used      = true;
            max_used      = true;
Khalique's avatar
Khalique committed
394
        }
kahmed10's avatar
kahmed10 committed
395
396
397
398
399
400
401
402
403
404
405
406
407

        if(min_used)
            min_arg = prog.add_instruction(op::multibroadcast{input_lens}, min_arg);

        if(max_used)
            max_arg = prog.add_instruction(op::multibroadcast{input_lens}, max_arg);

        if(min_used and max_used)
            return prog.add_instruction(op::clip{}, args[0], min_arg, max_arg);
        if(min_used)
            return prog.add_instruction(op::max{}, args[0], min_arg);

        return prog.add_instruction(op::identity{}, args[0]);
Khalique's avatar
Khalique committed
408
409
    }

Shucai Xiao's avatar
Shucai Xiao committed
410
    template <class Op>
411
412
    instruction_ref
    parse_softmax(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
413
    {
414
        int64_t axis = 1;
415
        if(contains(info.attributes, "axis"))
416
        {
417
            axis = parse_value(info.attributes.at("axis")).at<int>();
418
419
        }

420
        return prog.add_instruction(Op{axis}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
421
422
    }

Shucai Xiao's avatar
Shucai Xiao committed
423
    template <class Op>
424
425
    instruction_ref
    parse_arg_op(const std::string&, node_info info, std::vector<instruction_ref> args)
426
    {
427
        int64_t axis = 0;
428
        if(contains(info.attributes, "axis"))
429
        {
430
            axis = static_cast<int64_t>(parse_value(info.attributes.at("axis")).at<int>());
431
432
        }

Shucai Xiao's avatar
Shucai Xiao committed
433
        int keep_dims = 1;
434
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
435
        {
436
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
437
438
        }

Shucai Xiao's avatar
Shucai Xiao committed
439
        if(keep_dims == 0)
440
        {
441
            auto ins = prog.add_instruction(Op{axis}, std::move(args));
442
            return prog.add_instruction(op::squeeze{{axis}}, ins);
443
444
445
        }
        else
        {
446
            return prog.add_instruction(Op{axis}, std::move(args));
447
        }
448
449
    }

450
451
    template <class Op>
    instruction_ref process_auto_pad_attribute(instruction_ref ins,
452
                                               node_info info,
453
                                               Op& op,
454
455
                                               std::vector<std::size_t> k_lens,
                                               std::vector<std::size_t> dilation,
456
457
                                               const std::vector<std::size_t>& in_lens,
                                               float value = 0.0f)
458
    {
459
460
461
        size_t kdims = in_lens.size() - 2;
        assert(k_lens.size() == kdims and dilation.size() == kdims);

462
        if(!contains(info.attributes, "auto_pad"))
463
464
465
466
        {
            return ins;
        }

467
        auto auto_pad = info.attributes["auto_pad"].s();
468
469
        if(auto_pad.find("SAME") != std::string::npos)
        {
470
            op.padding_mode    = op::padding_mode_t::same;
471
            bool is_same_upper = (auto_pad.find("SAME_UPPER") != std::string::npos);
472
473
474
475
476
477
478
479
480
481
482
483
            std::vector<int64_t> padding(2 * kdims);

            for(size_t i = 0; i < padding.size() / 2; i++)
            {
                calculate_padding(i,
                                  padding,
                                  in_lens[i + 2],
                                  op.stride[i],
                                  dilation[i],
                                  k_lens[i],
                                  is_same_upper);
            }
484

485
            check_asym_padding(ins, padding, op, value);
486
487
488
489
490
        }

        return ins;
    }

kahmed10's avatar
kahmed10 committed
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
    void calc_reflect_indices(std::vector<int>& indices, const int64_t num_dims)
    {
        int k         = 0;
        bool reversed = false;
        // in reflect padding, if the num_pads > num_dims,
        // compute the extra pad indices periodically, ex. ( 1, 2, 3, 2, 1, 0)
        for(int& idx : indices)
        {
            if(k == num_dims - 1)
                reversed = true;
            if(k == 0)
                reversed = false;
            if(reversed)
                k--;
            else
                k++;
            idx = k;
        }
    }

    instruction_ref reflect_pad(const std::vector<int64_t>& pads, instruction_ref input)
    {
        size_t num_dims = pads.size() / 2;
        std::vector<int> ldims(pads.begin(), pads.begin() + num_dims);
        std::vector<int> rdims(pads.begin() + num_dims, pads.end());
        assert(ldims.size() == rdims.size());

        std::vector<int64_t> axes(num_dims);
        std::iota(axes.begin(), axes.end(), int64_t{0});

        // iterate over dimensions, starting from lowest dimension
        for(int64_t i = num_dims - 1; i >= 0; i--)
        {
            auto axis   = i;
            auto lcount = ldims.at(i);
            auto rcount = rdims.at(i);
            if(lcount == 0 and rcount == 0) // no padding for current dim
                continue;

            // calculate starts and ends for each iteration since shape may change
            std::vector<size_t> dims = input->get_shape().lens();
            std::vector<int64_t> starts(axes.size(), 0);
            std::vector<int64_t> ends(dims.begin(), dims.end());
            std::vector<instruction_ref> slices;

            auto starts_it = starts.begin() + i;
            auto ends_it   = ends.begin() + i;
            auto dims_it   = dims.begin() + i;

            std::vector<int> l_indices(lcount);
            std::vector<int> r_indices(rcount);

            // compute slice indices in a periodic fashion
            calc_reflect_indices(l_indices, *dims_it);
            calc_reflect_indices(r_indices, *dims_it);

            for(int idx : l_indices)
            {
                *starts_it = idx;
                *ends_it   = *starts_it + 1;
                slices.push_back(prog.add_instruction(op::slice{axes, starts, ends}, input));
            }
            // when padding on the left side, the outermost pad should be at the beginning
            std::reverse(slices.begin(), slices.end());
            slices.push_back(input);
            for(int idx : r_indices)
            {
                *starts_it = *dims_it - idx - 1;
                *ends_it   = *starts_it + 1;
                slices.push_back(prog.add_instruction(op::slice{axes, starts, ends}, input));
            }
            input = prog.add_instruction(op::concat{axis}, slices);
        }
        return input;
    }

567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
    void check_attr_sizes(size_t kdims, size_t attr_size, const std::string& error_msg)
    {
        if(kdims != attr_size)
        {
            MIGRAPHX_THROW(error_msg + " k-dims: " + to_string(kdims) +
                           " attribute size: " + to_string(attr_size));
        }
    }

    template <class Op>
    void recalc_conv_attributes(Op& op, size_t kdims)
    {
        if(op.padding.size() != kdims)
        {
            op.padding.resize(kdims);
            std::fill_n(op.padding.begin(), kdims, 0);
        }
        if(op.stride.size() != kdims)
        {
            op.stride.resize(kdims);
            std::fill_n(op.stride.begin(), kdims, 1);
        }
        if(op.dilation.size() != kdims)
        {
            op.dilation.resize(kdims);
            std::fill_n(op.dilation.begin(), kdims, 1);
        }
    }

596
    template <class Op>
Paul's avatar
Paul committed
597
    instruction_ref
598
    parse_conv(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
599
    {
600
        Op op;
601
602
        auto l0      = args[0];
        auto weights = args[1];
603
604
605
606
        auto in_lens = l0->get_shape().lens();
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

607
        std::vector<int64_t> padding;
608
        if(contains(info.attributes, "pads"))
Paul's avatar
Paul committed
609
        {
610
            if(contains(info.attributes, "auto_pad"))
611
            {
612
613
                auto s = info.attributes["auto_pad"].s();
                if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
614
                {
615
616
                    MIGRAPHX_THROW(
                        "PARSE_CONV: auto_pad and padding cannot be specified simultaneously");
617
                }
618
            }
619
            op.padding.clear();
620
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
621
            check_attr_sizes(kdims, padding.size() / 2, "PARSE_CONV: inconsistent paddings");
622
            check_asym_padding(l0, padding, op);
Paul's avatar
Paul committed
623
        }
624
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
625
        {
626
627
628
            op.stride.clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(op.stride));
            check_attr_sizes(kdims, op.stride.size(), "PARSE_CONV: inconsistent strides");
Paul's avatar
Paul committed
629
        }
630
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
631
        {
632
633
634
            op.dilation.clear();
            copy(info.attributes["dilations"].ints(), std::back_inserter(op.dilation));
            check_attr_sizes(kdims, op.dilation.size(), "PARSE_CONV: inconsistent dilations");
Paul's avatar
Paul committed
635
        }
636
        if(contains(info.attributes, "auto_pad"))
637
        {
638
            auto weight_lens = weights->get_shape().lens();
639

640
            std::vector<std::size_t> k_lens(weight_lens.begin() + 2, weight_lens.end());
641
            l0 = process_auto_pad_attribute(l0, info, op, k_lens, op.dilation, in_lens);
642
        }
643
        if(contains(info.attributes, "group"))
Khalique's avatar
Khalique committed
644
        {
645
            op.group = parse_value(info.attributes.at("group")).at<int>();
Khalique's avatar
Khalique committed
646
        }
kahmed10's avatar
kahmed10 committed
647

648
649
        recalc_conv_attributes(op, kdims);

kahmed10's avatar
kahmed10 committed
650
651
652
653
        auto l1 = prog.add_instruction(op, l0, args[1]);
        return add_bias(args, l1, 1);
    }

654
655
    instruction_ref
    parse_conv_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
656
657
658
659
    {
        op::deconvolution op;
        auto l0 = args[0];
        std::vector<std::int64_t> padding;
kahmed10's avatar
kahmed10 committed
660
661
662
663
664
        bool asym_padding = false;
        auto in_lens      = l0->get_shape().lens();
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

665
        if(contains(info.attributes, "pads"))
kahmed10's avatar
kahmed10 committed
666
        {
667
            if(contains(info.attributes, "auto_pad"))
kahmed10's avatar
kahmed10 committed
668
            {
669
670
                auto s = info.attributes["auto_pad"].s();
                if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
kahmed10's avatar
kahmed10 committed
671
                {
kahmed10's avatar
kahmed10 committed
672
673
                    MIGRAPHX_THROW("PARSE_CONV_TRANSPOSE: auto_pad and padding cannot be specified "
                                   "simultaneously");
kahmed10's avatar
kahmed10 committed
674
675
                }
            }
676
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
kahmed10's avatar
kahmed10 committed
677
678
679
680

            asym_padding = is_asym_padding(padding);

            if(not asym_padding)
kahmed10's avatar
kahmed10 committed
681
            {
kahmed10's avatar
kahmed10 committed
682
683
684
685
686
687
688
                size_t pad_ndims = padding.size() / 2;
                check_attr_sizes(kdims, pad_ndims, "PARSE_CONV_TRANSPOSE: inconsistent paddings");
                op.padding.clear();
                std::transform(padding.begin(),
                               padding.begin() + pad_ndims,
                               std::back_inserter(op.padding),
                               [](auto pad_val) { return pad_val; });
kahmed10's avatar
kahmed10 committed
689
690
            }
        }
691
        if(contains(info.attributes, "strides"))
kahmed10's avatar
kahmed10 committed
692
        {
kahmed10's avatar
kahmed10 committed
693
694
695
            op.stride.clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(op.stride));
            check_attr_sizes(kdims, op.stride.size(), "PARSE_CONV_TRANSPOSE: inconsistent strides");
kahmed10's avatar
kahmed10 committed
696
        }
697
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
698
        {
kahmed10's avatar
kahmed10 committed
699
700
701
702
            op.dilation.clear();
            copy(info.attributes["dilations"].ints(), std::back_inserter(op.dilation));
            check_attr_sizes(
                kdims, op.dilation.size(), "PARSE_CONV_TRANSPOSE: inconsistent dilations");
Paul's avatar
Paul committed
703
        }
704
        if(contains(info.attributes, "auto_pad"))
kahmed10's avatar
kahmed10 committed
705
        {
706
707
            auto s = info.attributes["auto_pad"].s();
            if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
kahmed10's avatar
kahmed10 committed
708
            {
kahmed10's avatar
kahmed10 committed
709
710
                MIGRAPHX_THROW("PARSE_CONV_TRANSPOSE: auto_pad and padding cannot be specified "
                               "simultaneously");
kahmed10's avatar
kahmed10 committed
711
712
713
714
715
716
717
718
            }

            if(s.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::same;
            }
        }

719
        if(contains(info.attributes, "group"))
kahmed10's avatar
kahmed10 committed
720
        {
721
            op.group = parse_value(info.attributes.at("group")).at<int>();
kahmed10's avatar
kahmed10 committed
722
723
        }

kahmed10's avatar
kahmed10 committed
724
725
        recalc_conv_attributes(op, kdims);

kahmed10's avatar
kahmed10 committed
726
727
        auto l1                   = prog.add_instruction(op, l0, args[1]);
        std::vector<int64_t> dims = to_int64_vector(l1->get_shape().lens());
kahmed10's avatar
kahmed10 committed
728
729
        std::vector<int64_t> curr_shape(dims.begin() + 2, dims.end());
        if(asym_padding)
kahmed10's avatar
kahmed10 committed
730
        {
kahmed10's avatar
kahmed10 committed
731
732
733
734
735
736
737
738
739
740
741
742
            std::vector<int64_t> axes(kdims);
            std::iota(axes.begin(), axes.end(), 2); // ignore first 2 dims

            auto pad_kdim_start = padding.begin() + kdims;
            std::vector<int64_t> starts(padding.begin(), pad_kdim_start);

            std::vector<int64_t> ends{};
            std::transform(curr_shape.begin(),
                           curr_shape.end(),
                           pad_kdim_start,
                           std::back_inserter(ends),
                           [](auto curr_dim, auto pad_dim) { return curr_dim - pad_dim; });
kahmed10's avatar
kahmed10 committed
743

kahmed10's avatar
kahmed10 committed
744
            l1 = prog.add_instruction(op::slice{axes, starts, ends}, l1);
kahmed10's avatar
kahmed10 committed
745
746
        }

747
        if(contains(info.attributes, "output_padding"))
kahmed10's avatar
kahmed10 committed
748
        {
kahmed10's avatar
kahmed10 committed
749
750
            size_t non_kdims = dims.size() * 2 - kdims;
            std::vector<int64_t> output_padding(non_kdims, 0);
751
            copy(info.attributes["output_padding"].ints(), std::back_inserter(output_padding));
kahmed10's avatar
kahmed10 committed
752
753
754
755
            check_attr_sizes(kdims,
                             output_padding.size() - non_kdims,
                             "PARSE_CONV_TRANSPOSE: inconsistent output padding");
            l1 = prog.add_instruction(op::pad{output_padding}, l1);
kahmed10's avatar
kahmed10 committed
756
757
        }

758
        if(contains(info.attributes, "output_shape"))
kahmed10's avatar
kahmed10 committed
759
760
        {
            std::vector<int64_t> output_shape;
761
            copy(info.attributes["output_shape"].ints(), std::back_inserter(output_shape));
kahmed10's avatar
kahmed10 committed
762
763
764
765
            check_attr_sizes(
                kdims, output_shape.size(), "PARSE_CONV_TRANSPOSE: inconsistent output shape");
            dims = to_int64_vector(l1->get_shape().lens());
            copy(dims.begin() + 2, dims.end(), curr_shape.begin());
kahmed10's avatar
kahmed10 committed
766
767
            if(curr_shape != output_shape)
            {
kahmed10's avatar
kahmed10 committed
768
769
770
771
772
773
                std::vector<int64_t> target_padding(dims.size() * 2 - kdims, 0);
                std::transform(output_shape.begin(),
                               output_shape.end(),
                               curr_shape.begin(),
                               std::back_inserter(target_padding),
                               [](auto out_dim, auto curr_dim) { return out_dim - curr_dim; });
kahmed10's avatar
kahmed10 committed
774
775
776
777
778
                l1 = prog.add_instruction(op::pad{target_padding}, l1);
            }
        }

        return add_bias(args, l1, 1);
Paul's avatar
Paul committed
779
    }
Paul's avatar
Paul committed
780

781
782
    instruction_ref
    parse_pooling(const std::string& name, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
783
    {
Khalique's avatar
Khalique committed
784
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
785
786
787
788
789
        auto l0      = args[0];
        auto in_lens = l0->get_shape().lens();
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

Khalique's avatar
Khalique committed
790
        if(starts_with(name, "Global"))
791
        {
792
            op.lengths = std::vector<size_t>(in_lens.begin() + 2, in_lens.end());
793
        }
794

795
        if(contains(info.attributes, "pads"))
Paul's avatar
Paul committed
796
        {
797
            if(contains(info.attributes, "auto_pad"))
798
            {
799
                auto s = info.attributes["auto_pad"].s();
800
801
802
803
804
805
                if(to_upper(s) != "NOTSET")
                {
                    MIGRAPHX_THROW(
                        "PARSE_POOLING: auto_pad and padding cannot be specified simultaneously");
                }
            }
806
807
            op.padding.clear();
            std::vector<int64_t> padding;
808
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
809
810
            check_attr_sizes(kdims, padding.size() / 2, "PARSE_POOLING: inconsistent paddings");

811
812
813
814
            float pad_val = 0;
            if(op.mode == "max")
                pad_val = std::numeric_limits<float>::lowest();
            check_asym_padding(l0, padding, op, pad_val);
815
            in_lens = l0->get_shape().lens();
Paul's avatar
Paul committed
816
        }
817

818
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
819
        {
820
821
822
            op.stride.clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(op.stride));
            check_attr_sizes(kdims, op.stride.size(), "PARSE_POOLING: inconsistent strides");
Paul's avatar
Paul committed
823
        }
824
        if(contains(info.attributes, "kernel_shape"))
Paul's avatar
Paul committed
825
        {
826
827
828
            op.lengths.clear();
            copy(info.attributes["kernel_shape"].ints(), std::back_inserter(op.lengths));
            check_attr_sizes(kdims, op.lengths.size(), "PARSE_POOLING: inconsistent lengths");
Paul's avatar
Paul committed
829
        }
830

831
        if(contains(info.attributes, "auto_pad"))
832
        {
833
834
            op.padding.clear();
            float val = 0.0f;
835
836
837
838
839
840
            // MaxPool
            if(op.mode == "max")
            {
                val = std::numeric_limits<float>::lowest();
            }

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
            l0      = process_auto_pad_attribute(l0, info, op, op.lengths, {1, 1}, in_lens, val);
            in_lens = l0->get_shape().lens();
        }

        if(op.padding.size() != kdims)
        {
            op.padding.resize(kdims);
            std::fill_n(op.padding.begin(), kdims, 0);
        }
        if(op.stride.size() != kdims)
        {
            op.stride.resize(kdims);
            std::fill_n(op.stride.begin(), kdims, 1);
        }

        for(size_t i = 0; i < kdims; i++)
        {
            if(op.lengths[i] > in_lens[i + 2] + 2 * op.padding[i])
                MIGRAPHX_THROW("PARSE_POOLING: kernel shape is too large");
860
861
        }

862
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
863
864
    }

Paul's avatar
Paul committed
865
    instruction_ref
866
    parse_reshape(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
867
    {
868
        op::reshape op;
Paul's avatar
Paul committed
869
870
        if(args.size() == 1)
        {
871
            literal s = parse_value(info.attributes.at("shape"));
872
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
873
874
875
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
876
            auto s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
877
            check_arg_empty(s, "Reshape: dynamic shape is not supported");
Paul's avatar
Paul committed
878
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
879
        }
880

Shucai Xiao's avatar
Shucai Xiao committed
881
        return prog.add_instruction(op, make_contiguous(args[0]));
Paul's avatar
Paul committed
882
883
    }

Paul's avatar
Paul committed
884
    instruction_ref
885
    parse_flatten(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
886
    {
887
        int64_t axis = 1;
888
        if(contains(info.attributes, "axis"))
Paul's avatar
Paul committed
889
        {
890
            axis = parse_value(info.attributes.at("axis")).at<int>();
Paul's avatar
Paul committed
891
        }
892
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
893
894
    }

895
    instruction_ref
896
    parse_squeeze(const std::string&, node_info info, std::vector<instruction_ref> args)
897
898
    {
        op::squeeze op;
899
        literal s = parse_value(info.attributes.at("axes"));
900
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
901
        return prog.add_instruction(op, make_contiguous(args[0]));
902
903
904
    }

    instruction_ref
905
    parse_unsqueeze(const std::string&, node_info info, std::vector<instruction_ref> args)
906
907
    {
        op::unsqueeze op;
908
        literal s = parse_value(info.attributes.at("axes"));
909
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
910
        return prog.add_instruction(op, make_contiguous(args[0]));
911
912
    }

Scott Thornton's avatar
Scott Thornton committed
913
    instruction_ref
914
    parse_concat(const std::string&, node_info info, std::vector<instruction_ref> args)
Scott Thornton's avatar
Scott Thornton committed
915
    {
Shucai Xiao's avatar
Shucai Xiao committed
916
        // change to hande axis to be negative values
917
        if(!contains(info.attributes, "axis"))
Shucai Xiao's avatar
Shucai Xiao committed
918
919
920
921
        {
            MIGRAPHX_THROW("PARSE_CONCAT: attribute axis is required!");
        }

922
        int axis = parse_value(info.attributes.at("axis")).at<int>();
Scott Thornton's avatar
Scott Thornton committed
923
924
925
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
926

927
    instruction_ref
928
    parse_gather(const std::string&, node_info info, std::vector<instruction_ref> args)
929
    {
930
        int axis = 0;
931
        if(contains(info.attributes, "axis"))
932
        {
933
            axis = parse_value(info.attributes.at("axis")).at<int>();
934
        }
935

936
        op::gather op{axis};
Shucai Xiao's avatar
Shucai Xiao committed
937
        return prog.add_instruction(op, make_contiguous(args[0]), make_contiguous(args[1]));
938
939
    }

Shucai Xiao's avatar
Shucai Xiao committed
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
    instruction_ref
    parse_gather_elements(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        int axis = 0;
        if(contains(info.attributes, "axis"))
        {
            axis = parse_value(info.attributes.at("axis")).at<int>();
        }

        // standardize input data and index
        auto arg_data = make_contiguous(args[0]);
        auto arg_ind  = make_contiguous(args[1]);

        auto data_s = arg_data->get_shape();
        auto ind_s  = arg_ind->get_shape();

        if(data_s.lens().size() != ind_s.lens().size())
        {
            MIGRAPHX_THROW("PARSE_GATHER_ELEMENTS: input data and index must have the same rank!");
        }

        int n_rank     = static_cast<int>(data_s.lens().size());
        int tuned_axis = (axis < 0) ? (axis + n_rank) : axis;

        auto axis_stride      = data_s.strides()[tuned_axis];
        int64_t data_elem_num = static_cast<int64_t>(data_s.elements());
        // reshape the input data as one dimension and used as input data
        // to the gather operator
        arg_data = prog.add_instruction(op::reshape{{data_elem_num}}, arg_data);

        std::size_t elem_num = ind_s.elements();
        std::vector<int> ind_index(elem_num);
        std::iota(ind_index.begin(), ind_index.end(), 0);

        // convert index in input indices to that in input data
        std::vector<int> data_indices(elem_num);
        std::transform(ind_index.begin(), ind_index.end(), data_indices.begin(), [&](auto i) {
            return data_s.index(ind_s.multi(i));
        });

        std::vector<int> vec_axis_ind(elem_num);
        std::transform(ind_index.begin(), ind_index.end(), vec_axis_ind.begin(), [&](auto i) {
            return ind_s.multi(i)[tuned_axis];
        });

        auto l_shape_idx =
            prog.add_literal(literal(ind_s, data_indices.begin(), data_indices.end()));
        auto l_dim_idx = prog.add_literal(literal(ind_s, vec_axis_ind.begin(), vec_axis_ind.end()));
        auto l_stride  = prog.add_literal(literal{{ind_s.type(), {1}}, {axis_stride}});
        l_stride       = prog.add_instruction(op::multibroadcast{ind_s.lens()}, l_stride);
        auto dim_diff  = prog.add_instruction(op::sub{}, arg_ind, l_dim_idx);
        auto delta     = prog.add_instruction(op::mul{}, dim_diff, l_stride);
        auto ind       = prog.add_instruction(op::add{}, l_shape_idx, delta);

        op::gather op{0};
        return prog.add_instruction(op, arg_data, ind);
    }

998
    instruction_ref
999
    parse_slice(const std::string&, node_info info, std::vector<instruction_ref> args)
1000
1001
    {
        op::slice op;
Shucai Xiao's avatar
Shucai Xiao committed
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023

        // slice can have up to 5 inputs, we first check the 5th one
        // to decide whether MIGRAPHX can handle this slice
        if(args.size() == 5)
        {
            migraphx::argument step_arg = args.back()->eval();
            check_arg_empty(step_arg, "PARSE_SLICE: cannot handle variable steps for slice");
            std::vector<int> steps;
            step_arg.visit([&](auto s) { steps.assign(s.begin(), s.end()); });
            if(!std::all_of(steps.begin(), steps.end(), [](auto s) { return s == 1; }))
            {
                MIGRAPHX_THROW("PARSE_SLICE: cannot handle step other than 1");
            }
        }

        if(args.size() >= 4)
        {
            migraphx::argument axes_arg = args.at(3)->eval();
            check_arg_empty(axes_arg, "PARSE_SLICE: cannot handle variable axes for slice");
            axes_arg.visit([&](auto s) { op.axes.assign(s.begin(), s.end()); });
        }
        else if(contains(info.attributes, "axes"))
1024
        {
1025
            literal s = parse_value(info.attributes.at("axes"));
1026
1027
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
Shucai Xiao's avatar
Shucai Xiao committed
1028
1029

        if(args.size() >= 3)
Khalique's avatar
Khalique committed
1030
        {
Shucai Xiao's avatar
Shucai Xiao committed
1031
1032
1033
            migraphx::argument end_arg = args.at(2)->eval();
            check_arg_empty(end_arg, "PARSE_SLICE: cannot handle variable ends for slice");
            end_arg.visit([&](auto s) { op.ends.assign(s.begin(), s.end()); });
Khalique's avatar
Khalique committed
1034
        }
Shucai Xiao's avatar
Shucai Xiao committed
1035
        else if(contains(info.attributes, "ends"))
1036
        {
1037
1038
            literal s = parse_value(info.attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
1039
        }
Shucai Xiao's avatar
Shucai Xiao committed
1040
1041
1042
1043
1044
1045
1046
1047

        if(args.size() >= 2)
        {
            migraphx::argument start_arg = args.at(1)->eval();
            check_arg_empty(start_arg, "PARSE_SLICE: cannot handle variable starts for slice");
            start_arg.visit([&](auto s) { op.starts.assign(s.begin(), s.end()); });
        }
        else if(contains(info.attributes, "starts"))
1048
        {
1049
            literal s = parse_value(info.attributes.at("starts"));
1050
1051
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
Shucai Xiao's avatar
Shucai Xiao committed
1052

kahmed10's avatar
kahmed10 committed
1053
1054
1055
1056
1057
1058
1059
        if(op.axes.empty())
        {
            std::vector<int64_t> axes(args[0]->get_shape().lens().size());
            std::iota(axes.begin(), axes.end(), int64_t{0});
            op.axes = axes;
        }

1060
1061
1062
        return prog.add_instruction(op, args[0]);
    }

1063
1064
    instruction_ref
    parse_constant(const std::string&, node_info info, const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
1065
    {
1066
        literal v = parse_value(info.attributes.at("value"));
1067
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
1068
        if(v.get_shape().elements() == 0)
1069
1070
1071
1072
        {
            return prog.add_literal(literal{});
        }

1073
        auto dim_size = info.attributes.at("value").t().dims_size();
1074
1075
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
1076
        {
1077
            migraphx::shape scalar_shape{v.get_shape().type()};
1078
1079
1080
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
1081
1082
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
1083

Paul's avatar
Paul committed
1084
    instruction_ref
1085
    parse_gemm(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
1086
1087
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
1088
        float beta  = 1.0f;
Paul's avatar
Paul committed
1089
1090
        bool transa = false;
        bool transb = false;
1091
        if(contains(info.attributes, "alpha"))
Paul's avatar
Paul committed
1092
        {
1093
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Paul's avatar
Paul committed
1094
        }
1095
        if(contains(info.attributes, "beta"))
Paul's avatar
Paul committed
1096
        {
1097
            beta = parse_value(info.attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
1098
        }
1099
        if(contains(info.attributes, "transA"))
Paul's avatar
Paul committed
1100
        {
1101
            transa = parse_value(info.attributes.at("transA")).at<bool>();
Paul's avatar
Paul committed
1102
        }
1103
        if(contains(info.attributes, "transB"))
Paul's avatar
Paul committed
1104
        {
1105
            transb = parse_value(info.attributes.at("transB")).at<bool>();
Paul's avatar
Paul committed
1106
        }
1107
1108
1109
1110
1111
1112

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

1113
1114
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
1115
1116
        if(args.size() == 3)
        {
1117
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
1118
            {
Shucai Xiao's avatar
Shucai Xiao committed
1119
                auto out_lens   = l1->get_shape().lens();
1120
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
1121
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
1122
1123
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
1124
                {
1125
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
1126
                }
1127
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
1128
            }
Paul's avatar
Paul committed
1129
        }
1130
1131

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
1132
1133
    }

1134
    template <class Op>
1135
    instruction_ref
1136
    parse_matmul(const std::string&, const node_info&, std::vector<instruction_ref> args)
1137
    {
Shucai Xiao's avatar
Shucai Xiao committed
1138
1139
        auto l0      = args[0];
        auto l1      = args[1];
1140
1141
1142
1143
1144
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
1145
        if(l0_lens.size() == 1)
1146
1147
1148
1149
1150
1151
1152
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
1153
        if(l1_lens.size() == 1)
1154
1155
1156
1157
1158
1159
1160
1161
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
1162
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
1163
1164
1165
1166
1167
1168
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
1169
            l0_broadcasted_lens = output_lens;
1170
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
1171
            l1_broadcasted_lens = output_lens;
1172
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
1173
            if(l0_lens != l0_broadcasted_lens)
1174
1175
1176
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
1177
            if(l1_lens != l1_broadcasted_lens)
1178
1179
1180
1181
1182
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

1183
        auto dot_res     = prog.add_instruction(Op{1, 0}, bl0, bl1);
1184
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
1185
        if(is_a_prepended)
1186
1187
1188
1189
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
1190
        if(is_b_appended)
1191
1192
1193
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
1194

1195
1196
1197
        return dot_res;
    }

1198
    instruction_ref
1199
    parse_batchnorm(const std::string&, node_info info, std::vector<instruction_ref> args)
1200
    {
Scott Thornton's avatar
Scott Thornton committed
1201
1202
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
1203
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
1204
        if(contains(info.attributes, "epsilon"))
1205
        {
1206
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
1207
        }
1208
        if(contains(info.attributes, "momentum"))
1209
        {
1210
            momentum = parse_value(info.attributes.at("momentum")).at<float>();
1211
        }
1212
        if(contains(info.attributes, "spatial"))
1213
        {
1214
            bn_mode = (parse_value(info.attributes.at("spatial")).at<uint64_t>() > 0)
1215
1216
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
1217
        }
Paul's avatar
Paul committed
1218
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
1219
        return prog.add_instruction(op, std::move(args));
1220
1221
    }

1222
1223
    instruction_ref
    parse_instancenorm(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
1224
1225
1226
1227
1228
1229
    {
        // y = scale * ( x - mean ) / sqrt ( variance + epsilon ) + bias
        // mean = reduce_mean({H, W}, x)
        // variance = reduce_mean({H, W}, (x - mean)^2)

        float epsilon = 1e-5f;
1230
        if(contains(info.attributes, "epsilon"))
kahmed10's avatar
kahmed10 committed
1231
        {
1232
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
kahmed10's avatar
kahmed10 committed
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
        }
        auto x     = args[0];
        auto scale = args[1];
        auto bias  = args[2];
        auto dims  = x->get_shape().lens();

        auto mean            = prog.add_instruction(op::reduce_mean{{2, 3}}, x);
        auto mean_bcast      = prog.add_instruction(op::multibroadcast{dims}, mean);
        auto l0              = prog.add_instruction(op::sqdiff{}, x, mean_bcast);
        auto variance        = prog.add_instruction(op::reduce_mean{{2, 3}}, l0);
        auto l1              = prog.add_instruction(op::sub{}, x, mean_bcast);
        auto epsilon_literal = prog.add_literal(epsilon);
        auto epsilon_bcast   = prog.add_instruction(op::multibroadcast{dims}, epsilon_literal);
        auto variance_bcast  = prog.add_instruction(op::multibroadcast{dims}, variance);
        auto l2              = prog.add_instruction(op::add{}, variance_bcast, epsilon_bcast);
        auto l3              = prog.add_instruction(op::rsqrt{}, l2);
        auto l4              = prog.add_instruction(op::mul{}, l1, l3);
        auto scale_bcast     = prog.add_instruction(op::broadcast{1, dims}, scale);
        ;
        auto bias_bcast = prog.add_instruction(op::broadcast{1, dims}, bias);
        auto l5         = prog.add_instruction(op::mul{}, l4, scale_bcast);
        return prog.add_instruction(op::add{}, l5, bias_bcast);
    }

1257
1258
    instruction_ref
    parse_leaky_relu(const std::string&, node_info info, std::vector<instruction_ref> args)
1259
    {
Khalique's avatar
Khalique committed
1260
        float alpha = 0.01; // default alpha val for leaky relu
1261
        if(contains(info.attributes, "alpha"))
1262
        {
1263
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
1264
1265
1266
1267
1268
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

1269
    instruction_ref parse_elu(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1270
1271
    {
        float alpha = 1.0; // default alpha val for elu
1272
        if(contains(info.attributes, "alpha"))
Khalique's avatar
Khalique committed
1273
        {
1274
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Khalique's avatar
Khalique committed
1275
1276
1277
1278
1279
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

1280
    instruction_ref parse_lrn(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1281
1282
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
1283
1284
1285
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
1286
1287
1288
1289
1290
1291
1292
1293
        if(contains(info.attributes, "alpha"))
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
        if(contains(info.attributes, "beta"))
            beta = parse_value(info.attributes.at("beta")).at<float>();
        if(contains(info.attributes, "bias"))
            bias = parse_value(info.attributes.at("bias")).at<float>();
        if(contains(info.attributes, "size"))
            size = parse_value(info.attributes.at("size")).at<int>();
Khalique's avatar
Khalique committed
1294
1295
1296
1297
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

1298
1299
    instruction_ref
    parse_imagescaler(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1300
1301
1302
    {
        float scale = 1.0;
        std::vector<float> bias{};
1303
        if(contains(info.attributes, "scale"))
Khalique's avatar
Khalique committed
1304
        {
1305
            scale = parse_value(info.attributes.at("scale")).at<float>();
Khalique's avatar
Khalique committed
1306
1307
        }

1308
        if(contains(info.attributes, "bias"))
Khalique's avatar
Khalique committed
1309
        {
1310
            auto&& bias_floats = info.attributes["bias"].floats();
Khalique's avatar
Khalique committed
1311
1312
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
Shucai Xiao's avatar
Shucai Xiao committed
1313
1314
1315
        auto input_shape       = args.front()->get_shape();
        auto const& input_lens = input_shape.lens();
        auto input_type        = input_shape.type();
Khalique's avatar
Khalique committed
1316

Shucai Xiao's avatar
Shucai Xiao committed
1317
1318
        auto scale_val = prog.add_literal(literal{shape{input_type}, {scale}});
        auto bias_vals = prog.add_literal(literal{shape{input_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
1319

1320
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
1321
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
1322
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
1323
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
1324
    }
Khalique's avatar
Khalique committed
1325

Khalique's avatar
Khalique committed
1326
    instruction_ref
1327
    parse_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1328
1329
    {
        std::vector<int64_t> perm{};
1330
        if(contains(info.attributes, "perm"))
Khalique's avatar
Khalique committed
1331
        {
1332
            auto&& perm_vals = info.attributes["perm"].ints();
Khalique's avatar
Khalique committed
1333
1334
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
1335
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
1336
1337
    }

1338
    instruction_ref parse_pad(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1339
1340
    {
        std::vector<int64_t> pads{};
1341
1342
1343
1344
1345
1346
1347
        if(args.size() >= 2)
        {
            auto pad_arg = args.at(1)->eval();
            check_arg_empty(pad_arg, "PARSE_PAD: pad input must be constant");
            pad_arg.visit([&](auto v) { pads.assign(v.begin(), v.end()); });
        }
        else if(contains(info.attributes, "pads"))
Khalique's avatar
Khalique committed
1348
        {
1349
            auto&& pad_vals = info.attributes["pads"].ints();
Khalique's avatar
Khalique committed
1350
1351
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
1352
1353
1354
1355
1356
        else
        {
            MIGRAPHX_THROW("PARSE_PAD: pad must be available");
        }

1357
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
1358
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
1359
1360
1361
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
1362

kahmed10's avatar
kahmed10 committed
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
        if(contains(info.attributes, "mode"))
        {
            auto mode = info.attributes.at("mode").s();
            if(mode == "reflect")
                return reflect_pad(pads, args.front());
            if(mode != "constant")
            {
                MIGRAPHX_THROW(
                    "PARSE_PAD: migraphx currently only supports constant and reflect padding");
            }
        }

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
        float value = 0.0f;
        // third input is the value
        if(args.size() == 3)
        {
            auto val_ins = args.at(2);
            if(!val_ins->can_eval())
            {
                MIGRAPHX_THROW("PARSE_PAD: input value must be constant");
            }
            auto val_arg = val_ins->eval();
            if(val_arg.get_shape().elements() != 1)
            {
                MIGRAPHX_THROW("PARSE_PAD: value should contain only one element");
            }
            value = val_arg.at<float>();
        }
        else if(contains(info.attributes, "value"))
Khalique's avatar
Khalique committed
1392
        {
1393
            value = parse_value(info.attributes.at("value")).at<float>();
Khalique's avatar
Khalique committed
1394
        }
1395

Khalique's avatar
Khalique committed
1396
1397
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
1398
1399
1400
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
1401
    parse_shape(const std::string&, const node_info&, std::vector<instruction_ref> args)
1402
1403
    {
        if(args.size() != 1)
1404
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
1417
1418
    instruction_ref
    parse_constant_fill(const std::string&, node_info info, std::vector<instruction_ref> args)
1419
1420
1421
1422
1423
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

1424
        if(contains(info.attributes, "dtype"))
1425
        {
1426
            dtype = parse_value(info.attributes.at("dtype")).at<int>();
1427
        }
Shucai Xiao's avatar
Shucai Xiao committed
1428
        shape::type_t type = get_type(dtype);
1429

1430
        if(contains(info.attributes, "input_as_shape"))
1431
        {
1432
            input_as_shape = parse_value(info.attributes.at("input_as_shape")).at<int>();
1433
1434
        }

1435
        if(contains(info.attributes, "value"))
1436
        {
1437
            value = parse_value(info.attributes.at("value")).at<float>();
1438
1439
        }

1440
        if(contains(info.attributes, "extra_shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1441
        {
1442
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
1443
1444
        }

1445
1446
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1447
            if(args.size() != 1)
1448
            {
1449
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
1450
1451
            }

1452
            if(contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1453
            {
1454
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
1455
                               "at the same time");
1456
1457
            }

1458
            migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1459
            check_arg_empty(in, "ConstantFill: dynamic shape is not supported");
1460

1461
1462
1463
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
1464
1465
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1466
1467
1468
        }
        else if(input_as_shape == 0)
        {
1469
            if(!contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1470
            {
1471
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
1472
1473
            }

1474
            literal ls = parse_value(info.attributes.at("shape"));
1475
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
1476
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
1477
            migraphx::shape s{type, dims};
1478
1479
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1480
1481
1482
        }
        else
        {
1483
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
1484
1485
1486
        }
    }

1487
1488
    instruction_ref
    parse_constant_of_shape(const std::string&, node_info info, std::vector<instruction_ref> args)
1489
1490
    {
        literal l_val{};
1491
        if(contains(info.attributes, "value"))
1492
        {
1493
            l_val = parse_value(info.attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
1494
            if(l_val.get_shape().elements() != 1)
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
1506

Shucai Xiao's avatar
Shucai Xiao committed
1507
        if(args.empty())
1508
        {
Shucai Xiao's avatar
Shucai Xiao committed
1509
            MIGRAPHX_THROW("ConstantOfShape : must have 1 input!");
1510
1511
1512
        }
        else
        {
1513
1514
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
1515
            if(args[0]->get_shape().elements() == 0)
1516
            {
1517
                s = migraphx::shape{type, {1}, {0}};
1518
            }
1519
1520
1521
            else
            {
                migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1522
                check_arg_empty(in, "ConstantOfShape: dynamic shape is not supported");
1523

1524
1525
1526
1527
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
1528

Shucai Xiao's avatar
Shucai Xiao committed
1529
            literal l_out{};
1530
            l_val.visit([&](auto val) {
Shucai Xiao's avatar
Shucai Xiao committed
1531
                using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
1532
                // l_val contains only one element
1533
                std::vector<val_type> out_vec(s.elements(), val.front());
1534
1535
1536
1537
1538
1539
1540
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1541
    instruction_ref
1542
    parse_expand(const std::string&, const node_info&, std::vector<instruction_ref> args)
1543
    {
Shucai Xiao's avatar
Shucai Xiao committed
1544
        auto in_lens             = args[0]->get_shape().lens();
1545
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1546
        check_arg_empty(arg_s, "Expand: dynamic shape is not supported");
1547
1548
1549
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
Shucai Xiao's avatar
Shucai Xiao committed
1550
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
1551
1552
    }

Shucai Xiao's avatar
Shucai Xiao committed
1553
    std::vector<instruction_ref>
1554
    parse_rnn(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1555
1556
    {
        migraphx::shape input_shape = args[0]->get_shape();
1557
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
1558

1559
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
1560
        {
1561
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1562
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1563
1564
1565
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
1566
1567
1568
1569
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1570
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
1571
        {
1572
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
1573
1574
        }

1575
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1576
1577
        if(direction == "bidirectional")
        {
1578
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1579
1580
1581
        }
        else if(direction == "reverse")
        {
1582
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1583
1584
        }

1585
        std::vector<std::string> vec_names{"tanh"};
1586
        if(contains(info.attributes, "activations"))
1587
        {
1588
            auto names = info.attributes.at("activations").strings();
1589
            vec_names.clear();
1590
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1591
1592
1593
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1594
1595
        }

1596
1597
1598
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1599
        if(name_it != vec_names.end())
1600
1601
1602
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1603

Shucai Xiao's avatar
Shucai Xiao committed
1604
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1605
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1606
        // if only one actv function is provided, we use it in both
1607
        // forward and reverse direction
1608
        if(dirct == op::rnn_direction::bidirectional)
1609
        {
Shucai Xiao's avatar
Shucai Xiao committed
1610
            if(vec_names.size() == 1)
1611
1612
1613
1614
1615
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1616
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1617
1618
1619
1620
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& fn) { return map_actv_funcs[fn]; });
Shucai Xiao's avatar
Shucai Xiao committed
1621

Shucai Xiao's avatar
Shucai Xiao committed
1622
1623
        // To be added later
        float clip = 0.0;
1624
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
1625
        {
1626
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
1627
1628
        }

1629
1630
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1631
        if(args.size() < 6)
1632
1633
1634
1635
1636
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1637
1638
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1639
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1640

1641
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1642
        auto last_output = prog.add_instruction(op::rnn_last_hs_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1643

Shucai Xiao's avatar
Shucai Xiao committed
1644
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1645
1646
    }

1647
    std::vector<instruction_ref>
1648
    parse_gru(const std::string&, node_info info, std::vector<instruction_ref> args)
1649
1650
1651
1652
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

1653
        if(contains(info.attributes, "hidden_size"))
1654
        {
1655
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1656
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1657
1658
1659
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1660
1661
1662
1663
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1664
        if(contains(info.attributes, "direction"))
1665
        {
1666
            direction = info.attributes.at("direction").s();
1667
1668
        }

1669
        op::rnn_direction dirct = op::rnn_direction::forward;
1670
1671
        if(direction == "bidirectional")
        {
1672
            dirct = op::rnn_direction::bidirectional;
1673
1674
1675
        }
        else if(direction == "reverse")
        {
1676
            dirct = op::rnn_direction::reverse;
1677
1678
        }

1679
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1680
        if(contains(info.attributes, "activations"))
1681
        {
1682
            auto names = info.attributes.at("activations").strings();
1683
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1684
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1685
1686
1687
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1688
1689
        }

1690
        // need 4 activation functions
1691
        if(dirct == op::rnn_direction::bidirectional)
1692
        {
Shucai Xiao's avatar
Shucai Xiao committed
1693
            // 4 activation functions are used in the bidirectional
1694
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1695
1696
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1697
1698
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1699
1700
1701
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1702
            if(vec_names.size() == 1)
1703
            {
1704
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1705
            }
1706
            else if(vec_names.size() == 2)
1707
            {
1708
1709
1710
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1711
            }
1712
            else if(vec_names.size() == 3)
1713
            {
1714
                vec_names.push_back(vec_names.at(2));
1715
1716
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1717
        else
1718
        {
1719
            if(vec_names.size() == 1)
1720
            {
1721
                vec_names.push_back(vec_names.at(0));
1722
1723
1724
            }
        }

1725
1726
1727
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1728
        if(name_it != vec_names.end())
1729
1730
1731
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1732

Shucai Xiao's avatar
Shucai Xiao committed
1733
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1734
1735
1736
1737
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
1738
1739

        float clip = 0.0;
1740
        if(contains(info.attributes, "clip"))
1741
        {
1742
            clip = parse_value(info.attributes.at("clip")).at<float>();
1743
1744
1745
        }

        int linear_before_reset = 0;
1746
        if(contains(info.attributes, "linear_before_reset"))
1747
        {
1748
            linear_before_reset = parse_value(info.attributes.at("linear_before_reset")).at<int>();
1749
1750
        }

Shucai Xiao's avatar
Shucai Xiao committed
1751
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1752
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1753
1754
1755
1756
1757
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1758
1759
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1760
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1761
            std::move(args));
1762
1763

        // second output for last gru output
Shucai Xiao's avatar
Shucai Xiao committed
1764
        auto last_output = prog.add_instruction(op::rnn_last_hs_output{}, hidden_states);
1765

Shucai Xiao's avatar
Shucai Xiao committed
1766
        return {hidden_states, last_output};
1767
1768
    }

Shucai Xiao's avatar
Shucai Xiao committed
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
    void lstm_actv_functions(op::rnn_direction dirct, std::vector<std::string>& actv_func_names)
    {
        // need 6 activation functions for bidirectional directions
        if(dirct == op::rnn_direction::bidirectional)
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
            // if 3 actv funcs are provide, repeat all three once.
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(actv_func_names.size())
            {
            case 1:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0)};
                break;

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(1),
                                   actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(1)};
                break;

            case 3:
                // repeat all three actv funcs once
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2)};
                break;

            case 4:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(3),
                                   actv_func_names.at(3),
                                   actv_func_names.at(3)};
                break;

            case 5:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(3),
                                   actv_func_names.at(4),
                                   actv_func_names.at(4)};
                break;

            default: break;
            }
        }
        else
        {
            switch(actv_func_names.size())
            {
            case 1:
                actv_func_names = {
                    actv_func_names.at(0), actv_func_names.at(0), actv_func_names.at(0)};
                break;

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
                actv_func_names = {
                    actv_func_names.at(0), actv_func_names.at(1), actv_func_names.at(1)};
                break;

            default: break;
            }
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1854
    std::vector<instruction_ref>
1855
    parse_lstm(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1856
1857
1858
1859
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

1860
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
1861
        {
1862
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1863
1864
1865
1866
1867
1868
1869
1870
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1871
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
1872
        {
1873
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
1874
1875
        }

Shucai Xiao's avatar
Shucai Xiao committed
1876
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1877
1878
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1879
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1880
1881
1882
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1883
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1884
        }
Shucai Xiao's avatar
Shucai Xiao committed
1885
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1886
        {
Shucai Xiao's avatar
Shucai Xiao committed
1887
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1888
1889
1890
1891
1892
1893
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1894
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
1895
        if(contains(info.attributes, "activations"))
Shucai Xiao's avatar
Shucai Xiao committed
1896
        {
1897
            auto names = info.attributes.at("activations").strings();
Shucai Xiao's avatar
Shucai Xiao committed
1898
1899
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1900
1901
1902
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1903
1904
        }

Shucai Xiao's avatar
Shucai Xiao committed
1905
        lstm_actv_functions(dirct, vec_names);
Shucai Xiao's avatar
Shucai Xiao committed
1906

1907
1908
1909
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1910
        if(name_it != vec_names.end())
1911
1912
1913
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1914
1915

        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1916
1917
1918
1919
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
Shucai Xiao's avatar
Shucai Xiao committed
1920
1921

        float clip = 0.0;
1922
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
1923
        {
1924
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
1925
1926
1927
        }

        int input_forget = 0;
1928
        if(contains(info.attributes, "input_forget"))
Shucai Xiao's avatar
Shucai Xiao committed
1929
        {
1930
            input_forget = parse_value(info.attributes.at("input_forget")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1931
1932
1933
1934
1935
1936
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1937
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1938
1939
1940
1941
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1942
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1943

Shucai Xiao's avatar
Shucai Xiao committed
1944
        auto last_output = prog.add_instruction(op::rnn_last_hs_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1945
1946

        // third output for last cell output
Shucai Xiao's avatar
Shucai Xiao committed
1947
        auto last_cell_output = prog.add_instruction(op::rnn_last_cell_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1948
1949
1950

        return {hidden_states, last_output, last_cell_output};
    }
1951

Shucai Xiao's avatar
Shucai Xiao committed
1952
    template <class T>
1953
1954
    instruction_ref
    parse_reduce_oper(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1955
1956
1957
1958
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
1959
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
1960
        std::iota(axes.begin(), axes.end(), 0);
1961
        if(contains(info.attributes, "axes"))
Shucai Xiao's avatar
Shucai Xiao committed
1962
1963
        {
            axes.clear();
1964
            auto&& attr_axes = info.attributes["axes"].ints();
1965
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
1966
1967
1968
        }

        int keep_dims = 1;
1969
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
1970
        {
1971
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1972
1973
1974
1975
        }

        if(keep_dims == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1976
            return prog.add_instruction(T{axes}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1977
1978
1979
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
1980
            auto ins = prog.add_instruction(T{axes}, std::move(args));
1981
            return prog.add_instruction(op::squeeze{axes}, ins);
1982
1983
        }
    }
1984

Shucai Xiao's avatar
Shucai Xiao committed
1985
    instruction_ref
1986
    parse_reduce_l1(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1987
1988
    {
        auto abs_ins = prog.add_instruction(op::abs{}, args[0]);
1989
        return parse_reduce_oper<op::reduce_sum>({}, std::move(info), {abs_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1990
1991
1992
    }

    instruction_ref
1993
    parse_reduce_l2(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1994
1995
    {
        auto square_ins = prog.add_instruction(op::mul{}, args[0], args[0]);
1996
        auto sum_ins    = parse_reduce_oper<op::reduce_sum>({}, std::move(info), {square_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1997
1998
1999
        return prog.add_instruction(op::sqrt{}, sum_ins);
    }

2000
2001
    instruction_ref
    parse_reduce_log_sum(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2002
    {
2003
        auto sum_ins = parse_reduce_oper<op::reduce_sum>({}, std::move(info), std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
2004
2005
2006
        return prog.add_instruction(op::log{}, sum_ins);
    }

2007
2008
    instruction_ref
    parse_reduce_log_sum_exp(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2009
2010
    {
        auto exp_ins = prog.add_instruction(op::exp{}, args[0]);
2011
        auto sum_ins = parse_reduce_oper<op::reduce_sum>({}, std::move(info), {exp_ins});
Shucai Xiao's avatar
Shucai Xiao committed
2012
2013
2014
        return prog.add_instruction(op::log{}, sum_ins);
    }

2015
2016
    instruction_ref
    parse_reduce_sum_square(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2017
2018
    {
        auto square_ins = prog.add_instruction(op::mul{}, args[0], args[0]);
2019
        return parse_reduce_oper<op::reduce_sum>({}, std::move(info), {square_ins});
Shucai Xiao's avatar
Shucai Xiao committed
2020
2021
    }

Shucai Xiao's avatar
Shucai Xiao committed
2022
    instruction_ref
2023
    parse_cast(const std::string&, node_info info, std::vector<instruction_ref> args)
2024
    {
2025
        if(!contains(info.attributes, "to"))
2026
2027
2028
2029
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

2030
        int to_type        = parse_value(info.attributes.at("to")).at<int>();
2031
2032
2033
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
2034

2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
    std::vector<instruction_ref>
    parse_split(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        int64_t axis = 0;
        if(contains(info.attributes, "axis"))
        {
            axis = parse_value(info.attributes.at("axis")).at<int>();
        }

        auto lens      = args[0]->get_shape().lens();
        int64_t n_rank = static_cast<int64_t>(lens.size());
        if((axis < -n_rank) || (axis >= n_rank))
        {
            MIGRAPHX_THROW("PARSE_SPLIT: axis attribute out of rank!");
        }
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;

        std::vector<int64_t> vec_splits;
        if(contains(info.attributes, "split"))
        {
            literal s = parse_value(info.attributes.at("split"));
            s.visit([&](auto v) { vec_splits.assign(v.begin(), v.end()); });

            if(std::accumulate(vec_splits.begin(), vec_splits.end(), int64_t(0)) !=
               static_cast<int64_t>(lens[tuned_axis]))
            {
                MIGRAPHX_THROW("PARSE_SPLIT: sum of split attribute unequal to dim size of axis!");
            }
        }
        // no split attribute, input is equally divided
        else
        {
            if((lens[tuned_axis] % info.num_outputs) != 0)
            {
                MIGRAPHX_THROW("PARSE_SPLIT: input cannot be equally divided into " +
                               to_string(info.num_outputs) + " splits!");
            }
            auto dl = lens[tuned_axis] / info.num_outputs;
            vec_splits.resize(info.num_outputs, dl);
        }

        std::vector<instruction_ref> ret_ins;
        int64_t start = 0;
        for(auto sl : vec_splits)
        {
            ret_ins.push_back(
                prog.add_instruction(op::slice{{axis}, {start}, {start + sl}}, args[0]));
            start += sl;
        }

        return ret_ins;
    }

kahmed10's avatar
kahmed10 committed
2088
2089
2090
2091
    instruction_ref
    parse_onehot(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        migraphx::argument depth_arg = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
2092
        check_arg_empty(depth_arg, "PARSE_ONEHOT: depth - dynamic shape not supported");
kahmed10's avatar
kahmed10 committed
2093
2094
2095
        size_t depth = depth_arg.at<size_t>();

        int64_t axis = -1;
Shucai Xiao's avatar
Shucai Xiao committed
2096
2097
2098
2099
        if(contains(info.attributes, "axis"))
        {
            axis = info.attributes.at("axis").i();
        }
kahmed10's avatar
kahmed10 committed
2100

Shucai Xiao's avatar
Shucai Xiao committed
2101
        std::vector<float> depth_input(depth * depth, 0.0f);
kahmed10's avatar
kahmed10 committed
2102
2103
        for(int i = 0; i < depth; i++)
        {
Shucai Xiao's avatar
Shucai Xiao committed
2104
            depth_input[depth * i + i] = 1.0f;
kahmed10's avatar
kahmed10 committed
2105
2106
        }

Shucai Xiao's avatar
Shucai Xiao committed
2107
2108
2109
2110
2111
2112
2113
2114
        auto type = args[2]->get_shape().type();
        shape s{type, {depth, depth}};
        auto l_val      = prog.add_literal({s, depth_input});
        auto gather_out = prog.add_instruction(op::gather{0}, {l_val, args[0]});

        // Finally, we need a transpose to move the inner most dim to the axis dim
        int n_rank = gather_out->get_shape().lens().size();
        if(axis < -n_rank or axis >= n_rank)
kahmed10's avatar
kahmed10 committed
2115
        {
Shucai Xiao's avatar
Shucai Xiao committed
2116
            MIGRAPHX_THROW("PARSE_ONEHOT: axis out of range");
kahmed10's avatar
kahmed10 committed
2117
        }
Shucai Xiao's avatar
Shucai Xiao committed
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;
        std::vector<int64_t> perm(n_rank - 1);
        std::iota(perm.begin(), perm.end(), 0);
        perm.insert(perm.begin() + tuned_axis, n_rank - 1);
        auto tr_out = prog.add_instruction(op::transpose{perm}, gather_out);
        auto lens   = tr_out->get_shape().lens();

        auto off_val       = prog.add_instruction(op::slice{{0}, {0}, {1}}, args[2]);
        auto on_val        = prog.add_instruction(op::slice{{0}, {1}, {2}}, args[2]);
        auto diff          = prog.add_instruction(op::sub{}, on_val, off_val);
        auto unsq_off_val  = prog.add_instruction(op::multibroadcast{lens}, off_val);
        auto unsq_diff_val = prog.add_instruction(op::multibroadcast{lens}, diff);
        auto l_mul         = prog.add_instruction(op::mul{}, tr_out, unsq_diff_val);
        return prog.add_instruction(op::add{}, l_mul, unsq_off_val);
kahmed10's avatar
kahmed10 committed
2132
2133
    }

kahmed10's avatar
kahmed10 committed
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
    instruction_ref
    parse_tile(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        migraphx::argument arg_s = args[1]->eval();
        check_arg_empty(arg_s, "PARSE_TILE: dynamic shape is not supported");
        std::vector<std::int64_t> repeats;
        arg_s.visit([&](auto input) { repeats.assign(input.begin(), input.end()); });

        auto l0 = args[0];
        for(int i = 0; i < repeats.size(); i++)
        {
            auto l1 = l0;
            for(int j = 1; j < repeats[i]; j++)
            {
                l0 = prog.add_instruction(op::concat{i}, l0, l1);
            }
        }
        return l0;
    }

kahmed10's avatar
kahmed10 committed
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
    instruction_ref
    parse_range(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {

        auto start_arg = args[0]->eval();
        check_arg_empty(start_arg, "PARSE_RANGE: start arg dynamic shape is not supported");
        auto limit_arg = args[1]->eval();
        check_arg_empty(limit_arg, "PARSE_RANGE: limit arg dynamic shape is not supported");
        auto delta_arg = args[2]->eval();
        check_arg_empty(delta_arg, "PARSE_RANGE: delta arg dynamic shape is not supported");

        assert(args[0]->get_shape().elements() == 1 and args[1]->get_shape().elements() == 1 and
               args[2]->get_shape().elements() == 1);

        instruction_ref l0;

        visit_all(start_arg, limit_arg, delta_arg)([&](auto start, auto limit, auto delta) {
            auto start_val = start.front();
            auto limit_val = limit.front();
            auto delta_val = delta.front();

            size_t num_elements = static_cast<size_t>(
                ceil(static_cast<double>(limit_val - start_val) / static_cast<double>(delta_val)));

            assert(num_elements > 0);

            using type = decltype(start_val);

            std::vector<type> range_vals(num_elements);

            std::generate(range_vals.begin(), range_vals.end(), [&]() {
                auto result = start_val;
                start_val += delta_val;
                return result;
            });

            l0 = prog.add_literal({shape{args[0]->get_shape().type(), {num_elements}}, range_vals});
        });
        return l0;
    }

2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
    enum class reduce_mode_t
    {
        sum  = 0,
        mean = 1,
        max  = 2
    };

    instruction_ref parse_embedding_bag(const node_info& info, std::vector<instruction_ref> args)
    {
        if(args[2]->get_shape().elements() != 1)
            MIGRAPHX_THROW("PARSE_EMBEDDING_BAG: MIGraphX only supports offsets of size 1");
        reduce_mode_t reduce_mode = reduce_mode_t::sum;
        if(contains(info.attributes, "mode"))
        {
            reduce_mode = static_cast<reduce_mode_t>(info.attributes.at("mode").i());
        }

        auto l0 = prog.add_instruction(op::gather{}, args[0], args[1]);
        switch(reduce_mode)
        {
        case reduce_mode_t::sum: l0 = prog.add_instruction(op::reduce_sum{{0}}, l0); break;
        case reduce_mode_t::mean: l0 = prog.add_instruction(op::reduce_mean{{0}}, l0); break;
        case reduce_mode_t::max: l0 = prog.add_instruction(op::reduce_max{{0}}, l0); break;
        }
        return l0;
    }

    instruction_ref
    parse_aten(const std::string&, const node_info& info, std::vector<instruction_ref> args)
    {
        if(contains(info.attributes, "operator"))
        {
            auto op_name = info.attributes.at("operator").s();
            if(op_name.find("embedding_bag") != std::string::npos)
            {
                return parse_embedding_bag(info, std::move(args));
            }
        }
        MIGRAPHX_THROW("PARSE_ATEN: unsupported custom operator");
    }

Paul's avatar
Paul committed
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
2248
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
2249
2250
2251
        }
    }

Paul Fultz II's avatar
Paul Fultz II committed
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
    void parse_from(const void* data, std::size_t size)
    {
        onnx::ModelProto model;
        if(model.ParseFromArray(data, size))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            MIGRAPHX_THROW("Failed reading onnx file.");
        }
    }

Paul's avatar
Paul committed
2268
2269
    void parse_graph(const onnx::GraphProto& graph)
    {
2270
        for(auto&& f : graph.initializer())
2271
2272
            instructions[f.name()] = prog.add_literal(parse_tensor(f));

Paul's avatar
Paul committed
2273
2274
2275
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
2276
2277
            // input not in initializer_data, so it is a real input
            if(!contains(instructions, name))
2278
            {
2279
2280
2281
2282
2283
2284
2285
                std::vector<std::size_t> dims;
                if(map_input_dims.count(name) > 0)
                {
                    dims = map_input_dims.at(name);
                }

                shape s            = parse_type(input.type(), dims);
2286
2287
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
2288
        }
2289
2290

        for(auto&& node : graph.node())
Paul's avatar
Paul committed
2291
        {
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(input.empty())
                {
                    this->parse_undefined(input);
                }
                if(instructions.count(input) == 0)
                {
                    MIGRAPHX_THROW("PARSE_GRAPH: invalid onnx file. Input \"" + input +
                                   "\" is unavailable due to unordered nodes!");
                }
                args.push_back(instructions.at(input));
            }

            std::vector<instruction_ref> result;
            std::size_t output_num = static_cast<std::size_t>(node.output().size());
            if(ops.count(node.op_type()) == 0)
            {
2311
2312
2313
2314
                if(skip_unknown_operators)
                    result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
                else
                    MIGRAPHX_THROW("Unknown operator: " + node.op_type());
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
            }
            else
            {
                result = ops[node.op_type()]({get_attributes(node), output_num}, args);
            }

            output_num = std::min<std::size_t>(output_num, result.size());
            std::transform(node.output().begin(),
                           node.output().begin() + output_num,
                           result.begin(),
                           std::inserter(instructions, instructions.end()),
                           [](auto&& x, auto&& y) { return std::make_pair(x, y); });
Paul's avatar
Paul committed
2327
        }
Shucai Xiao's avatar
Shucai Xiao committed
2328

2329
        // Find instructions corresponding to the output
Shucai Xiao's avatar
Shucai Xiao committed
2330
        auto prog_output = graph.output();
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
        std::vector<std::string> all_output_names;
        std::vector<std::string> prog_output_names;
        std::transform(prog_output.begin(),
                       prog_output.end(),
                       std::back_inserter(all_output_names),
                       [](auto& node) { return node.name(); });
        std::copy_if(
            all_output_names.begin(),
            all_output_names.end(),
            std::back_inserter(prog_output_names),
            [&](const auto& name) { return !(name.empty() or instructions.count(name) == 0); });

        std::vector<instruction_ref> output_ins;
        std::transform(prog_output_names.begin(),
                       prog_output_names.end(),
                       std::back_inserter(output_ins),
                       [&](const auto& name) { return instructions[name]; });

        // add the return instuction
        prog.add_return(output_ins);
Paul's avatar
Paul committed
2351
2352
    }

Shucai Xiao's avatar
Shucai Xiao committed
2353
    void parse_undefined(const std::string& name)
2354
    {
Shucai Xiao's avatar
Shucai Xiao committed
2355
        auto ins           = prog.add_instruction(op::undefined{});
2356
2357
2358
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
Paul's avatar
Paul committed
2383
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
2384
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
Paul's avatar
Paul committed
2385
2386
2387
2388
2389
        case onnx::AttributeProto::UNDEFINED:
        case onnx::AttributeProto::GRAPH:
        case onnx::AttributeProto::STRING:
        case onnx::AttributeProto::STRINGS:
        case onnx::AttributeProto::TENSORS:
2390
2391
        case onnx::AttributeProto::SPARSE_TENSOR:
        case onnx::AttributeProto::SPARSE_TENSORS:
Paul's avatar
Paul committed
2392
2393
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
2394
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
2395
2396
2397
2398
2399
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
2400
2401
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
2402
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
2403
2404
            switch(t.data_type())
            {
2405
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Khalique's avatar
Khalique committed
2406
2407
2408
2409
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
2410
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Paul's avatar
Paul committed
2411
2412
2413
2414
            case onnx::TensorProto::INT8:
            case onnx::TensorProto::UINT16:
            case onnx::TensorProto::INT16:
            case onnx::TensorProto::INT32:
2415
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Paul's avatar
Paul committed
2416
2417
2418
2419
2420
2421
            case onnx::TensorProto::UINT8:
            case onnx::TensorProto::STRING:
            case onnx::TensorProto::UNDEFINED:
            case onnx::TensorProto::UINT32:
            case onnx::TensorProto::UINT64:
            case onnx::TensorProto::COMPLEX64:
Scott Thornton's avatar
Scott Thornton committed
2422
2423
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
2424
            MIGRAPHX_THROW("Invalid tensor type");
2425
        }
Paul's avatar
Paul committed
2426
2427
2428
2429
2430
2431
        switch(t.data_type())
        {
        case onnx::TensorProto::INT8:
        case onnx::TensorProto::UINT16:
        case onnx::TensorProto::INT16:
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
2432
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
2433
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
2434
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
2435
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
2436
2437
2438
2439
        case onnx::TensorProto::DOUBLE:
            return create_literal(shape::double_type, dims, t.double_data());
        case onnx::TensorProto::FLOAT:
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
2440
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
2441
        {
Khalique's avatar
Khalique committed
2442
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
2443
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
2444
2445
2446
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
2447
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
2448
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
2449
        }
Paul's avatar
Paul committed
2450
2451
2452
2453
2454
2455
        case onnx::TensorProto::UNDEFINED:
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::UINT32:
        case onnx::TensorProto::UINT64:
        case onnx::TensorProto::COMPLEX64:
Paul's avatar
Paul committed
2456
2457
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
2458
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
2459
2460
    }

Khalique's avatar
Khalique committed
2461
    static literal
2462
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
2463
    {
Khalique's avatar
Khalique committed
2464
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
2465
        if(dims.empty())
2466
            return literal{{shape_type}, data};
2467
2468
2469
        return literal{{shape_type, dims}, data};
    }

2470
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
2471
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
2472
2473
    {
        if(dims.empty())
2474
            return literal{{shape_type}, data.begin(), data.end()};
2475
        return literal{{shape_type, dims}, data.begin(), data.end()};
2476
2477
    }

2478
    shape parse_type(const onnx::TypeProto& t, const std::vector<std::size_t>& input_dims)
Paul's avatar
Paul committed
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
Paul's avatar
Paul committed
2489
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
2490
2491
2492
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
2493
        case onnx::TensorProto::UINT8: shape_type = shape::uint8_type; break;
Paul's avatar
Paul committed
2494
2495
2496
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::BOOL:
        case onnx::TensorProto::UNDEFINED:
Paul's avatar
Paul committed
2497
2498
        case onnx::TensorProto::COMPLEX64:
        case onnx::TensorProto::COMPLEX128:
Paul's avatar
Paul committed
2499
            break; // throw std::runtime_error("Unsupported type");
Paul's avatar
Paul committed
2500
        }
2501
2502
2503
2504
2505
2506

        if(!input_dims.empty())
        {
            return {shape_type, input_dims};
        }

Paul's avatar
Paul committed
2507
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
2508
        auto&& tensor_dims = t.tensor_type().shape().dim();
2509
2510
2511
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
2512
2513
                       [&](auto&& d) -> std::size_t {
                           if(d.has_dim_value())
2514
                           {
2515
                               if(static_cast<int>(d.dim_value()) <= 0)
2516
2517
2518
                               {
                                   return default_dim_value;
                               }
2519
                               return d.dim_value();
2520
                           }
2521
2522
2523
2524
                           else
                           {
                               return default_dim_value;
                           }
2525
                       });
2526

2527
2528
2529
        if(dims.empty())
            return {shape_type};

Paul's avatar
Paul committed
2530
2531
        return {shape_type, dims};
    }
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
2554
2555
2556

    void check_arg_empty(const argument& arg, const std::string& msg)
    {
Shucai Xiao's avatar
Shucai Xiao committed
2557
        if(arg.empty())
Shucai Xiao's avatar
Shucai Xiao committed
2558
2559
2560
2561
        {
            MIGRAPHX_THROW(msg);
        }
    }
Paul's avatar
Paul committed
2562
2563
};

Paul Fultz II's avatar
Paul Fultz II committed
2564
template <class... Ts>
2565
program parse_onnx_from(const onnx_options& options, Ts&&... xs)
Paul's avatar
Paul committed
2566
2567
{
    onnx_parser parser;
2568
2569
2570
    parser.map_input_dims         = options.map_input_dims;
    parser.default_dim_value      = options.default_dim_value;
    parser.skip_unknown_operators = options.skip_unknown_operators;
2571

2572
    if(options.print_program_on_error)
Paul's avatar
Paul committed
2573
    {
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
        // Log the program when it can't be parsed
        try
        {
            parser.parse_from(std::forward<Ts>(xs)...);
        }
        catch(...)
        {
            std::cerr << parser.prog << std::endl;
            throw;
        }
Paul's avatar
Paul committed
2584
    }
2585
    else
Paul's avatar
Paul committed
2586
    {
2587
        parser.parse_from(std::forward<Ts>(xs)...);
Paul's avatar
Paul committed
2588
2589
2590
2591
    }
    return std::move(parser.prog);
}

2592
program parse_onnx(const std::string& name, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2593
2594
2595
2596
2597
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    return parse_onnx_from(options, input);
}

2598
program parse_onnx_buffer(const std::string& buffer, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2599
2600
2601
2602
{
    return parse_onnx_from(options, buffer.data(), buffer.size());
}

2603
program parse_onnx_buffer(const void* data, std::size_t size, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2604
2605
2606
2607
{
    return parse_onnx_from(options, data, size);
}

Paul's avatar
Paul committed
2608
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
2609
} // namespace migraphx