onnx.cpp 88.7 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
19
#include <migraphx/pad_calc.hpp>
Paul's avatar
Paul committed
20
21

namespace migraphx {
Paul's avatar
Paul committed
22
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
23

24
25
namespace onnx = onnx_for_migraphx;

Paul's avatar
Paul committed
26
27
28
struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
29
30
31
32
33
34
    struct node_info
    {
        attribute_map attributes{};
        std::size_t num_outputs = 1;
    };
    using node_map = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
35
    using op_func =
36
        std::function<std::vector<instruction_ref>(node_info, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
37
38
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
39
40
41
42
    program prog                  = program();
    bool is_pytorch               = false;
    std::size_t default_dim_value = 1;
    std::unordered_map<std::string, std::vector<std::size_t>> map_input_dims;
43
    bool skip_unknown_operators = false;
Paul's avatar
Paul committed
44
45

    std::unordered_map<std::string, op_func> ops;
46
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
47
48
49

    onnx_parser()
    {
50
        // sort onnx operator alphabetically through name
Khalique's avatar
Khalique committed
51
        add_generic_op("Abs", op::abs{});
52
53
54
55
56
57
58
59
60
        add_generic_op("Acos", op::acos{});
        add_generic_op("Acosh", op::acosh{});
        add_generic_op("Asin", op::asin{});
        add_generic_op("Asinh", op::asinh{});
        add_generic_op("Atan", op::atan{});
        add_generic_op("Atanh", op::atanh{});
        add_generic_op("Ceil", op::ceil{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Cosh", op::cosh{});
Shucai Xiao's avatar
Shucai Xiao committed
61
        add_generic_op("Erf", op::erf{});
62
        add_generic_op("Exp", op::exp{});
Khalique's avatar
Khalique committed
63
        add_generic_op("Dropout", op::identity{});
64
65
        add_generic_op("Log", op::log{});
        add_generic_op("Floor", op::floor{});
Khalique's avatar
Khalique committed
66
        add_generic_op("Identity", op::identity{});
kahmed10's avatar
kahmed10 committed
67
        add_generic_op("Reciprocal", op::recip{});
68
69
70
71
        add_generic_op("Relu", op::relu{});
        add_generic_op("Round", op::round{});
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Sign", op::sign{});
Shucai Xiao's avatar
Shucai Xiao committed
72
        add_generic_op("Sin", op::sin{});
73
        add_generic_op("Sinh", op::sinh{});
74
        add_generic_op("Sqrt", op::sqrt{});
75
76
        add_generic_op("Tan", op::tan{});
        add_generic_op("Tanh", op::tanh{});
Paul's avatar
Paul committed
77

Khalique's avatar
Khalique committed
78
79
80
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
Shucai Xiao's avatar
Shucai Xiao committed
81
        add_binary_op("Pow", op::pow{});
Shucai Xiao's avatar
Shucai Xiao committed
82
        add_binary_op("PRelu", op::prelu{});
83
        add_binary_op("Sub", op::sub{});
Khalique's avatar
Khalique committed
84

Khalique's avatar
Khalique committed
85
86
87
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
88

89
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
90
91
        add_mem_op("ArgMax", &onnx_parser::parse_arg_op<op::argmax>);
        add_mem_op("ArgMin", &onnx_parser::parse_arg_op<op::argmin>);
92
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
93
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
94
        add_mem_op("Clip", &onnx_parser::parse_clip);
95
        add_mem_op("Concat", &onnx_parser::parse_concat);
Paul's avatar
Paul committed
96
        add_mem_op("Constant", &onnx_parser::parse_constant);
97
98
99
100
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
        add_mem_op("Conv", &onnx_parser::parse_conv<op::convolution>);
        add_mem_op("ConvInteger", &onnx_parser::parse_conv<op::quant_convolution>);
kahmed10's avatar
kahmed10 committed
101
        add_mem_op("ConvTranspose", &onnx_parser::parse_conv_transpose);
102
103
        add_mem_op("Elu", &onnx_parser::parse_elu);
        add_mem_op("Expand", &onnx_parser::parse_expand);
Paul's avatar
Paul committed
104
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
105
        add_mem_op("Gather", &onnx_parser::parse_gather);
Paul's avatar
Paul committed
106
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
107
108
109
110
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GRU", &onnx_parser::parse_gru);
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
kahmed10's avatar
kahmed10 committed
111
        add_mem_op("InstanceNormalization", &onnx_parser::parse_instancenorm);
112
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
113
        add_mem_op("LogSoftmax", &onnx_parser::parse_softmax<op::logsoftmax>);
114
115
116
117
        add_mem_op("LRN", &onnx_parser::parse_lrn);
        add_mem_op("MatMul", &onnx_parser::parse_matmul<op::dot>);
        add_mem_op("MatMulInteger", &onnx_parser::parse_matmul<op::quant_dot>);
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
kahmed10's avatar
kahmed10 committed
118
        add_mem_op("OneHot", &onnx_parser::parse_onehot);
kahmed10's avatar
kahmed10 committed
119
        add_mem_op("Range", &onnx_parser::parse_range);
Shucai Xiao's avatar
Shucai Xiao committed
120
121
122
123
124
        add_mem_op("ReduceL1", &onnx_parser::parse_reduce_l1);
        add_mem_op("ReduceL2", &onnx_parser::parse_reduce_l2);
        add_mem_op("ReduceLogSum", &onnx_parser::parse_reduce_log_sum);
        add_mem_op("ReduceLogSumExp", &onnx_parser::parse_reduce_log_sum_exp);
        add_mem_op("ReduceMax", &onnx_parser::parse_reduce_oper<op::reduce_max>);
Shucai Xiao's avatar
Shucai Xiao committed
125
        add_mem_op("ReduceMean", &onnx_parser::parse_reduce_oper<op::reduce_mean>);
Shucai Xiao's avatar
Shucai Xiao committed
126
        add_mem_op("ReduceMin", &onnx_parser::parse_reduce_oper<op::reduce_min>);
Shucai Xiao's avatar
Shucai Xiao committed
127
128
129
        add_mem_op("ReduceProd", &onnx_parser::parse_reduce_oper<op::reduce_prod>);
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_oper<op::reduce_sum>);
        add_mem_op("ReduceSumSquare", &onnx_parser::parse_reduce_sum_square);
130
131
132
133
134
135
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
        add_mem_op("RNN", &onnx_parser::parse_rnn);
        add_mem_op("Pad", &onnx_parser::parse_pad);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("Slice", &onnx_parser::parse_slice);
        add_mem_op("Softmax", &onnx_parser::parse_softmax<op::softmax>);
136
        add_mem_op("Split", &onnx_parser::parse_split);
137
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
kahmed10's avatar
kahmed10 committed
138
        add_mem_op("Tile", &onnx_parser::parse_tile);
139
140
141
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
142
143
144
145
146
147
148

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
149
150
151
152
153
154
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
155
156
157
158
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
159
160
161
162
163
164
165
166
167
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
168
169
170
171
172
173
174
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
175
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
176
177
178
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
179

180
    template <class T>
Khalique's avatar
Khalique committed
181
    void add_binary_op(std::string name, T x)
182
    {
183
        add_op(name, [this, x](node_info info, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
184
            if(args.size() != 2)
Paul's avatar
Paul committed
185
                MIGRAPHX_THROW("binary operators should have 2 operands");
186
            if(contains(info.attributes, "broadcast") and contains(info.attributes, "axis"))
187
            {
188
                uint64_t broadcasted = parse_value(info.attributes.at("broadcast")).at<uint64_t>();
189
190
                if(broadcasted != 0)
                {
191
                    uint64_t axis = parse_value(info.attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
192
193
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
194
195
                    return prog.add_instruction(x, args[0], l);
                }
196
                return prog.add_instruction(x, args);
197
            }
Paul's avatar
Paul committed
198
            else
199
            {
Khalique's avatar
Khalique committed
200
                return add_broadcastable_binary_op(args[0], args[1], x);
201
202
203
204
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
205
206
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
207
208
209
210
211
212
213
214
215
216
217
218
219
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
220
        if(s0.size() > s1.size())
221
222
223
224
225
226
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
227
228
229
230
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
231
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
232
                           if(a != b and a != 1 and b != 1)
233
                           {
Shucai Xiao's avatar
Shucai Xiao committed
234
235
236
237
238
239
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
240
241
242
243

        return out_lens;
    }

Shucai Xiao's avatar
Shucai Xiao committed
244
245
    instruction_ref make_contiguous(instruction_ref ins)
    {
Shucai Xiao's avatar
Shucai Xiao committed
246
        if(ins->get_shape().standard())
Shucai Xiao's avatar
Shucai Xiao committed
247
248
249
250
251
252
253
        {
            return ins;
        }

        return prog.add_instruction(op::contiguous{}, ins);
    }

Khalique's avatar
Khalique committed
254
255
256
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
257
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
258
259
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
260
261
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
262
            auto out_lens = compute_broadcasted_lens(s0, s1);
263
264
265
266
267
268
269
270
271

            auto l0 = arg0;
            if(arg0->get_shape().lens() != out_lens)
                l0 = prog.add_instruction(op::multibroadcast{out_lens}, arg0);

            auto l1 = arg1;
            if(arg1->get_shape().lens() != out_lens)
                l1 = prog.add_instruction(op::multibroadcast{out_lens}, arg1);

Khalique's avatar
Khalique committed
272
273
274
275
276
277
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
278
279
    }

Paul's avatar
Paul committed
280
    template <class T>
Paul's avatar
Paul committed
281
282
    void add_generic_op(std::string name, T x)
    {
283
        add_op(name, [this, x](const node_info&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
284
285
286
287
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
288
    template <class T>
Khalique's avatar
Khalique committed
289
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
290
    {
291
        add_op(name, [this, x](const node_info&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
292
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
293
294
295
296
297
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
298
        });
Khalique's avatar
Khalique committed
299
300
    }

kahmed10's avatar
kahmed10 committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
    template <class T>
    std::vector<int64_t> to_int64_vector(const std::vector<T>& input_vector)
    {
        std::vector<int64_t> output_vector(input_vector.begin(), input_vector.end());
        return output_vector;
    }

    instruction_ref
    add_bias(const std::vector<instruction_ref>& args, instruction_ref curr_ins, uint64_t axis)
    {
        if(args.size() == 3)
        {
            auto bias_bcast =
                prog.add_instruction(op::broadcast{axis, curr_ins->get_shape().lens()}, args[2]);
            return prog.add_instruction(op::add{}, curr_ins, bias_bcast);
        }
        return curr_ins;
    }

320
321
    template <class Op>
    void check_asym_padding(instruction_ref& ins,
322
                            const std::vector<int64_t>& padding,
323
324
325
326
327
                            Op& op,
                            float pad_val = 0)
    {
        if(padding[0] != padding[2] || padding[1] != padding[3])
        {
328
329
330
            ins = prog.add_instruction(
                op::pad{{0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]}, pad_val},
                ins);
331
332
333
334
335
336
337
338
        }
        else
        {
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
        }
    }

339
340
    instruction_ref
    parse_clip(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
341
    {
kahmed10's avatar
kahmed10 committed
342
343
344
345
346
347
348
        auto input_lens = args[0]->get_shape().lens();
        instruction_ref min_arg;
        instruction_ref max_arg;
        bool min_used = false;
        bool max_used = false;

        if(args.size() == 3)
Khalique's avatar
Khalique committed
349
        {
kahmed10's avatar
kahmed10 committed
350
351
352
353
            min_arg  = args[1];
            max_arg  = args[2];
            min_used = true;
            max_used = true;
Khalique's avatar
Khalique committed
354
        }
kahmed10's avatar
kahmed10 committed
355
        else if(args.size() == 2)
Khalique's avatar
Khalique committed
356
        {
kahmed10's avatar
kahmed10 committed
357
358
359
360
361
362
363
364
365
366
367
368
369
            min_arg  = args[1];
            min_used = true;
        }
        // if using previous opset for attributes
        else if(contains(info.attributes, "min") and contains(info.attributes, "max"))
        {

            float min_val = parse_value(info.attributes.at("min")).at<float>();
            float max_val = parse_value(info.attributes.at("max")).at<float>();
            min_arg       = prog.add_literal(min_val);
            max_arg       = prog.add_literal(max_val);
            min_used      = true;
            max_used      = true;
Khalique's avatar
Khalique committed
370
        }
kahmed10's avatar
kahmed10 committed
371
372
373
374
375
376
377
378
379
380
381
382
383

        if(min_used)
            min_arg = prog.add_instruction(op::multibroadcast{input_lens}, min_arg);

        if(max_used)
            max_arg = prog.add_instruction(op::multibroadcast{input_lens}, max_arg);

        if(min_used and max_used)
            return prog.add_instruction(op::clip{}, args[0], min_arg, max_arg);
        if(min_used)
            return prog.add_instruction(op::max{}, args[0], min_arg);

        return prog.add_instruction(op::identity{}, args[0]);
Khalique's avatar
Khalique committed
384
385
    }

Shucai Xiao's avatar
Shucai Xiao committed
386
    template <class Op>
387
388
    instruction_ref
    parse_softmax(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
389
    {
390
        int64_t axis = 1;
391
        if(contains(info.attributes, "axis"))
392
        {
393
            axis = parse_value(info.attributes.at("axis")).at<int>();
394
395
        }

396
        return prog.add_instruction(Op{axis}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
397
398
    }

Shucai Xiao's avatar
Shucai Xiao committed
399
    template <class Op>
400
401
    instruction_ref
    parse_arg_op(const std::string&, node_info info, std::vector<instruction_ref> args)
402
    {
403
        int64_t axis = 0;
404
        if(contains(info.attributes, "axis"))
405
        {
406
            axis = static_cast<int64_t>(parse_value(info.attributes.at("axis")).at<int>());
407
408
        }

Shucai Xiao's avatar
Shucai Xiao committed
409
        int keep_dims = 1;
410
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
411
        {
412
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
413
414
        }

Shucai Xiao's avatar
Shucai Xiao committed
415
        if(keep_dims == 0)
416
        {
417
            auto ins = prog.add_instruction(Op{axis}, std::move(args));
418
            return prog.add_instruction(op::squeeze{{axis}}, ins);
419
420
421
        }
        else
        {
422
            return prog.add_instruction(Op{axis}, std::move(args));
423
        }
424
425
    }

426
427
    template <class Op>
    instruction_ref process_auto_pad_attribute(instruction_ref ins,
428
                                               node_info info,
429
                                               Op& op,
430
431
432
433
                                               std::array<std::size_t, 2> k_lens,
                                               std::array<std::size_t, 2> dilation,
                                               const std::vector<std::size_t>& in_lens,
                                               float value = 0.0f)
434
    {
435
        if(!contains(info.attributes, "auto_pad"))
436
437
438
439
        {
            return ins;
        }

440
        auto auto_pad = info.attributes["auto_pad"].s();
441
442
        if(auto_pad.find("SAME") != std::string::npos)
        {
443
444
445
446
447
448
            bool is_same_upper = (auto_pad.find("SAME_UPPER") != std::string::npos);
            std::vector<int64_t> padding(in_lens.size());
            calculate_padding(
                0, padding, in_lens[2], op.stride[0], dilation[0], k_lens[0], is_same_upper);
            calculate_padding(
                1, padding, in_lens[3], op.stride[1], dilation[1], k_lens[1], is_same_upper);
449

450
            check_asym_padding(ins, padding, op, value);
451
452
453
454
455
        }

        return ins;
    }

kahmed10's avatar
kahmed10 committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
    void calc_reflect_indices(std::vector<int>& indices, const int64_t num_dims)
    {
        int k         = 0;
        bool reversed = false;
        // in reflect padding, if the num_pads > num_dims,
        // compute the extra pad indices periodically, ex. ( 1, 2, 3, 2, 1, 0)
        for(int& idx : indices)
        {
            if(k == num_dims - 1)
                reversed = true;
            if(k == 0)
                reversed = false;
            if(reversed)
                k--;
            else
                k++;
            idx = k;
        }
    }

    instruction_ref reflect_pad(const std::vector<int64_t>& pads, instruction_ref input)
    {
        size_t num_dims = pads.size() / 2;
        std::vector<int> ldims(pads.begin(), pads.begin() + num_dims);
        std::vector<int> rdims(pads.begin() + num_dims, pads.end());
        assert(ldims.size() == rdims.size());

        std::vector<int64_t> axes(num_dims);
        std::iota(axes.begin(), axes.end(), int64_t{0});

        // iterate over dimensions, starting from lowest dimension
        for(int64_t i = num_dims - 1; i >= 0; i--)
        {
            auto axis   = i;
            auto lcount = ldims.at(i);
            auto rcount = rdims.at(i);
            if(lcount == 0 and rcount == 0) // no padding for current dim
                continue;

            // calculate starts and ends for each iteration since shape may change
            std::vector<size_t> dims = input->get_shape().lens();
            std::vector<int64_t> starts(axes.size(), 0);
            std::vector<int64_t> ends(dims.begin(), dims.end());
            std::vector<instruction_ref> slices;

            auto starts_it = starts.begin() + i;
            auto ends_it   = ends.begin() + i;
            auto dims_it   = dims.begin() + i;

            std::vector<int> l_indices(lcount);
            std::vector<int> r_indices(rcount);

            // compute slice indices in a periodic fashion
            calc_reflect_indices(l_indices, *dims_it);
            calc_reflect_indices(r_indices, *dims_it);

            for(int idx : l_indices)
            {
                *starts_it = idx;
                *ends_it   = *starts_it + 1;
                slices.push_back(prog.add_instruction(op::slice{axes, starts, ends}, input));
            }
            // when padding on the left side, the outermost pad should be at the beginning
            std::reverse(slices.begin(), slices.end());
            slices.push_back(input);
            for(int idx : r_indices)
            {
                *starts_it = *dims_it - idx - 1;
                *ends_it   = *starts_it + 1;
                slices.push_back(prog.add_instruction(op::slice{axes, starts, ends}, input));
            }
            input = prog.add_instruction(op::concat{axis}, slices);
        }
        return input;
    }

532
    template <class Op>
Paul's avatar
Paul committed
533
    instruction_ref
534
    parse_conv(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
535
    {
536
        Op op;
537
538
        auto l0      = args[0];
        auto weights = args[1];
539
        std::vector<int64_t> padding;
540
        if(contains(info.attributes, "pads"))
Paul's avatar
Paul committed
541
        {
542
            if(contains(info.attributes, "auto_pad"))
543
            {
544
545
                auto s = info.attributes["auto_pad"].s();
                if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
546
                {
547
548
                    MIGRAPHX_THROW(
                        "PARSE_CONV: auto_pad and padding cannot be specified simultaneously");
549
                }
550
            }
551
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
552
            if(padding.size() != 4)
553
            {
554
                MIGRAPHX_THROW("PARSE_CONV: padding should have 4 values");
555
            }
556
            check_asym_padding(l0, padding, op);
Paul's avatar
Paul committed
557
        }
558
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
559
        {
560
            copy(info.attributes["strides"].ints(), op.stride.begin());
Paul's avatar
Paul committed
561
        }
562
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
563
        {
564
            copy(info.attributes["dilations"].ints(), op.dilation.begin());
Paul's avatar
Paul committed
565
        }
566
        if(contains(info.attributes, "auto_pad"))
567
        {
568
            auto s = info.attributes["auto_pad"].s();
wsttiger's avatar
fixes  
wsttiger committed
569
            if(s.find("SAME") != std::string::npos)
570
            {
571
572
573
574
575
576
                op.padding_mode                 = op::padding_mode_t::same;
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];

                auto input_dims = l0->get_shape().lens();
577
                padding.resize(input_dims.size());
578
579
580
581
582
583
                calculate_padding(
                    0, padding, input_dims[2], op.stride[0], op.dilation[0], weight_h);
                calculate_padding(
                    1, padding, input_dims[3], op.stride[1], op.dilation[1], weight_w);

                check_asym_padding(l0, padding, op);
584
            }
585
586
587
588
589

            auto in_lens                      = args[0]->get_shape().lens();
            auto weight_lens                  = args[1]->get_shape().lens();
            std::array<std::size_t, 2> k_lens = {weight_lens[2], weight_lens[3]};
            l0 = process_auto_pad_attribute(l0, info, op, k_lens, op.dilation, in_lens);
590
        }
591
        if(contains(info.attributes, "group"))
Khalique's avatar
Khalique committed
592
        {
593
            op.group = parse_value(info.attributes.at("group")).at<int>();
Khalique's avatar
Khalique committed
594
        }
kahmed10's avatar
kahmed10 committed
595
596
597
598
599

        auto l1 = prog.add_instruction(op, l0, args[1]);
        return add_bias(args, l1, 1);
    }

600
601
    instruction_ref
    parse_conv_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
602
603
604
605
606
    {
        op::deconvolution op;
        auto l0 = args[0];
        std::vector<std::int64_t> padding;
        bool asymm_padding = false;
607
        if(contains(info.attributes, "pads"))
kahmed10's avatar
kahmed10 committed
608
        {
609
            if(contains(info.attributes, "auto_pad"))
kahmed10's avatar
kahmed10 committed
610
            {
611
612
                auto s = info.attributes["auto_pad"].s();
                if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
kahmed10's avatar
kahmed10 committed
613
614
615
616
                {
                    MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
                }
            }
617
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
kahmed10's avatar
kahmed10 committed
618
619
620
621
622
623
624
625
626
627
628
629
630
631
            if(padding.size() != 4)
            {
                MIGRAPHX_THROW("padding should have 4 values");
            }
            if(padding[0] != padding[2] || padding[1] != padding[3])
            {
                asymm_padding = true;
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
632
        if(contains(info.attributes, "strides"))
kahmed10's avatar
kahmed10 committed
633
        {
634
            copy(info.attributes["strides"].ints(), op.stride.begin());
kahmed10's avatar
kahmed10 committed
635
        }
636
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
637
        {
638
            copy(info.attributes["dilations"].ints(), op.dilation.begin());
Paul's avatar
Paul committed
639
        }
640
        if(contains(info.attributes, "auto_pad"))
kahmed10's avatar
kahmed10 committed
641
        {
642
643
            auto s = info.attributes["auto_pad"].s();
            if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
kahmed10's avatar
kahmed10 committed
644
645
646
647
648
649
650
651
652
653
            {
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
            }

            if(s.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::same;
            }
        }

654
        if(contains(info.attributes, "group"))
kahmed10's avatar
kahmed10 committed
655
        {
656
            op.group = parse_value(info.attributes.at("group")).at<int>();
kahmed10's avatar
kahmed10 committed
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
        }

        auto l1                   = prog.add_instruction(op, l0, args[1]);
        std::vector<int64_t> dims = to_int64_vector(l1->get_shape().lens());
        std::vector<int64_t> curr_shape{dims[2], dims[3]};
        if(asymm_padding)
        {
            op::slice slice_op;
            slice_op.axes   = {0, 1, 2, 3};
            slice_op.starts = {0, 0, 0 + padding[0], 0 + padding[1]};
            slice_op.ends   = {
                dims[0], dims[1], curr_shape[0] - padding[2], curr_shape[1] - padding[3]};

            l1 = prog.add_instruction(slice_op, l1);
        }

673
        if(contains(info.attributes, "output_padding"))
kahmed10's avatar
kahmed10 committed
674
675
        {
            std::vector<int64_t> output_padding;
676
            copy(info.attributes["output_padding"].ints(), std::back_inserter(output_padding));
kahmed10's avatar
kahmed10 committed
677
678
679
680
            output_padding = {0, 0, 0, 0, 0, 0, output_padding[0], output_padding[1]};
            l1             = prog.add_instruction(op::pad{output_padding}, l1);
        }

681
        if(contains(info.attributes, "output_shape"))
kahmed10's avatar
kahmed10 committed
682
683
        {
            std::vector<int64_t> output_shape;
684
            copy(info.attributes["output_shape"].ints(), std::back_inserter(output_shape));
kahmed10's avatar
kahmed10 committed
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
            dims       = to_int64_vector(l1->get_shape().lens());
            curr_shape = {dims[2], dims[3]};
            if(curr_shape != output_shape)
            {
                std::vector<int64_t> target_padding = {0,
                                                       0,
                                                       0,
                                                       0,
                                                       0,
                                                       0,
                                                       output_shape[0] - curr_shape[0],
                                                       output_shape[1] - curr_shape[1]};
                l1 = prog.add_instruction(op::pad{target_padding}, l1);
            }
        }

        return add_bias(args, l1, 1);
Paul's avatar
Paul committed
702
    }
Paul's avatar
Paul committed
703

704
705
    instruction_ref
    parse_pooling(const std::string& name, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
706
    {
Khalique's avatar
Khalique committed
707
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
708
        auto l0 = args[0];
Khalique's avatar
Khalique committed
709
        if(starts_with(name, "Global"))
710
        {
Khalique's avatar
Khalique committed
711
712
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
713
        }
714

715
        if(contains(info.attributes, "pads"))
Paul's avatar
Paul committed
716
        {
717
            if(contains(info.attributes, "auto_pad"))
718
            {
719
                auto s = info.attributes["auto_pad"].s();
720
721
722
723
724
725
726
                if(to_upper(s) != "NOTSET")
                {
                    MIGRAPHX_THROW(
                        "PARSE_POOLING: auto_pad and padding cannot be specified simultaneously");
                }
            }

727
            std::vector<std::int64_t> padding;
728
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
729
            if(padding.size() != 4)
730
            {
731
                MIGRAPHX_THROW("PARSE_POOLING: padding should have 4 values");
732
            }
733
734
735
736
            float pad_val = 0;
            if(op.mode == "max")
                pad_val = std::numeric_limits<float>::lowest();
            check_asym_padding(l0, padding, op, pad_val);
Paul's avatar
Paul committed
737
        }
738

739
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
740
        {
741
            copy(info.attributes["strides"].ints(), op.stride.begin());
Paul's avatar
Paul committed
742
        }
743
        if(contains(info.attributes, "kernel_shape"))
Paul's avatar
Paul committed
744
        {
745
            copy(info.attributes["kernel_shape"].ints(), op.lengths.begin());
Paul's avatar
Paul committed
746
        }
747

748
        if(contains(info.attributes, "auto_pad"))
749
        {
750
751
752
753
754
755
            auto s = info.attributes["auto_pad"].s();
            if(s.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::same;
            }

756
            auto in_lens = args[0]->get_shape().lens();
757
758
759
760
761
762
763
764
            float val    = 0.0f;
            // MaxPool
            if(op.mode == "max")
            {
                val = std::numeric_limits<float>::lowest();
            }

            l0 = process_auto_pad_attribute(l0, info, op, op.lengths, {1, 1}, in_lens, val);
765
766
        }

767
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
768
769
    }

Paul's avatar
Paul committed
770
    instruction_ref
771
    parse_reshape(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
772
    {
773
        op::reshape op;
Paul's avatar
Paul committed
774
775
        if(args.size() == 1)
        {
776
            literal s = parse_value(info.attributes.at("shape"));
777
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
778
779
780
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
781
            auto s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
782
            check_arg_empty(s, "Reshape: dynamic shape is not supported");
Paul's avatar
Paul committed
783
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
784
        }
785

Shucai Xiao's avatar
Shucai Xiao committed
786
        return prog.add_instruction(op, make_contiguous(args[0]));
Paul's avatar
Paul committed
787
788
    }

Paul's avatar
Paul committed
789
    instruction_ref
790
    parse_flatten(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
791
    {
792
        int64_t axis = 1;
793
        if(contains(info.attributes, "axis"))
Paul's avatar
Paul committed
794
        {
795
            axis = parse_value(info.attributes.at("axis")).at<int>();
Paul's avatar
Paul committed
796
        }
797
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
798
799
    }

800
    instruction_ref
801
    parse_squeeze(const std::string&, node_info info, std::vector<instruction_ref> args)
802
803
    {
        op::squeeze op;
804
        literal s = parse_value(info.attributes.at("axes"));
805
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
806
        return prog.add_instruction(op, make_contiguous(args[0]));
807
808
809
    }

    instruction_ref
810
    parse_unsqueeze(const std::string&, node_info info, std::vector<instruction_ref> args)
811
812
    {
        op::unsqueeze op;
813
        literal s = parse_value(info.attributes.at("axes"));
814
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
815
        return prog.add_instruction(op, make_contiguous(args[0]));
816
817
    }

Scott Thornton's avatar
Scott Thornton committed
818
    instruction_ref
819
    parse_concat(const std::string&, node_info info, std::vector<instruction_ref> args)
Scott Thornton's avatar
Scott Thornton committed
820
    {
Shucai Xiao's avatar
Shucai Xiao committed
821
        // change to hande axis to be negative values
822
        if(!contains(info.attributes, "axis"))
Shucai Xiao's avatar
Shucai Xiao committed
823
824
825
826
        {
            MIGRAPHX_THROW("PARSE_CONCAT: attribute axis is required!");
        }

827
        int axis = parse_value(info.attributes.at("axis")).at<int>();
Scott Thornton's avatar
Scott Thornton committed
828
829
830
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
831

832
    instruction_ref
833
    parse_gather(const std::string&, node_info info, std::vector<instruction_ref> args)
834
    {
835
        int axis = 0;
836
        if(contains(info.attributes, "axis"))
837
        {
838
            axis = parse_value(info.attributes.at("axis")).at<int>();
839
        }
840

841
        op::gather op{axis};
Shucai Xiao's avatar
Shucai Xiao committed
842
        return prog.add_instruction(op, make_contiguous(args[0]), make_contiguous(args[1]));
843
844
    }

845
    instruction_ref
846
    parse_slice(const std::string&, node_info info, std::vector<instruction_ref> args)
847
848
    {
        op::slice op;
Shucai Xiao's avatar
Shucai Xiao committed
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870

        // slice can have up to 5 inputs, we first check the 5th one
        // to decide whether MIGRAPHX can handle this slice
        if(args.size() == 5)
        {
            migraphx::argument step_arg = args.back()->eval();
            check_arg_empty(step_arg, "PARSE_SLICE: cannot handle variable steps for slice");
            std::vector<int> steps;
            step_arg.visit([&](auto s) { steps.assign(s.begin(), s.end()); });
            if(!std::all_of(steps.begin(), steps.end(), [](auto s) { return s == 1; }))
            {
                MIGRAPHX_THROW("PARSE_SLICE: cannot handle step other than 1");
            }
        }

        if(args.size() >= 4)
        {
            migraphx::argument axes_arg = args.at(3)->eval();
            check_arg_empty(axes_arg, "PARSE_SLICE: cannot handle variable axes for slice");
            axes_arg.visit([&](auto s) { op.axes.assign(s.begin(), s.end()); });
        }
        else if(contains(info.attributes, "axes"))
871
        {
872
            literal s = parse_value(info.attributes.at("axes"));
873
874
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
Shucai Xiao's avatar
Shucai Xiao committed
875
876

        if(args.size() >= 3)
Khalique's avatar
Khalique committed
877
        {
Shucai Xiao's avatar
Shucai Xiao committed
878
879
880
            migraphx::argument end_arg = args.at(2)->eval();
            check_arg_empty(end_arg, "PARSE_SLICE: cannot handle variable ends for slice");
            end_arg.visit([&](auto s) { op.ends.assign(s.begin(), s.end()); });
Khalique's avatar
Khalique committed
881
        }
Shucai Xiao's avatar
Shucai Xiao committed
882
        else if(contains(info.attributes, "ends"))
883
        {
884
885
            literal s = parse_value(info.attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
886
        }
Shucai Xiao's avatar
Shucai Xiao committed
887
888
889
890
891
892
893
894

        if(args.size() >= 2)
        {
            migraphx::argument start_arg = args.at(1)->eval();
            check_arg_empty(start_arg, "PARSE_SLICE: cannot handle variable starts for slice");
            start_arg.visit([&](auto s) { op.starts.assign(s.begin(), s.end()); });
        }
        else if(contains(info.attributes, "starts"))
895
        {
896
            literal s = parse_value(info.attributes.at("starts"));
897
898
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
Shucai Xiao's avatar
Shucai Xiao committed
899

kahmed10's avatar
kahmed10 committed
900
901
902
903
904
905
906
        if(op.axes.empty())
        {
            std::vector<int64_t> axes(args[0]->get_shape().lens().size());
            std::iota(axes.begin(), axes.end(), int64_t{0});
            op.axes = axes;
        }

907
908
909
        return prog.add_instruction(op, args[0]);
    }

910
911
    instruction_ref
    parse_constant(const std::string&, node_info info, const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
912
    {
913
        literal v = parse_value(info.attributes.at("value"));
914
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
915
        if(v.get_shape().elements() == 0)
916
917
918
919
        {
            return prog.add_literal(literal{});
        }

920
        auto dim_size = info.attributes.at("value").t().dims_size();
921
922
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
923
        {
924
            migraphx::shape scalar_shape{v.get_shape().type()};
925
926
927
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
928
929
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
930

Paul's avatar
Paul committed
931
    instruction_ref
932
    parse_gemm(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
933
934
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
935
        float beta  = 1.0f;
Paul's avatar
Paul committed
936
937
        bool transa = false;
        bool transb = false;
938
        if(contains(info.attributes, "alpha"))
Paul's avatar
Paul committed
939
        {
940
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Paul's avatar
Paul committed
941
        }
942
        if(contains(info.attributes, "beta"))
Paul's avatar
Paul committed
943
        {
944
            beta = parse_value(info.attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
945
        }
946
        if(contains(info.attributes, "transA"))
Paul's avatar
Paul committed
947
        {
948
            transa = parse_value(info.attributes.at("transA")).at<bool>();
Paul's avatar
Paul committed
949
        }
950
        if(contains(info.attributes, "transB"))
Paul's avatar
Paul committed
951
        {
952
            transb = parse_value(info.attributes.at("transB")).at<bool>();
Paul's avatar
Paul committed
953
        }
954
955
956
957
958
959

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

960
961
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
962
963
        if(args.size() == 3)
        {
964
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
965
            {
Shucai Xiao's avatar
Shucai Xiao committed
966
                auto out_lens   = l1->get_shape().lens();
967
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
968
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
969
970
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
971
                {
972
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
973
                }
974
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
975
            }
Paul's avatar
Paul committed
976
        }
977
978

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
979
980
    }

981
    template <class Op>
982
    instruction_ref
983
    parse_matmul(const std::string&, const node_info&, std::vector<instruction_ref> args)
984
    {
Shucai Xiao's avatar
Shucai Xiao committed
985
986
        auto l0      = args[0];
        auto l1      = args[1];
987
988
989
990
991
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
992
        if(l0_lens.size() == 1)
993
994
995
996
997
998
999
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
1000
        if(l1_lens.size() == 1)
1001
1002
1003
1004
1005
1006
1007
1008
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
1009
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
1010
1011
1012
1013
1014
1015
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
1016
            l0_broadcasted_lens = output_lens;
1017
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
1018
            l1_broadcasted_lens = output_lens;
1019
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
1020
            if(l0_lens != l0_broadcasted_lens)
1021
1022
1023
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
1024
            if(l1_lens != l1_broadcasted_lens)
1025
1026
1027
1028
1029
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

1030
        auto dot_res     = prog.add_instruction(Op{1, 0}, bl0, bl1);
1031
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
1032
        if(is_a_prepended)
1033
1034
1035
1036
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
1037
        if(is_b_appended)
1038
1039
1040
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
1041

1042
1043
1044
        return dot_res;
    }

1045
    instruction_ref
1046
    parse_batchnorm(const std::string&, node_info info, std::vector<instruction_ref> args)
1047
    {
Scott Thornton's avatar
Scott Thornton committed
1048
1049
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
1050
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
1051
        if(contains(info.attributes, "epsilon"))
1052
        {
1053
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
1054
        }
1055
        if(contains(info.attributes, "momentum"))
1056
        {
1057
            momentum = parse_value(info.attributes.at("momentum")).at<float>();
1058
        }
1059
        if(contains(info.attributes, "spatial"))
1060
        {
1061
            bn_mode = (parse_value(info.attributes.at("spatial")).at<uint64_t>() > 0)
1062
1063
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
1064
        }
Paul's avatar
Paul committed
1065
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
1066
        return prog.add_instruction(op, std::move(args));
1067
1068
    }

1069
1070
    instruction_ref
    parse_instancenorm(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
1071
1072
1073
1074
1075
1076
    {
        // y = scale * ( x - mean ) / sqrt ( variance + epsilon ) + bias
        // mean = reduce_mean({H, W}, x)
        // variance = reduce_mean({H, W}, (x - mean)^2)

        float epsilon = 1e-5f;
1077
        if(contains(info.attributes, "epsilon"))
kahmed10's avatar
kahmed10 committed
1078
        {
1079
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
kahmed10's avatar
kahmed10 committed
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
        }
        auto x     = args[0];
        auto scale = args[1];
        auto bias  = args[2];
        auto dims  = x->get_shape().lens();

        auto mean            = prog.add_instruction(op::reduce_mean{{2, 3}}, x);
        auto mean_bcast      = prog.add_instruction(op::multibroadcast{dims}, mean);
        auto l0              = prog.add_instruction(op::sqdiff{}, x, mean_bcast);
        auto variance        = prog.add_instruction(op::reduce_mean{{2, 3}}, l0);
        auto l1              = prog.add_instruction(op::sub{}, x, mean_bcast);
        auto epsilon_literal = prog.add_literal(epsilon);
        auto epsilon_bcast   = prog.add_instruction(op::multibroadcast{dims}, epsilon_literal);
        auto variance_bcast  = prog.add_instruction(op::multibroadcast{dims}, variance);
        auto l2              = prog.add_instruction(op::add{}, variance_bcast, epsilon_bcast);
        auto l3              = prog.add_instruction(op::rsqrt{}, l2);
        auto l4              = prog.add_instruction(op::mul{}, l1, l3);
        auto scale_bcast     = prog.add_instruction(op::broadcast{1, dims}, scale);
        ;
        auto bias_bcast = prog.add_instruction(op::broadcast{1, dims}, bias);
        auto l5         = prog.add_instruction(op::mul{}, l4, scale_bcast);
        return prog.add_instruction(op::add{}, l5, bias_bcast);
    }

1104
1105
    instruction_ref
    parse_leaky_relu(const std::string&, node_info info, std::vector<instruction_ref> args)
1106
    {
Khalique's avatar
Khalique committed
1107
        float alpha = 0.01; // default alpha val for leaky relu
1108
        if(contains(info.attributes, "alpha"))
1109
        {
1110
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
1111
1112
1113
1114
1115
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

1116
    instruction_ref parse_elu(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1117
1118
    {
        float alpha = 1.0; // default alpha val for elu
1119
        if(contains(info.attributes, "alpha"))
Khalique's avatar
Khalique committed
1120
        {
1121
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Khalique's avatar
Khalique committed
1122
1123
1124
1125
1126
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

1127
    instruction_ref parse_lrn(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1128
1129
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
1130
1131
1132
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
1133
1134
1135
1136
1137
1138
1139
1140
        if(contains(info.attributes, "alpha"))
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
        if(contains(info.attributes, "beta"))
            beta = parse_value(info.attributes.at("beta")).at<float>();
        if(contains(info.attributes, "bias"))
            bias = parse_value(info.attributes.at("bias")).at<float>();
        if(contains(info.attributes, "size"))
            size = parse_value(info.attributes.at("size")).at<int>();
Khalique's avatar
Khalique committed
1141
1142
1143
1144
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

1145
1146
    instruction_ref
    parse_imagescaler(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1147
1148
1149
    {
        float scale = 1.0;
        std::vector<float> bias{};
1150
        if(contains(info.attributes, "scale"))
Khalique's avatar
Khalique committed
1151
        {
1152
            scale = parse_value(info.attributes.at("scale")).at<float>();
Khalique's avatar
Khalique committed
1153
1154
        }

1155
        if(contains(info.attributes, "bias"))
Khalique's avatar
Khalique committed
1156
        {
1157
            auto&& bias_floats = info.attributes["bias"].floats();
Khalique's avatar
Khalique committed
1158
1159
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
Shucai Xiao's avatar
Shucai Xiao committed
1160
1161
1162
        auto input_shape       = args.front()->get_shape();
        auto const& input_lens = input_shape.lens();
        auto input_type        = input_shape.type();
Khalique's avatar
Khalique committed
1163

Shucai Xiao's avatar
Shucai Xiao committed
1164
1165
        auto scale_val = prog.add_literal(literal{shape{input_type}, {scale}});
        auto bias_vals = prog.add_literal(literal{shape{input_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
1166

1167
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
1168
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
1169
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
1170
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
1171
    }
Khalique's avatar
Khalique committed
1172

Khalique's avatar
Khalique committed
1173
    instruction_ref
1174
    parse_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1175
1176
    {
        std::vector<int64_t> perm{};
1177
        if(contains(info.attributes, "perm"))
Khalique's avatar
Khalique committed
1178
        {
1179
            auto&& perm_vals = info.attributes["perm"].ints();
Khalique's avatar
Khalique committed
1180
1181
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
1182
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
1183
1184
    }

1185
    instruction_ref parse_pad(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1186
1187
    {
        std::vector<int64_t> pads{};
1188
1189
1190
1191
1192
1193
1194
        if(args.size() >= 2)
        {
            auto pad_arg = args.at(1)->eval();
            check_arg_empty(pad_arg, "PARSE_PAD: pad input must be constant");
            pad_arg.visit([&](auto v) { pads.assign(v.begin(), v.end()); });
        }
        else if(contains(info.attributes, "pads"))
Khalique's avatar
Khalique committed
1195
        {
1196
            auto&& pad_vals = info.attributes["pads"].ints();
Khalique's avatar
Khalique committed
1197
1198
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
1199
1200
1201
1202
1203
        else
        {
            MIGRAPHX_THROW("PARSE_PAD: pad must be available");
        }

1204
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
1205
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
1206
1207
1208
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
1209

kahmed10's avatar
kahmed10 committed
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
        if(contains(info.attributes, "mode"))
        {
            auto mode = info.attributes.at("mode").s();
            if(mode == "reflect")
                return reflect_pad(pads, args.front());
            if(mode != "constant")
            {
                MIGRAPHX_THROW(
                    "PARSE_PAD: migraphx currently only supports constant and reflect padding");
            }
        }

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
        float value = 0.0f;
        // third input is the value
        if(args.size() == 3)
        {
            auto val_ins = args.at(2);
            if(!val_ins->can_eval())
            {
                MIGRAPHX_THROW("PARSE_PAD: input value must be constant");
            }
            auto val_arg = val_ins->eval();
            if(val_arg.get_shape().elements() != 1)
            {
                MIGRAPHX_THROW("PARSE_PAD: value should contain only one element");
            }
            value = val_arg.at<float>();
        }
        else if(contains(info.attributes, "value"))
Khalique's avatar
Khalique committed
1239
        {
1240
            value = parse_value(info.attributes.at("value")).at<float>();
Khalique's avatar
Khalique committed
1241
        }
1242

Khalique's avatar
Khalique committed
1243
1244
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
1245
1246
1247
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
1248
    parse_shape(const std::string&, const node_info&, std::vector<instruction_ref> args)
1249
1250
    {
        if(args.size() != 1)
1251
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
1264
1265
    instruction_ref
    parse_constant_fill(const std::string&, node_info info, std::vector<instruction_ref> args)
1266
1267
1268
1269
1270
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

1271
        if(contains(info.attributes, "dtype"))
1272
        {
1273
            dtype = parse_value(info.attributes.at("dtype")).at<int>();
1274
        }
Shucai Xiao's avatar
Shucai Xiao committed
1275
        shape::type_t type = get_type(dtype);
1276

1277
        if(contains(info.attributes, "input_as_shape"))
1278
        {
1279
            input_as_shape = parse_value(info.attributes.at("input_as_shape")).at<int>();
1280
1281
        }

1282
        if(contains(info.attributes, "value"))
1283
        {
1284
            value = parse_value(info.attributes.at("value")).at<float>();
1285
1286
        }

1287
        if(contains(info.attributes, "extra_shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1288
        {
1289
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
1290
1291
        }

1292
1293
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1294
            if(args.size() != 1)
1295
            {
1296
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
1297
1298
            }

1299
            if(contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1300
            {
1301
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
1302
                               "at the same time");
1303
1304
            }

1305
            migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1306
            check_arg_empty(in, "ConstantFill: dynamic shape is not supported");
1307

1308
1309
1310
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
1311
1312
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1313
1314
1315
        }
        else if(input_as_shape == 0)
        {
1316
            if(!contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1317
            {
1318
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
1319
1320
            }

1321
            literal ls = parse_value(info.attributes.at("shape"));
1322
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
1323
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
1324
            migraphx::shape s{type, dims};
1325
1326
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1327
1328
1329
        }
        else
        {
1330
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
1331
1332
1333
        }
    }

1334
1335
    instruction_ref
    parse_constant_of_shape(const std::string&, node_info info, std::vector<instruction_ref> args)
1336
1337
    {
        literal l_val{};
1338
        if(contains(info.attributes, "value"))
1339
        {
1340
            l_val = parse_value(info.attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
1341
            if(l_val.get_shape().elements() != 1)
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
1353

Shucai Xiao's avatar
Shucai Xiao committed
1354
        if(args.empty())
1355
        {
Shucai Xiao's avatar
Shucai Xiao committed
1356
            MIGRAPHX_THROW("ConstantOfShape : must have 1 input!");
1357
1358
1359
        }
        else
        {
1360
1361
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
1362
            if(args[0]->get_shape().elements() == 0)
1363
            {
1364
                s = migraphx::shape{type, {1}, {0}};
1365
            }
1366
1367
1368
            else
            {
                migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1369
                check_arg_empty(in, "ConstantOfShape: dynamic shape is not supported");
1370

1371
1372
1373
1374
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
1375

Shucai Xiao's avatar
Shucai Xiao committed
1376
            literal l_out{};
1377
            l_val.visit([&](auto val) {
Shucai Xiao's avatar
Shucai Xiao committed
1378
                using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
1379
                // l_val contains only one element
1380
                std::vector<val_type> out_vec(s.elements(), val.front());
1381
1382
1383
1384
1385
1386
1387
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1388
    instruction_ref
1389
    parse_expand(const std::string&, const node_info&, std::vector<instruction_ref> args)
1390
    {
Shucai Xiao's avatar
Shucai Xiao committed
1391
        auto in_lens             = args[0]->get_shape().lens();
1392
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1393
        check_arg_empty(arg_s, "Expand: dynamic shape is not supported");
1394
1395
1396
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
Shucai Xiao's avatar
Shucai Xiao committed
1397
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
1398
1399
    }

Shucai Xiao's avatar
Shucai Xiao committed
1400
    std::vector<instruction_ref>
1401
    parse_rnn(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1402
1403
    {
        migraphx::shape input_shape = args[0]->get_shape();
1404
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
1405

1406
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
1407
        {
1408
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1409
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1410
1411
1412
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
1413
1414
1415
1416
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1417
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
1418
        {
1419
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
1420
1421
        }

1422
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1423
1424
        if(direction == "bidirectional")
        {
1425
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1426
1427
1428
        }
        else if(direction == "reverse")
        {
1429
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1430
1431
        }

1432
        std::vector<std::string> vec_names{"tanh"};
1433
        if(contains(info.attributes, "activations"))
1434
        {
1435
            auto names = info.attributes.at("activations").strings();
1436
            vec_names.clear();
1437
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1438
1439
1440
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1441
1442
        }

1443
1444
1445
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1446
        if(name_it != vec_names.end())
1447
1448
1449
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1450

Shucai Xiao's avatar
Shucai Xiao committed
1451
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1452
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1453
        // if only one actv function is provided, we use it in both
1454
        // forward and reverse direction
1455
        if(dirct == op::rnn_direction::bidirectional)
1456
        {
Shucai Xiao's avatar
Shucai Xiao committed
1457
            if(vec_names.size() == 1)
1458
1459
1460
1461
1462
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1463
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1464
1465
1466
1467
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& fn) { return map_actv_funcs[fn]; });
Shucai Xiao's avatar
Shucai Xiao committed
1468

Shucai Xiao's avatar
Shucai Xiao committed
1469
1470
        // To be added later
        float clip = 0.0;
1471
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
1472
        {
1473
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
1474
1475
        }

1476
1477
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1478
        if(args.size() < 6)
1479
1480
1481
1482
1483
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1484
1485
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1486
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1487

1488
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1489
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1490

Shucai Xiao's avatar
Shucai Xiao committed
1491
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1492
1493
    }

1494
    std::vector<instruction_ref>
1495
    parse_gru(const std::string&, node_info info, std::vector<instruction_ref> args)
1496
1497
1498
1499
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

1500
        if(contains(info.attributes, "hidden_size"))
1501
        {
1502
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1503
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1504
1505
1506
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1507
1508
1509
1510
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1511
        if(contains(info.attributes, "direction"))
1512
        {
1513
            direction = info.attributes.at("direction").s();
1514
1515
        }

1516
        op::rnn_direction dirct = op::rnn_direction::forward;
1517
1518
        if(direction == "bidirectional")
        {
1519
            dirct = op::rnn_direction::bidirectional;
1520
1521
1522
        }
        else if(direction == "reverse")
        {
1523
            dirct = op::rnn_direction::reverse;
1524
1525
        }

1526
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1527
        if(contains(info.attributes, "activations"))
1528
        {
1529
            auto names = info.attributes.at("activations").strings();
1530
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1531
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1532
1533
1534
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1535
1536
        }

1537
        // need 4 activation functions
1538
        if(dirct == op::rnn_direction::bidirectional)
1539
        {
Shucai Xiao's avatar
Shucai Xiao committed
1540
            // 4 activation functions are used in the bidirectional
1541
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1542
1543
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1544
1545
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1546
1547
1548
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1549
            if(vec_names.size() == 1)
1550
            {
1551
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1552
            }
1553
            else if(vec_names.size() == 2)
1554
            {
1555
1556
1557
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1558
            }
1559
            else if(vec_names.size() == 3)
1560
            {
1561
                vec_names.push_back(vec_names.at(2));
1562
1563
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1564
        else
1565
        {
1566
            if(vec_names.size() == 1)
1567
            {
1568
                vec_names.push_back(vec_names.at(0));
1569
1570
1571
            }
        }

1572
1573
1574
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1575
        if(name_it != vec_names.end())
1576
1577
1578
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1579

Shucai Xiao's avatar
Shucai Xiao committed
1580
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1581
1582
1583
1584
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
1585
1586

        float clip = 0.0;
1587
        if(contains(info.attributes, "clip"))
1588
        {
1589
            clip = parse_value(info.attributes.at("clip")).at<float>();
1590
1591
1592
        }

        int linear_before_reset = 0;
1593
        if(contains(info.attributes, "linear_before_reset"))
1594
        {
1595
            linear_before_reset = parse_value(info.attributes.at("linear_before_reset")).at<int>();
1596
1597
        }

Shucai Xiao's avatar
Shucai Xiao committed
1598
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1599
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1600
1601
1602
1603
1604
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1605
1606
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1607
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1608
            std::move(args));
1609
1610

        // second output for last gru output
1611
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1612

Shucai Xiao's avatar
Shucai Xiao committed
1613
        return {hidden_states, last_output};
1614
1615
    }

Shucai Xiao's avatar
Shucai Xiao committed
1616
    std::vector<instruction_ref>
1617
    parse_lstm(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1618
1619
1620
1621
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

1622
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
1623
        {
1624
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1625
1626
1627
1628
1629
1630
1631
1632
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1633
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
1634
        {
1635
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
1636
1637
        }

Shucai Xiao's avatar
Shucai Xiao committed
1638
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1639
1640
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1641
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1642
1643
1644
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1645
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1646
        }
Shucai Xiao's avatar
Shucai Xiao committed
1647
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1648
        {
Shucai Xiao's avatar
Shucai Xiao committed
1649
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1650
1651
1652
1653
1654
1655
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1656
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
1657
        if(contains(info.attributes, "activations"))
Shucai Xiao's avatar
Shucai Xiao committed
1658
        {
1659
            auto names = info.attributes.at("activations").strings();
Shucai Xiao's avatar
Shucai Xiao committed
1660
1661
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1662
1663
1664
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1665
1666
1667
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1668
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1669
1670
1671
1672
1673
1674
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1675
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1676
1677
1678
1679
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1680
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1681
1682
1683
1684
1685
1686
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1687
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1688
1689
1690

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1691
1692
1693
1694
1695
1696
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1697
1698
1699
1700
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1701
1702
1703
1704
1705
1706
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1707
1708
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1709
1710
1711
1712
1713
1714
1715
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1716
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1717

Shucai Xiao's avatar
Shucai Xiao committed
1718
1719
1720
1721
1722
1723
1724
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1725
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1726

Shucai Xiao's avatar
Shucai Xiao committed
1727
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1728
1729
1730
1731
1732
1733
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1734
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1735
1736
1737

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1738
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1739
1740
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1741
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1742
1743
1744
            }
        }

1745
1746
1747
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1748
        if(name_it != vec_names.end())
1749
1750
1751
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1752
1753

        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1754
1755
1756
1757
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
Shucai Xiao's avatar
Shucai Xiao committed
1758
1759

        float clip = 0.0;
1760
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
1761
        {
1762
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
1763
1764
1765
        }

        int input_forget = 0;
1766
        if(contains(info.attributes, "input_forget"))
Shucai Xiao's avatar
Shucai Xiao committed
1767
        {
1768
            input_forget = parse_value(info.attributes.at("input_forget")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1769
1770
1771
1772
1773
1774
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1775
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1776
1777
1778
1779
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1780
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1781
1782

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1783
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1784
1785
1786
1787
1788
1789

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }
1790

Shucai Xiao's avatar
Shucai Xiao committed
1791
    template <class T>
1792
1793
    instruction_ref
    parse_reduce_oper(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1794
1795
1796
1797
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
1798
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
1799
        std::iota(axes.begin(), axes.end(), 0);
1800
        if(contains(info.attributes, "axes"))
Shucai Xiao's avatar
Shucai Xiao committed
1801
1802
        {
            axes.clear();
1803
            auto&& attr_axes = info.attributes["axes"].ints();
1804
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
1805
1806
1807
        }

        int keep_dims = 1;
1808
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
1809
        {
1810
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1811
1812
1813
1814
        }

        if(keep_dims == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1815
            return prog.add_instruction(T{axes}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1816
1817
1818
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
1819
            auto ins = prog.add_instruction(T{axes}, std::move(args));
1820
            return prog.add_instruction(op::squeeze{axes}, ins);
1821
1822
        }
    }
1823

Shucai Xiao's avatar
Shucai Xiao committed
1824
    instruction_ref
1825
    parse_reduce_l1(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1826
1827
    {
        auto abs_ins = prog.add_instruction(op::abs{}, args[0]);
1828
        return parse_reduce_oper<op::reduce_sum>({}, std::move(info), {abs_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1829
1830
1831
    }

    instruction_ref
1832
    parse_reduce_l2(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1833
1834
    {
        auto square_ins = prog.add_instruction(op::mul{}, args[0], args[0]);
1835
        auto sum_ins    = parse_reduce_oper<op::reduce_sum>({}, std::move(info), {square_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1836
1837
1838
        return prog.add_instruction(op::sqrt{}, sum_ins);
    }

1839
1840
    instruction_ref
    parse_reduce_log_sum(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1841
    {
1842
        auto sum_ins = parse_reduce_oper<op::reduce_sum>({}, std::move(info), std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1843
1844
1845
        return prog.add_instruction(op::log{}, sum_ins);
    }

1846
1847
    instruction_ref
    parse_reduce_log_sum_exp(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1848
1849
    {
        auto exp_ins = prog.add_instruction(op::exp{}, args[0]);
1850
        auto sum_ins = parse_reduce_oper<op::reduce_sum>({}, std::move(info), {exp_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1851
1852
1853
        return prog.add_instruction(op::log{}, sum_ins);
    }

1854
1855
    instruction_ref
    parse_reduce_sum_square(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1856
1857
    {
        auto square_ins = prog.add_instruction(op::mul{}, args[0], args[0]);
1858
        return parse_reduce_oper<op::reduce_sum>({}, std::move(info), {square_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1859
1860
    }

Shucai Xiao's avatar
Shucai Xiao committed
1861
    instruction_ref
1862
    parse_cast(const std::string&, node_info info, std::vector<instruction_ref> args)
1863
    {
1864
        if(!contains(info.attributes, "to"))
1865
1866
1867
1868
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

1869
        int to_type        = parse_value(info.attributes.at("to")).at<int>();
1870
1871
1872
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
1873

1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
    std::vector<instruction_ref>
    parse_split(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        int64_t axis = 0;
        if(contains(info.attributes, "axis"))
        {
            axis = parse_value(info.attributes.at("axis")).at<int>();
        }

        auto lens      = args[0]->get_shape().lens();
        int64_t n_rank = static_cast<int64_t>(lens.size());
        if((axis < -n_rank) || (axis >= n_rank))
        {
            MIGRAPHX_THROW("PARSE_SPLIT: axis attribute out of rank!");
        }
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;

        std::vector<int64_t> vec_splits;
        if(contains(info.attributes, "split"))
        {
            literal s = parse_value(info.attributes.at("split"));
            s.visit([&](auto v) { vec_splits.assign(v.begin(), v.end()); });

            if(std::accumulate(vec_splits.begin(), vec_splits.end(), int64_t(0)) !=
               static_cast<int64_t>(lens[tuned_axis]))
            {
                MIGRAPHX_THROW("PARSE_SPLIT: sum of split attribute unequal to dim size of axis!");
            }
        }
        // no split attribute, input is equally divided
        else
        {
            if((lens[tuned_axis] % info.num_outputs) != 0)
            {
                MIGRAPHX_THROW("PARSE_SPLIT: input cannot be equally divided into " +
                               to_string(info.num_outputs) + " splits!");
            }
            auto dl = lens[tuned_axis] / info.num_outputs;
            vec_splits.resize(info.num_outputs, dl);
        }

        std::vector<instruction_ref> ret_ins;
        int64_t start = 0;
        for(auto sl : vec_splits)
        {
            ret_ins.push_back(
                prog.add_instruction(op::slice{{axis}, {start}, {start + sl}}, args[0]));
            start += sl;
        }

        return ret_ins;
    }

kahmed10's avatar
kahmed10 committed
1927
1928
1929
1930
    instruction_ref
    parse_onehot(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        migraphx::argument depth_arg = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1931
        check_arg_empty(depth_arg, "PARSE_ONEHOT: depth - dynamic shape not supported");
kahmed10's avatar
kahmed10 committed
1932
1933
1934
        size_t depth = depth_arg.at<size_t>();

        int64_t axis = -1;
Shucai Xiao's avatar
Shucai Xiao committed
1935
1936
1937
1938
        if(contains(info.attributes, "axis"))
        {
            axis = info.attributes.at("axis").i();
        }
kahmed10's avatar
kahmed10 committed
1939

Shucai Xiao's avatar
Shucai Xiao committed
1940
        std::vector<float> depth_input(depth * depth, 0.0f);
kahmed10's avatar
kahmed10 committed
1941
1942
        for(int i = 0; i < depth; i++)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1943
            depth_input[depth * i + i] = 1.0f;
kahmed10's avatar
kahmed10 committed
1944
1945
        }

Shucai Xiao's avatar
Shucai Xiao committed
1946
1947
1948
1949
1950
1951
1952
1953
        auto type = args[2]->get_shape().type();
        shape s{type, {depth, depth}};
        auto l_val      = prog.add_literal({s, depth_input});
        auto gather_out = prog.add_instruction(op::gather{0}, {l_val, args[0]});

        // Finally, we need a transpose to move the inner most dim to the axis dim
        int n_rank = gather_out->get_shape().lens().size();
        if(axis < -n_rank or axis >= n_rank)
kahmed10's avatar
kahmed10 committed
1954
        {
Shucai Xiao's avatar
Shucai Xiao committed
1955
            MIGRAPHX_THROW("PARSE_ONEHOT: axis out of range");
kahmed10's avatar
kahmed10 committed
1956
        }
Shucai Xiao's avatar
Shucai Xiao committed
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;
        std::vector<int64_t> perm(n_rank - 1);
        std::iota(perm.begin(), perm.end(), 0);
        perm.insert(perm.begin() + tuned_axis, n_rank - 1);
        auto tr_out = prog.add_instruction(op::transpose{perm}, gather_out);
        auto lens   = tr_out->get_shape().lens();

        auto off_val       = prog.add_instruction(op::slice{{0}, {0}, {1}}, args[2]);
        auto on_val        = prog.add_instruction(op::slice{{0}, {1}, {2}}, args[2]);
        auto diff          = prog.add_instruction(op::sub{}, on_val, off_val);
        auto unsq_off_val  = prog.add_instruction(op::multibroadcast{lens}, off_val);
        auto unsq_diff_val = prog.add_instruction(op::multibroadcast{lens}, diff);
        auto l_mul         = prog.add_instruction(op::mul{}, tr_out, unsq_diff_val);
        return prog.add_instruction(op::add{}, l_mul, unsq_off_val);
kahmed10's avatar
kahmed10 committed
1971
1972
    }

kahmed10's avatar
kahmed10 committed
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
    instruction_ref
    parse_tile(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        migraphx::argument arg_s = args[1]->eval();
        check_arg_empty(arg_s, "PARSE_TILE: dynamic shape is not supported");
        std::vector<std::int64_t> repeats;
        arg_s.visit([&](auto input) { repeats.assign(input.begin(), input.end()); });

        auto l0 = args[0];
        for(int i = 0; i < repeats.size(); i++)
        {
            auto l1 = l0;
            for(int j = 1; j < repeats[i]; j++)
            {
                l0 = prog.add_instruction(op::concat{i}, l0, l1);
            }
        }
        return l0;
    }

kahmed10's avatar
kahmed10 committed
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
    instruction_ref
    parse_range(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {

        auto start_arg = args[0]->eval();
        check_arg_empty(start_arg, "PARSE_RANGE: start arg dynamic shape is not supported");
        auto limit_arg = args[1]->eval();
        check_arg_empty(limit_arg, "PARSE_RANGE: limit arg dynamic shape is not supported");
        auto delta_arg = args[2]->eval();
        check_arg_empty(delta_arg, "PARSE_RANGE: delta arg dynamic shape is not supported");

        assert(args[0]->get_shape().elements() == 1 and args[1]->get_shape().elements() == 1 and
               args[2]->get_shape().elements() == 1);

        instruction_ref l0;

        visit_all(start_arg, limit_arg, delta_arg)([&](auto start, auto limit, auto delta) {
            auto start_val = start.front();
            auto limit_val = limit.front();
            auto delta_val = delta.front();

            size_t num_elements = static_cast<size_t>(
                ceil(static_cast<double>(limit_val - start_val) / static_cast<double>(delta_val)));

            assert(num_elements > 0);

            using type = decltype(start_val);

            std::vector<type> range_vals(num_elements);

            std::generate(range_vals.begin(), range_vals.end(), [&]() {
                auto result = start_val;
                start_val += delta_val;
                return result;
            });

            l0 = prog.add_literal({shape{args[0]->get_shape().type(), {num_elements}}, range_vals});
        });
        return l0;
    }

Paul's avatar
Paul committed
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
2046
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
2047
2048
2049
        }
    }

Paul Fultz II's avatar
Paul Fultz II committed
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
    void parse_from(const void* data, std::size_t size)
    {
        onnx::ModelProto model;
        if(model.ParseFromArray(data, size))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            MIGRAPHX_THROW("Failed reading onnx file.");
        }
    }

Paul's avatar
Paul committed
2066
2067
    void parse_graph(const onnx::GraphProto& graph)
    {
2068
        for(auto&& f : graph.initializer())
2069
2070
            instructions[f.name()] = prog.add_literal(parse_tensor(f));

Paul's avatar
Paul committed
2071
2072
2073
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
2074
2075
            // input not in initializer_data, so it is a real input
            if(!contains(instructions, name))
2076
            {
2077
2078
2079
2080
2081
2082
2083
                std::vector<std::size_t> dims;
                if(map_input_dims.count(name) > 0)
                {
                    dims = map_input_dims.at(name);
                }

                shape s            = parse_type(input.type(), dims);
2084
2085
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
2086
        }
2087
2088

        for(auto&& node : graph.node())
Paul's avatar
Paul committed
2089
        {
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(input.empty())
                {
                    this->parse_undefined(input);
                }
                if(instructions.count(input) == 0)
                {
                    MIGRAPHX_THROW("PARSE_GRAPH: invalid onnx file. Input \"" + input +
                                   "\" is unavailable due to unordered nodes!");
                }
                args.push_back(instructions.at(input));
            }

            std::vector<instruction_ref> result;
            std::size_t output_num = static_cast<std::size_t>(node.output().size());
            if(ops.count(node.op_type()) == 0)
            {
2109
2110
2111
2112
                if(skip_unknown_operators)
                    result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
                else
                    MIGRAPHX_THROW("Unknown operator: " + node.op_type());
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
            }
            else
            {
                result = ops[node.op_type()]({get_attributes(node), output_num}, args);
            }

            output_num = std::min<std::size_t>(output_num, result.size());
            std::transform(node.output().begin(),
                           node.output().begin() + output_num,
                           result.begin(),
                           std::inserter(instructions, instructions.end()),
                           [](auto&& x, auto&& y) { return std::make_pair(x, y); });
Paul's avatar
Paul committed
2125
        }
Shucai Xiao's avatar
Shucai Xiao committed
2126

2127
        // Find instructions corresponding to the output
Shucai Xiao's avatar
Shucai Xiao committed
2128
        auto prog_output = graph.output();
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
        std::vector<std::string> all_output_names;
        std::vector<std::string> prog_output_names;
        std::transform(prog_output.begin(),
                       prog_output.end(),
                       std::back_inserter(all_output_names),
                       [](auto& node) { return node.name(); });
        std::copy_if(
            all_output_names.begin(),
            all_output_names.end(),
            std::back_inserter(prog_output_names),
            [&](const auto& name) { return !(name.empty() or instructions.count(name) == 0); });

        std::vector<instruction_ref> output_ins;
        std::transform(prog_output_names.begin(),
                       prog_output_names.end(),
                       std::back_inserter(output_ins),
                       [&](const auto& name) { return instructions[name]; });

        // add the return instuction
        prog.add_return(output_ins);
Paul's avatar
Paul committed
2149
2150
    }

Shucai Xiao's avatar
Shucai Xiao committed
2151
    void parse_undefined(const std::string& name)
2152
    {
Shucai Xiao's avatar
Shucai Xiao committed
2153
        auto ins           = prog.add_instruction(op::undefined{});
2154
2155
2156
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
Paul's avatar
Paul committed
2181
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
2182
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
Paul's avatar
Paul committed
2183
2184
2185
2186
2187
        case onnx::AttributeProto::UNDEFINED:
        case onnx::AttributeProto::GRAPH:
        case onnx::AttributeProto::STRING:
        case onnx::AttributeProto::STRINGS:
        case onnx::AttributeProto::TENSORS:
2188
2189
        case onnx::AttributeProto::SPARSE_TENSOR:
        case onnx::AttributeProto::SPARSE_TENSORS:
Paul's avatar
Paul committed
2190
2191
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
2192
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
2193
2194
2195
2196
2197
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
2198
2199
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
2200
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
2201
2202
            switch(t.data_type())
            {
2203
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Khalique's avatar
Khalique committed
2204
2205
2206
2207
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
2208
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Paul's avatar
Paul committed
2209
2210
2211
2212
            case onnx::TensorProto::INT8:
            case onnx::TensorProto::UINT16:
            case onnx::TensorProto::INT16:
            case onnx::TensorProto::INT32:
2213
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Paul's avatar
Paul committed
2214
2215
2216
2217
2218
2219
            case onnx::TensorProto::UINT8:
            case onnx::TensorProto::STRING:
            case onnx::TensorProto::UNDEFINED:
            case onnx::TensorProto::UINT32:
            case onnx::TensorProto::UINT64:
            case onnx::TensorProto::COMPLEX64:
Scott Thornton's avatar
Scott Thornton committed
2220
2221
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
2222
            MIGRAPHX_THROW("Invalid tensor type");
2223
        }
Paul's avatar
Paul committed
2224
2225
2226
2227
2228
2229
        switch(t.data_type())
        {
        case onnx::TensorProto::INT8:
        case onnx::TensorProto::UINT16:
        case onnx::TensorProto::INT16:
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
2230
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
2231
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
2232
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
2233
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
2234
2235
2236
2237
        case onnx::TensorProto::DOUBLE:
            return create_literal(shape::double_type, dims, t.double_data());
        case onnx::TensorProto::FLOAT:
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
2238
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
2239
        {
Khalique's avatar
Khalique committed
2240
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
2241
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
2242
2243
2244
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
2245
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
2246
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
2247
        }
Paul's avatar
Paul committed
2248
2249
2250
2251
2252
2253
        case onnx::TensorProto::UNDEFINED:
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::UINT32:
        case onnx::TensorProto::UINT64:
        case onnx::TensorProto::COMPLEX64:
Paul's avatar
Paul committed
2254
2255
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
2256
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
2257
2258
    }

Khalique's avatar
Khalique committed
2259
    static literal
2260
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
2261
    {
Khalique's avatar
Khalique committed
2262
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
2263
        if(dims.empty())
2264
            return literal{{shape_type}, data};
2265
2266
2267
        return literal{{shape_type, dims}, data};
    }

2268
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
2269
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
2270
2271
    {
        if(dims.empty())
2272
            return literal{{shape_type}, data.begin(), data.end()};
2273
        return literal{{shape_type, dims}, data.begin(), data.end()};
2274
2275
    }

2276
    shape parse_type(const onnx::TypeProto& t, const std::vector<std::size_t>& input_dims)
Paul's avatar
Paul committed
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
Paul's avatar
Paul committed
2287
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
2288
2289
2290
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
2291
        case onnx::TensorProto::UINT8: shape_type = shape::uint8_type; break;
Paul's avatar
Paul committed
2292
2293
2294
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::BOOL:
        case onnx::TensorProto::UNDEFINED:
Paul's avatar
Paul committed
2295
2296
        case onnx::TensorProto::COMPLEX64:
        case onnx::TensorProto::COMPLEX128:
Paul's avatar
Paul committed
2297
            break; // throw std::runtime_error("Unsupported type");
Paul's avatar
Paul committed
2298
        }
2299
2300
2301
2302
2303
2304

        if(!input_dims.empty())
        {
            return {shape_type, input_dims};
        }

Paul's avatar
Paul committed
2305
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
2306
        auto&& tensor_dims = t.tensor_type().shape().dim();
2307
2308
2309
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
2310
2311
                       [&](auto&& d) -> std::size_t {
                           if(d.has_dim_value())
2312
                           {
2313
                               if(static_cast<int>(d.dim_value()) <= 0)
2314
2315
2316
                               {
                                   return default_dim_value;
                               }
2317
                               return d.dim_value();
2318
                           }
2319
2320
2321
2322
                           else
                           {
                               return default_dim_value;
                           }
2323
                       });
2324

2325
2326
2327
        if(dims.empty())
            return {shape_type};

Paul's avatar
Paul committed
2328
2329
        return {shape_type, dims};
    }
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
2352
2353
2354

    void check_arg_empty(const argument& arg, const std::string& msg)
    {
Shucai Xiao's avatar
Shucai Xiao committed
2355
        if(arg.empty())
Shucai Xiao's avatar
Shucai Xiao committed
2356
2357
2358
2359
        {
            MIGRAPHX_THROW(msg);
        }
    }
Paul's avatar
Paul committed
2360
2361
};

Paul Fultz II's avatar
Paul Fultz II committed
2362
template <class... Ts>
2363
program parse_onnx_from(const onnx_options& options, Ts&&... xs)
Paul's avatar
Paul committed
2364
2365
{
    onnx_parser parser;
2366
2367
2368
    parser.map_input_dims         = options.map_input_dims;
    parser.default_dim_value      = options.default_dim_value;
    parser.skip_unknown_operators = options.skip_unknown_operators;
2369

2370
    if(options.print_program_on_error)
Paul's avatar
Paul committed
2371
    {
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
        // Log the program when it can't be parsed
        try
        {
            parser.parse_from(std::forward<Ts>(xs)...);
        }
        catch(...)
        {
            std::cerr << parser.prog << std::endl;
            throw;
        }
Paul's avatar
Paul committed
2382
    }
2383
    else
Paul's avatar
Paul committed
2384
    {
2385
        parser.parse_from(std::forward<Ts>(xs)...);
Paul's avatar
Paul committed
2386
2387
2388
2389
    }
    return std::move(parser.prog);
}

2390
program parse_onnx(const std::string& name, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2391
2392
2393
2394
2395
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    return parse_onnx_from(options, input);
}

2396
program parse_onnx_buffer(const std::string& buffer, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2397
2398
2399
2400
{
    return parse_onnx_from(options, buffer.data(), buffer.size());
}

2401
program parse_onnx_buffer(const void* data, std::size_t size, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2402
2403
2404
2405
{
    return parse_onnx_from(options, data, size);
}

Paul's avatar
Paul committed
2406
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
2407
} // namespace migraphx