"vscode:/vscode.git/clone" did not exist on "182c323ca634eaef2405325c599a882327c57a9f"
onnx.cpp 58.6 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
43
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
44
45
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
46
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
47
48
49
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
50
51
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
52
        add_generic_op("Tanh", op::tanh{});
53
54
55
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
56

Khalique's avatar
Khalique committed
57
58
59
60
61
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
62
63
64
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
65

66
67
        add_mem_op("ArgMax", &onnx_parser::parse_argmax);
        add_mem_op("ArgMin", &onnx_parser::parse_argmin);
Khalique's avatar
Khalique committed
68
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
69
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
70
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
71
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
72
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
73
74
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
75
76
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
77
78
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
79
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
80
81
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
82
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
83
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
84
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
85
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
86
87
88
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
89
        add_mem_op("Concat", &onnx_parser::parse_concat);
90
91
92
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
93
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
94
        add_mem_op("RNN", &onnx_parser::parse_rnn);
95
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
96
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
97
        add_mem_op("Pad", &onnx_parser::parse_pad);
98
99
100
101
102
103
104

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
105
106
107
108
109
110
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
111
112
113
114
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
115
116
117
118
119
120
121
122
123
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
124
125
126
127
128
129
130
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
131
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
132
133
134
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
135

136
    template <class T>
Khalique's avatar
Khalique committed
137
    void add_binary_op(std::string name, T x)
138
    {
Paul's avatar
Paul committed
139
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
140
            if(args.size() != 2)
Paul's avatar
Paul committed
141
                MIGRAPHX_THROW("binary operators should have 2 operands");
142
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
143
144
145
146
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
147
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
148
149
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
150
151
                    return prog.add_instruction(x, args[0], l);
                }
152
                return prog.add_instruction(x, args);
153
            }
Paul's avatar
Paul committed
154
            else
155
            {
Khalique's avatar
Khalique committed
156
                return add_broadcastable_binary_op(args[0], args[1], x);
157
158
159
160
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
161
162
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
163
164
165
166
167
168
169
170
171
172
173
174
175
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
176
        if(s0.size() > s1.size())
177
178
179
180
181
182
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
183
184
185
186
187
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
                       [](auto a, auto b) { return std::max(a, b); });
188
189
190
191

        return out_lens;
    }

Khalique's avatar
Khalique committed
192
193
194
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
195
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
196
197
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
198
199
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
200
            auto out_lens = compute_broadcasted_lens(s0, s1);
Shucai Xiao's avatar
Shucai Xiao committed
201
202
            auto l0       = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1       = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
203
204
205
206
207
208
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
209
210
    }

Paul's avatar
Paul committed
211
    template <class T>
Paul's avatar
Paul committed
212
213
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
214
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
215
216
217
218
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
219
    template <class T>
Khalique's avatar
Khalique committed
220
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
221
    {
Paul's avatar
Paul committed
222
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
223
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
224
225
226
227
228
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
229
        });
Khalique's avatar
Khalique committed
230
231
    }

Khalique's avatar
Khalique committed
232
233
234
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
235
236
237
238
239
240
241
242
243
244
245
246
247
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Paul's avatar
Paul committed
248
    instruction_ref
Paul's avatar
Paul committed
249
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
250
251
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
252
253
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
254
255
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
256
257
    }

Shucai Xiao's avatar
Shucai Xiao committed
258
259
260
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
261
262
263
264
265
266
267
268
269
270
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

271
    instruction_ref parse_argmax(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
272
273
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
274
275
276
277
278
279
280
281
282
283
284
    {
        int axis = 0;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::argmax{axis}, std::move(args));
    }

    instruction_ref parse_argmin(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
285
286
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
287
288
289
290
291
292
293
294
295
296
    {
        int axis = 0;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::argmin{axis}, std::move(args));
    }

Paul's avatar
Paul committed
297
    instruction_ref
Paul's avatar
Paul committed
298
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
299
    {
300
        op::convolution op;
301
        auto l0 = args[0];
Paul's avatar
Paul committed
302
303
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
304
            if(contains(attributes, "auto_pad"))
305
            {
Paul's avatar
Paul committed
306
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
307
            }
308
309
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
310
            if(padding.size() != 4)
311
            {
Paul's avatar
Paul committed
312
                MIGRAPHX_THROW("padding should have 4 values");
313
            }
Scott Thornton's avatar
Scott Thornton committed
314
            if(padding[0] != padding[2] || padding[1] != padding[3])
315
            {
316
317
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
318
                l0      = prog.add_instruction(op::pad{padding}, l0);
319
            }
320
321
322
323
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
324
            }
Paul's avatar
Paul committed
325
        }
Paul's avatar
Paul committed
326
327
328
329
330
331
332
333
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
334
        if(contains(attributes, "auto_pad"))
335
336
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
337
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
338
            {
Paul's avatar
Paul committed
339
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
340
341
            }

wsttiger's avatar
fixes  
wsttiger committed
342
            if(s.find("SAME") != std::string::npos)
343
            {
344
                op.padding_mode = op::padding_mode_t::same;
345
346
            }
        }
Khalique's avatar
Khalique committed
347
348
349
350
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
351
352
353
354
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
355
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
356
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
357
        }
358
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
359
    }
Paul's avatar
Paul committed
360

Paul's avatar
Paul committed
361
362
363
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
364
    {
Khalique's avatar
Khalique committed
365
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
366
        auto l0 = args[0];
Khalique's avatar
Khalique committed
367
        if(starts_with(name, "Global"))
368
        {
Khalique's avatar
Khalique committed
369
370
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
371
        }
Paul's avatar
Paul committed
372
373
        if(contains(attributes, "pads"))
        {
374
375
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
376
            if(padding.size() != 4)
377
            {
Paul's avatar
Paul committed
378
                MIGRAPHX_THROW("padding should have 4 values");
379
            }
Scott Thornton's avatar
Scott Thornton committed
380
            if(padding[0] != padding[2] || padding[1] != padding[3])
381
            {
382
383
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
384
385
                l0 = prog.add_instruction(op::pad{padding, std::numeric_limits<float>::lowest()},
                                          l0);
386
387
388
389
390
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
391
            }
Paul's avatar
Paul committed
392
393
394
395
396
397
398
399
400
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
401
        if(contains(attributes, "auto_pad"))
402
403
        {
            auto s = attributes["auto_pad"].s();
404
            if(s.find("SAME_UPPER") == std::string::npos)
405
            {
406
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
407
            }
408
            op.padding_mode = op::padding_mode_t::same;
409
410
        }

411
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
412
413
    }

Paul's avatar
Paul committed
414
    instruction_ref
Paul's avatar
Paul committed
415
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
416
    {
417
        op::reshape op;
Paul's avatar
Paul committed
418
419
420
421
422
423
424
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
425
            auto s = args[1]->eval();
Paul's avatar
Paul committed
426
            if(s.empty())
Paul's avatar
Paul committed
427
                MIGRAPHX_THROW("Dynamic shape is not supported.");
Paul's avatar
Paul committed
428
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
429
        }
Paul's avatar
Paul committed
430
431
432
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
433
    instruction_ref
Paul's avatar
Paul committed
434
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
435
    {
436
        uint64_t axis = 1;
Paul's avatar
Paul committed
437
438
439
440
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
441
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
442
443
    }

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
462
463
464
465
466
467
468
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
469

470
471
472
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
473
        int axis = 0;
474
475
476
477
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
478
        op::gather op{axis};
479
480
481
        return prog.add_instruction(op, std::move(args));
    }

482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
502
503
504
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
505
    {
Shucai Xiao's avatar
Shucai Xiao committed
506
        literal v     = parse_value(attributes.at("value"));
507
508
509
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
510
        {
511
            migraphx::shape scalar_shape{v.get_shape().type()};
512
513
514
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
515
516
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
517

Paul's avatar
Paul committed
518
    instruction_ref
Paul's avatar
Paul committed
519
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
520
521
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
522
        float beta  = 1.0f;
Paul's avatar
Paul committed
523
524
525
526
527
528
529
530
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
531
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
532
533
534
535
536
537
538
539
540
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
541
542
543
544
545
546

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

547
548
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
549
550
        if(args.size() == 3)
        {
551
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
552
            {
Shucai Xiao's avatar
Shucai Xiao committed
553
                auto out_lens   = l1->get_shape().lens();
554
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
555
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
556
557
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
558
                {
559
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
560
                }
561
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
562
            }
Paul's avatar
Paul committed
563
        }
564
565

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
566
567
    }

568
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
569
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
570
    {
Shucai Xiao's avatar
Shucai Xiao committed
571
572
        auto l0      = args[0];
        auto l1      = args[1];
573
574
575
576
577
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
578
        if(l0_lens.size() == 1)
579
580
581
582
583
584
585
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
586
        if(l1_lens.size() == 1)
587
588
589
590
591
592
593
594
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
595
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
596
597
598
599
600
601
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
602
            l0_broadcasted_lens = output_lens;
603
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
604
            l1_broadcasted_lens = output_lens;
605
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
606
            if(l0_lens != l0_broadcasted_lens)
607
608
609
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
610
            if(l1_lens != l1_broadcasted_lens)
611
612
613
614
615
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
616
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
617
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
618
        if(is_a_prepended)
619
620
621
622
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
623
        if(is_b_appended)
624
625
626
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
627

628
629
630
        return dot_res;
    }

631
    instruction_ref
Paul's avatar
Paul committed
632
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
633
    {
Scott Thornton's avatar
Scott Thornton committed
634
635
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
636
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
637
        bool is_test                                      = false;
638
639
640
641
642
643
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
644
            momentum = parse_value(attributes.at("momentum")).at<float>();
645
646
647
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
648
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
649
650
651
        }
        if(contains(attributes, "spatial"))
        {
652
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
653
654
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
655
        }
Paul's avatar
Paul committed
656
        (void)is_test;
Paul's avatar
Paul committed
657
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
658
        return prog.add_instruction(op, std::move(args));
659
660
    }

661
662
663
664
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
665
        float alpha = 0.01; // default alpha val for leaky relu
666
667
668
669
670
671
672
673
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
674
675
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
676
677
678
679
680
681
682
683
684
685
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
686
687
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
688
689
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
690
691
692
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
693
694
695
696
697
698
699
700
701
702
703
704
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
721
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
722

Khalique's avatar
Khalique committed
723
724
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
725
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
726

727
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
728
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
729
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
730
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
731
    }
Khalique's avatar
Khalique committed
732

Khalique's avatar
Khalique committed
733
734
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
735
736
737
738
739
740
741
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
742
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
743
744
    }

Khalique's avatar
Khalique committed
745
746
747
748
749
750
751
752
753
754
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
755
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
756
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
757
758
759
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
760
761
762
763
764
765
766
767
768
769
770
771
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
772
773
774
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
775
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
776
777
    {
        if(args.size() != 1)
778
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
815
816
        if(contains(attributes, "extra_shape"))
        {
817
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
818
819
        }

820
821
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
822
            if(args.size() != 1)
823
            {
824
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
825
826
            }

Shucai Xiao's avatar
Shucai Xiao committed
827
828
            if(contains(attributes, "shape"))
            {
829
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
830
                               "at the same time");
831
832
            }

833
834
835
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
836
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
837
            }
838

839
840
841
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
842
843
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
844
845
846
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
847
848
            if(!contains(attributes, "shape"))
            {
849
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
850
851
852
            }

            literal ls = parse_value(attributes.at("shape"));
853
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
854
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
855
            migraphx::shape s{type, dims};
856
857
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
858
859
860
        }
        else
        {
861
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
862
863
864
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
865
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
866
867
868
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
869
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
870
871
872

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
873
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
874
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
875
876
877
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
878
879
880
881
882
883
884
885
886
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

887
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
888
889
        if(direction == "bidirectional")
        {
890
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
891
892
893
        }
        else if(direction == "reverse")
        {
894
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
895
896
        }

897
        std::vector<std::string> vec_names{"tanh"};
898
899
900
901
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
902
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
903
904
905
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
906
907
        }

908
909
910
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
911
        if(name_it != vec_names.end())
912
913
914
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
915

Shucai Xiao's avatar
Shucai Xiao committed
916
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
917
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
918
        // if only one actv function is provided, we use it in both
919
        // forward and reverse direction
920
        if(dirct == op::rnn_direction::bidirectional)
921
        {
Shucai Xiao's avatar
Shucai Xiao committed
922
            if(vec_names.size() == 1)
923
924
925
926
927
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
928
929
930
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
931
        });
Shucai Xiao's avatar
Shucai Xiao committed
932

Shucai Xiao's avatar
Shucai Xiao committed
933
934
935
936
937
938
939
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

940
941
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
942
        if(args.size() < 6)
943
944
945
946
947
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
948
949
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
950
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
951

952
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
953
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
954

Shucai Xiao's avatar
Shucai Xiao committed
955
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
956
957
    }

958
    std::vector<instruction_ref>
959
960
961
962
963
964
965
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
966
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
967
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
968
969
970
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
971
972
973
974
975
976
977
978
979
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

980
        op::rnn_direction dirct = op::rnn_direction::forward;
981
982
        if(direction == "bidirectional")
        {
983
            dirct = op::rnn_direction::bidirectional;
984
985
986
        }
        else if(direction == "reverse")
        {
987
            dirct = op::rnn_direction::reverse;
988
989
        }

990
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
991
992
        if(contains(attributes, "activations"))
        {
993
            auto names = attributes.at("activations").strings();
994
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
995
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
996
997
998
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
999
1000
        }

1001
        // need 4 activation functions
1002
        if(dirct == op::rnn_direction::bidirectional)
1003
        {
Shucai Xiao's avatar
Shucai Xiao committed
1004
            // 4 activation functions are used in the bidirectional
1005
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1006
1007
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1008
1009
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1010
1011
1012
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1013
            if(vec_names.size() == 1)
1014
            {
1015
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1016
            }
1017
            else if(vec_names.size() == 2)
1018
            {
1019
1020
1021
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1022
            }
1023
            else if(vec_names.size() == 3)
1024
            {
1025
                vec_names.push_back(vec_names.at(2));
1026
1027
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1028
        else
1029
        {
1030
            if(vec_names.size() == 1)
1031
            {
1032
                vec_names.push_back(vec_names.at(0));
1033
1034
1035
            }
        }

1036
1037
1038
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1039
        if(name_it != vec_names.end())
1040
1041
1042
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1043

Shucai Xiao's avatar
Shucai Xiao committed
1044
1045
1046
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
1047
        });
1048
1049
1050
1051
1052
1053
1054
1055

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1056
        if(contains(attributes, "linear_before_reset"))
1057
1058
1059
1060
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1061
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1062
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1063
1064
1065
1066
1067
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1068
1069
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1070
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1071
            std::move(args));
1072
1073

        // second output for last gru output
1074
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1075

Shucai Xiao's avatar
Shucai Xiao committed
1076
        return {hidden_states, last_output};
1077
1078
    }

Shucai Xiao's avatar
Shucai Xiao committed
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1101
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1102
1103
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1104
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1105
1106
1107
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1108
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1109
        }
Shucai Xiao's avatar
Shucai Xiao committed
1110
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1111
        {
Shucai Xiao's avatar
Shucai Xiao committed
1112
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1113
1114
1115
1116
1117
1118
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1119
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1120
1121
1122
1123
1124
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1125
1126
1127
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1128
1129
1130
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1131
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1132
1133
1134
1135
1136
1137
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1138
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1139
1140
1141
1142
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1143
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1144
1145
1146
1147
1148
1149
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1150
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1151
1152
1153

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1154
1155
1156
1157
1158
1159
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1160
1161
1162
1163
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1164
1165
1166
1167
1168
1169
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1170
1171
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1172
1173
1174
1175
1176
1177
1178
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1179
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1180

Shucai Xiao's avatar
Shucai Xiao committed
1181
1182
1183
1184
1185
1186
1187
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1188
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1189

Shucai Xiao's avatar
Shucai Xiao committed
1190
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1191
1192
1193
1194
1195
1196
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1197
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1198
1199
1200

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1201
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1202
1203
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1204
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1205
1206
1207
            }
        }

1208
1209
1210
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1211
        if(name_it != vec_names.end())
1212
1213
1214
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1237
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1238
1239
1240
1241
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1242
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1243
1244

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1245
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1246
1247
1248
1249
1250
1251
1252

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }

Paul's avatar
Paul committed
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1265
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1266
1267
1268
1269
1270
1271
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1272
1273
1274
1275
1276
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1277
1278
1279
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1292
        }
Paul's avatar
Paul committed
1293
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1294
        {
Paul's avatar
Paul committed
1295
            this->parse_node(output.name());
Paul's avatar
Paul committed
1296
1297
1298
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1299
    void parse_undefined(const std::string& name)
1300
    {
Shucai Xiao's avatar
Shucai Xiao committed
1301
        auto ins           = prog.add_instruction(op::undefined{});
1302
1303
1304
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1305
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1306
    {
Paul's avatar
Paul committed
1307
        if(name.empty())
Paul's avatar
Paul committed
1308
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1309
1310
1311
1312
1313
1314
1315
1316
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1317
1318
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1319
                }
Shucai Xiao's avatar
Shucai Xiao committed
1320
                else if(input.empty())
Paul's avatar
Paul committed
1321
                {
1322
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1323
                }
1324
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1325
            }
Paul's avatar
Paul committed
1326
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1327
1328
            if(ops.count(node.op_type()) == 0)
            {
1329
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1330
1331
1332
            }
            else
            {
Paul's avatar
Paul committed
1333
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1334
            }
Paul's avatar
Paul committed
1335
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1336
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1337
1338
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1339
1340
1341
            }
            else
            {
Paul's avatar
Paul committed
1342
1343
1344
1345
1346
1347
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1365
        std::size_t n = 0;
Paul's avatar
Paul committed
1366
1367
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1368
            if(node.output().empty())
Paul's avatar
Paul committed
1369
            {
Paul's avatar
Paul committed
1370
                if(node.name().empty())
Paul's avatar
Paul committed
1371
1372
1373
1374
1375
1376
1377
1378
1379
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1405
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1406
1407
1408
1409
1410
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1411
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1412
1413
1414
1415
1416
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1417
1418
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1419
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1420
1421
1422
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
1423
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1424
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
1425
            case onnx::TensorProto::INT8: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1426
1427
            case onnx::TensorProto::UINT16:
                return create_literal(shape::int32_type, dims, s.data());
1428
1429
1430
            case onnx::TensorProto::INT16: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1431
            case onnx::TensorProto::STRING: throw std::runtime_error("");
1432
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1433
1434
1435
1436
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1437
1438
1439
1440
1441
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1442
            MIGRAPHX_THROW("Invalid tensor type");
1443
        }
Paul's avatar
Paul committed
1444
1445
1446
1447
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Khalique's avatar
Khalique committed
1448
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1449
1450
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Khalique's avatar
Khalique committed
1451
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1452
        case onnx::TensorProto::UINT16:
Khalique's avatar
Khalique committed
1453
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1454
        case onnx::TensorProto::INT16:
Khalique's avatar
Khalique committed
1455
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1456
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
1457
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1458
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1459
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1460
1461
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1462
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1463
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1464
        {
Khalique's avatar
Khalique committed
1465
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1466
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1467
1468
1469
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1470
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1471
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1472
        }
Paul's avatar
Paul committed
1473
        case onnx::TensorProto::DOUBLE:
Khalique's avatar
Khalique committed
1474
            return create_literal(shape::double_type, dims, t.double_data());
Paul's avatar
Paul committed
1475
1476
1477
1478
1479
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1480
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1481
1482
    }

Khalique's avatar
Khalique committed
1483
    static literal
1484
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1485
    {
Khalique's avatar
Khalique committed
1486
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1487
        if(dims.empty())
1488
            return literal{{shape_type}, data};
1489
1490
1491
        return literal{{shape_type, dims}, data};
    }

1492
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1493
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1494
1495
    {
        if(dims.empty())
1496
            return literal{{shape_type}, data.begin(), data.end()};
1497
        return literal{{shape_type, dims}, data.begin(), data.end()};
1498
1499
    }

Paul's avatar
Paul committed
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1519
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1520
1521
1522
1523
1524
1525
1526
1527
1528
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1529
        auto&& tensor_dims = t.tensor_type().shape().dim();
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1541
1542
        return {shape_type, dims};
    }
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1588
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1589
} // namespace migraphx