onnx.cpp 57.6 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
43
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
44
45
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
46
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
47
48
49
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
50
51
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
52
        add_generic_op("Tanh", op::tanh{});
53
54
55
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
56

Khalique's avatar
Khalique committed
57
58
59
60
61
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
62
63
64
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
65

Khalique's avatar
Khalique committed
66
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
67
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
68
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
69
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
70
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
71
72
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
73
74
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
75
76
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
77
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
78
79
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
80
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
81
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
82
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
83
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
84
85
86
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
87
        add_mem_op("Concat", &onnx_parser::parse_concat);
88
89
90
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
91
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
92
        add_mem_op("RNN", &onnx_parser::parse_rnn);
93
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
94
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
95
        add_mem_op("Pad", &onnx_parser::parse_pad);
96
97
98
99
100
101
102

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
103
104
105
106
107
108
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
109
110
111
112
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
113
114
115
116
117
118
119
120
121
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
122
123
124
125
126
127
128
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
129
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
130
131
132
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
133

134
    template <class T>
Khalique's avatar
Khalique committed
135
    void add_binary_op(std::string name, T x)
136
    {
Paul's avatar
Paul committed
137
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
138
            if(args.size() != 2)
Paul's avatar
Paul committed
139
                MIGRAPHX_THROW("binary operators should have 2 operands");
140
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
141
142
143
144
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
145
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
146
147
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
148
149
                    return prog.add_instruction(x, args[0], l);
                }
150
                return prog.add_instruction(x, args);
151
            }
Paul's avatar
Paul committed
152
            else
153
            {
Khalique's avatar
Khalique committed
154
                return add_broadcastable_binary_op(args[0], args[1], x);
155
156
157
158
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
159
160
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
161
162
163
164
165
166
167
168
169
170
171
172
173
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
174
        if(s0.size() > s1.size())
175
176
177
178
179
180
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
181
182
183
184
185
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
                       [](auto a, auto b) { return std::max(a, b); });
186
187
188
189

        return out_lens;
    }

Khalique's avatar
Khalique committed
190
191
192
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
193
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
194
195
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
196
197
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
198
            auto out_lens = compute_broadcasted_lens(s0, s1);
Shucai Xiao's avatar
Shucai Xiao committed
199
200
            auto l0       = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1       = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
201
202
203
204
205
206
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
207
208
    }

Paul's avatar
Paul committed
209
    template <class T>
Paul's avatar
Paul committed
210
211
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
212
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
213
214
215
216
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
217
    template <class T>
Khalique's avatar
Khalique committed
218
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
219
    {
Paul's avatar
Paul committed
220
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
221
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
222
223
224
225
226
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
227
        });
Khalique's avatar
Khalique committed
228
229
    }

Khalique's avatar
Khalique committed
230
231
232
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
233
234
235
236
237
238
239
240
241
242
243
244
245
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Paul's avatar
Paul committed
246
    instruction_ref
Paul's avatar
Paul committed
247
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
248
249
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
250
251
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
252
253
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
254
255
    }

Shucai Xiao's avatar
Shucai Xiao committed
256
257
258
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
259
260
261
262
263
264
265
266
267
268
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

Paul's avatar
Paul committed
269
    instruction_ref
Paul's avatar
Paul committed
270
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
271
    {
272
        op::convolution op;
273
        auto l0 = args[0];
Paul's avatar
Paul committed
274
275
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
276
            if(contains(attributes, "auto_pad"))
277
            {
Paul's avatar
Paul committed
278
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
279
            }
280
281
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
282
            if(padding.size() != 4)
283
            {
Paul's avatar
Paul committed
284
                MIGRAPHX_THROW("padding should have 4 values");
285
            }
Scott Thornton's avatar
Scott Thornton committed
286
            if(padding[0] != padding[2] || padding[1] != padding[3])
287
            {
288
289
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
290
                l0      = prog.add_instruction(op::pad{padding}, l0);
291
            }
292
293
294
295
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
296
            }
Paul's avatar
Paul committed
297
        }
Paul's avatar
Paul committed
298
299
300
301
302
303
304
305
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
306
        if(contains(attributes, "auto_pad"))
307
308
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
309
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
310
            {
Paul's avatar
Paul committed
311
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
312
313
            }

wsttiger's avatar
fixes  
wsttiger committed
314
            if(s.find("SAME") != std::string::npos)
315
            {
316
                op.padding_mode = op::padding_mode_t::same;
317
318
            }
        }
Khalique's avatar
Khalique committed
319
320
321
322
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
323
324
325
326
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
327
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
328
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
329
        }
330
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
331
    }
Paul's avatar
Paul committed
332

Paul's avatar
Paul committed
333
334
335
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
336
    {
Khalique's avatar
Khalique committed
337
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
338
        auto l0 = args[0];
Khalique's avatar
Khalique committed
339
        if(starts_with(name, "Global"))
340
        {
Khalique's avatar
Khalique committed
341
342
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
343
        }
Paul's avatar
Paul committed
344
345
        if(contains(attributes, "pads"))
        {
346
347
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
348
            if(padding.size() != 4)
349
            {
Paul's avatar
Paul committed
350
                MIGRAPHX_THROW("padding should have 4 values");
351
            }
Scott Thornton's avatar
Scott Thornton committed
352
            if(padding[0] != padding[2] || padding[1] != padding[3])
353
            {
354
355
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
356
357
                l0 = prog.add_instruction(op::pad{padding, std::numeric_limits<float>::lowest()},
                                          l0);
358
359
360
361
362
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
363
            }
Paul's avatar
Paul committed
364
365
366
367
368
369
370
371
372
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
373
        if(contains(attributes, "auto_pad"))
374
375
        {
            auto s = attributes["auto_pad"].s();
376
            if(s.find("SAME_UPPER") == std::string::npos)
377
            {
378
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
379
            }
380
            op.padding_mode = op::padding_mode_t::same;
381
382
        }

383
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
384
385
    }

Paul's avatar
Paul committed
386
    instruction_ref
Paul's avatar
Paul committed
387
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
388
    {
389
        op::reshape op;
Paul's avatar
Paul committed
390
391
392
393
394
395
396
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
397
            auto s = args[1]->eval();
Paul's avatar
Paul committed
398
            if(s.empty())
Paul's avatar
Paul committed
399
                MIGRAPHX_THROW("Dynamic shape is not supported.");
Paul's avatar
Paul committed
400
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
401
        }
Paul's avatar
Paul committed
402
403
404
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
405
    instruction_ref
Paul's avatar
Paul committed
406
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
407
    {
408
        uint64_t axis = 1;
Paul's avatar
Paul committed
409
410
411
412
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
413
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
414
415
    }

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
434
435
436
437
438
439
440
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
441

442
443
444
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
445
        int axis = 0;
446
447
448
449
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
450
        op::gather op{axis};
451
452
453
        return prog.add_instruction(op, std::move(args));
    }

454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
474
475
476
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
477
    {
Shucai Xiao's avatar
Shucai Xiao committed
478
        literal v     = parse_value(attributes.at("value"));
479
480
481
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
482
        {
483
            migraphx::shape scalar_shape{v.get_shape().type()};
484
485
486
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
487
488
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
489

Paul's avatar
Paul committed
490
    instruction_ref
Paul's avatar
Paul committed
491
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
492
493
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
494
        float beta  = 1.0f;
Paul's avatar
Paul committed
495
496
497
498
499
500
501
502
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
503
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
504
505
506
507
508
509
510
511
512
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
513
514
515
516
517
518

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

519
520
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
521
522
        if(args.size() == 3)
        {
523
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
524
            {
Shucai Xiao's avatar
Shucai Xiao committed
525
                auto out_lens   = l1->get_shape().lens();
526
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
527
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
528
529
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
530
                {
531
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
532
                }
533
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
534
            }
Paul's avatar
Paul committed
535
        }
536
537

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
538
539
    }

540
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
541
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
542
    {
Shucai Xiao's avatar
Shucai Xiao committed
543
544
        auto l0      = args[0];
        auto l1      = args[1];
545
546
547
548
549
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
550
        if(l0_lens.size() == 1)
551
552
553
554
555
556
557
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
558
        if(l1_lens.size() == 1)
559
560
561
562
563
564
565
566
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
567
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
568
569
570
571
572
573
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
574
            l0_broadcasted_lens = output_lens;
575
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
576
            l1_broadcasted_lens = output_lens;
577
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
578
            if(l0_lens != l0_broadcasted_lens)
579
580
581
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
582
            if(l1_lens != l1_broadcasted_lens)
583
584
585
586
587
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
588
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
589
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
590
        if(is_a_prepended)
591
592
593
594
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
595
        if(is_b_appended)
596
597
598
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
599

600
601
602
        return dot_res;
    }

603
    instruction_ref
Paul's avatar
Paul committed
604
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
605
    {
Scott Thornton's avatar
Scott Thornton committed
606
607
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
608
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
609
        bool is_test                                      = false;
610
611
612
613
614
615
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
616
            momentum = parse_value(attributes.at("momentum")).at<float>();
617
618
619
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
620
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
621
622
623
        }
        if(contains(attributes, "spatial"))
        {
624
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
625
626
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
627
        }
Paul's avatar
Paul committed
628
        (void)is_test;
Paul's avatar
Paul committed
629
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
630
        return prog.add_instruction(op, std::move(args));
631
632
    }

633
634
635
636
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
637
        float alpha = 0.01; // default alpha val for leaky relu
638
639
640
641
642
643
644
645
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
646
647
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
648
649
650
651
652
653
654
655
656
657
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
658
659
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
660
661
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
662
663
664
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
665
666
667
668
669
670
671
672
673
674
675
676
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
693
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
694

Khalique's avatar
Khalique committed
695
696
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
697
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
698

699
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
700
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
701
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
702
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
703
    }
Khalique's avatar
Khalique committed
704

Khalique's avatar
Khalique committed
705
706
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
707
708
709
710
711
712
713
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
714
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
715
716
    }

Khalique's avatar
Khalique committed
717
718
719
720
721
722
723
724
725
726
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
727
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
728
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
729
730
731
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
732
733
734
735
736
737
738
739
740
741
742
743
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
744
745
746
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
747
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
748
749
    {
        if(args.size() != 1)
750
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
787
788
        if(contains(attributes, "extra_shape"))
        {
789
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
790
791
        }

792
793
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
794
            if(args.size() != 1)
795
            {
796
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
797
798
            }

Shucai Xiao's avatar
Shucai Xiao committed
799
800
            if(contains(attributes, "shape"))
            {
801
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
802
                               "at the same time");
803
804
            }

805
806
807
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
808
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
809
            }
810

811
812
813
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
814
815
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
816
817
818
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
819
820
            if(!contains(attributes, "shape"))
            {
821
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
822
823
824
            }

            literal ls = parse_value(attributes.at("shape"));
825
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
826
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
827
            migraphx::shape s{type, dims};
828
829
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
830
831
832
        }
        else
        {
833
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
834
835
836
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
837
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
838
839
840
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
841
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
842
843
844

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
845
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
846
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
847
848
849
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
850
851
852
853
854
855
856
857
858
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

859
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
860
861
        if(direction == "bidirectional")
        {
862
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
863
864
865
        }
        else if(direction == "reverse")
        {
866
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
867
868
        }

869
        std::vector<std::string> vec_names{"tanh"};
870
871
872
873
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
874
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
875
876
877
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
878
879
        }

880
881
882
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
883
        if(name_it != vec_names.end())
884
885
886
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
887

Shucai Xiao's avatar
Shucai Xiao committed
888
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
889
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
890
        // if only one actv function is provided, we use it in both
891
        // forward and reverse direction
892
        if(dirct == op::rnn_direction::bidirectional)
893
        {
Shucai Xiao's avatar
Shucai Xiao committed
894
            if(vec_names.size() == 1)
895
896
897
898
899
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
900
901
902
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
903
        });
Shucai Xiao's avatar
Shucai Xiao committed
904

Shucai Xiao's avatar
Shucai Xiao committed
905
906
907
908
909
910
911
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

912
913
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
914
        if(args.size() < 6)
915
916
917
918
919
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
920
921
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
922
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
923

924
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
925
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
926

Shucai Xiao's avatar
Shucai Xiao committed
927
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
928
929
    }

930
    std::vector<instruction_ref>
931
932
933
934
935
936
937
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
938
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
939
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
940
941
942
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
943
944
945
946
947
948
949
950
951
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

952
        op::rnn_direction dirct = op::rnn_direction::forward;
953
954
        if(direction == "bidirectional")
        {
955
            dirct = op::rnn_direction::bidirectional;
956
957
958
        }
        else if(direction == "reverse")
        {
959
            dirct = op::rnn_direction::reverse;
960
961
        }

962
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
963
964
        if(contains(attributes, "activations"))
        {
965
            auto names = attributes.at("activations").strings();
966
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
967
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
968
969
970
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
971
972
        }

973
        // need 4 activation functions
974
        if(dirct == op::rnn_direction::bidirectional)
975
        {
Shucai Xiao's avatar
Shucai Xiao committed
976
            // 4 activation functions are used in the bidirectional
977
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
978
979
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
980
981
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
982
983
984
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
985
            if(vec_names.size() == 1)
986
            {
987
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
988
            }
989
            else if(vec_names.size() == 2)
990
            {
991
992
993
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
994
            }
995
            else if(vec_names.size() == 3)
996
            {
997
                vec_names.push_back(vec_names.at(2));
998
999
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1000
        else
1001
        {
1002
            if(vec_names.size() == 1)
1003
            {
1004
                vec_names.push_back(vec_names.at(0));
1005
1006
1007
            }
        }

1008
1009
1010
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1011
        if(name_it != vec_names.end())
1012
1013
1014
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1015

Shucai Xiao's avatar
Shucai Xiao committed
1016
1017
1018
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
1019
        });
1020
1021
1022
1023
1024
1025
1026
1027

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1028
        if(contains(attributes, "linear_before_reset"))
1029
1030
1031
1032
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1033
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1034
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1035
1036
1037
1038
1039
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1040
1041
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1042
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1043
            std::move(args));
1044
1045

        // second output for last gru output
1046
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1047

Shucai Xiao's avatar
Shucai Xiao committed
1048
        return {hidden_states, last_output};
1049
1050
    }

Shucai Xiao's avatar
Shucai Xiao committed
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1073
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1074
1075
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1076
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1077
1078
1079
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1080
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1081
        }
Shucai Xiao's avatar
Shucai Xiao committed
1082
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1083
        {
Shucai Xiao's avatar
Shucai Xiao committed
1084
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1085
1086
1087
1088
1089
1090
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1091
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1092
1093
1094
1095
1096
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1097
1098
1099
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1100
1101
1102
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1103
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1104
1105
1106
1107
1108
1109
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1110
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1111
1112
1113
1114
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1115
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1116
1117
1118
1119
1120
1121
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1122
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1123
1124
1125

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1126
1127
1128
1129
1130
1131
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1132
1133
1134
1135
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1136
1137
1138
1139
1140
1141
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1142
1143
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1144
1145
1146
1147
1148
1149
1150
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1151
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1152

Shucai Xiao's avatar
Shucai Xiao committed
1153
1154
1155
1156
1157
1158
1159
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1160
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1161

Shucai Xiao's avatar
Shucai Xiao committed
1162
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1163
1164
1165
1166
1167
1168
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1169
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1170
1171
1172

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1173
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1174
1175
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1176
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1177
1178
1179
            }
        }

1180
1181
1182
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1183
        if(name_it != vec_names.end())
1184
1185
1186
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1209
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1210
1211
1212
1213
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1214
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1215
1216

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1217
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1218
1219
1220
1221
1222
1223
1224

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }

Paul's avatar
Paul committed
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1237
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1238
1239
1240
1241
1242
1243
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1244
1245
1246
1247
1248
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1249
1250
1251
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1264
        }
Paul's avatar
Paul committed
1265
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1266
        {
Paul's avatar
Paul committed
1267
            this->parse_node(output.name());
Paul's avatar
Paul committed
1268
1269
1270
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1271
    void parse_undefined(const std::string& name)
1272
    {
Shucai Xiao's avatar
Shucai Xiao committed
1273
        auto ins           = prog.add_instruction(op::undefined{});
1274
1275
1276
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1277
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1278
    {
Paul's avatar
Paul committed
1279
        if(name.empty())
Paul's avatar
Paul committed
1280
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1281
1282
1283
1284
1285
1286
1287
1288
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1289
1290
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1291
                }
Shucai Xiao's avatar
Shucai Xiao committed
1292
                else if(input.empty())
Paul's avatar
Paul committed
1293
                {
1294
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1295
                }
1296
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1297
            }
Paul's avatar
Paul committed
1298
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1299
1300
            if(ops.count(node.op_type()) == 0)
            {
1301
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1302
1303
1304
            }
            else
            {
Paul's avatar
Paul committed
1305
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1306
            }
Paul's avatar
Paul committed
1307
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1308
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1309
1310
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1311
1312
1313
            }
            else
            {
Paul's avatar
Paul committed
1314
1315
1316
1317
1318
1319
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1337
        std::size_t n = 0;
Paul's avatar
Paul committed
1338
1339
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1340
            if(node.output().empty())
Paul's avatar
Paul committed
1341
            {
Paul's avatar
Paul committed
1342
                if(node.name().empty())
Paul's avatar
Paul committed
1343
1344
1345
1346
1347
1348
1349
1350
1351
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1377
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1378
1379
1380
1381
1382
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1383
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1384
1385
1386
1387
1388
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1389
1390
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1391
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1392
1393
1394
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
1395
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1396
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
1397
            case onnx::TensorProto::INT8: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1398
1399
            case onnx::TensorProto::UINT16:
                return create_literal(shape::int32_type, dims, s.data());
1400
1401
1402
            case onnx::TensorProto::INT16: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1403
            case onnx::TensorProto::STRING: throw std::runtime_error("");
1404
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1405
1406
1407
1408
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1409
1410
1411
1412
1413
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1414
            MIGRAPHX_THROW("Invalid tensor type");
1415
        }
Paul's avatar
Paul committed
1416
1417
1418
1419
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Khalique's avatar
Khalique committed
1420
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1421
1422
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Khalique's avatar
Khalique committed
1423
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1424
        case onnx::TensorProto::UINT16:
Khalique's avatar
Khalique committed
1425
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1426
        case onnx::TensorProto::INT16:
Khalique's avatar
Khalique committed
1427
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1428
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
1429
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1430
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1431
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1432
1433
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1434
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1435
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1436
        {
Khalique's avatar
Khalique committed
1437
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1438
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1439
1440
1441
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1442
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1443
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1444
        }
Paul's avatar
Paul committed
1445
        case onnx::TensorProto::DOUBLE:
Khalique's avatar
Khalique committed
1446
            return create_literal(shape::double_type, dims, t.double_data());
Paul's avatar
Paul committed
1447
1448
1449
1450
1451
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1452
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1453
1454
    }

Khalique's avatar
Khalique committed
1455
    static literal
1456
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1457
    {
Khalique's avatar
Khalique committed
1458
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1459
        if(dims.empty())
1460
            return literal{{shape_type}, data};
1461
1462
1463
        return literal{{shape_type, dims}, data};
    }

1464
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1465
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1466
1467
    {
        if(dims.empty())
1468
            return literal{{shape_type}, data.begin(), data.end()};
1469
        return literal{{shape_type, dims}, data.begin(), data.end()};
1470
1471
    }

Paul's avatar
Paul committed
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1491
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1492
1493
1494
1495
1496
1497
1498
1499
1500
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1501
        auto&& tensor_dims = t.tensor_type().shape().dim();
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1513
1514
        return {shape_type, dims};
    }
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1560
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1561
} // namespace migraphx