onnx.cpp 34.2 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
28
29
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
30
    program prog    = program();
31
    bool is_pytorch = false;
Paul's avatar
Paul committed
32
33
34
35
36

    std::unordered_map<std::string, op_func> ops;

    onnx_parser()
    {
Shucai Xiao's avatar
Shucai Xiao committed
37
        add_generic_op("MatMul", op::dot{});
Khalique's avatar
Khalique committed
38
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
39
40
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
41
42
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
43
44
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
45
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
46
47
48
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
49
50
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
51
        add_generic_op("Tanh", op::tanh{});
52
53
54
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
55

Khalique's avatar
Khalique committed
56
57
58
59
60
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
61
62
63
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
64

Khalique's avatar
Khalique committed
65
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
66
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
67
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
68
69
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
70
71
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
72
73
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
74
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
75
76
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
77
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
78
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
79
80
81
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
82
        add_mem_op("Concat", &onnx_parser::parse_concat);
83
84
85
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
86
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Paul's avatar
Paul committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
    }

    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
102

103
    template <class T>
Khalique's avatar
Khalique committed
104
    void add_binary_op(std::string name, T x)
105
106
    {
        ops.emplace(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
107
            if(args.size() != 2)
Paul's avatar
Paul committed
108
                MIGRAPHX_THROW("binary operators should have 2 operands");
109
110
111
112
113
114
115
116
117
118
119
120
            if(contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
                    return prog.add_instruction(x, args[0], l);
                }
121
                return prog.add_instruction(x, args);
122
            }
Paul's avatar
Paul committed
123
            else
124
            {
Khalique's avatar
Khalique committed
125
                return add_broadcastable_binary_op(args[0], args[1], x);
126
127
128
129
            }
        });
    }

Khalique's avatar
Khalique committed
130
131
132
133
134
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
        if(arg0->get_shape() != arg1->get_shape())
        {
Khalique's avatar
Khalique committed
135
136
137
138
139
140
141
142
143
144
145
146
147
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
Khalique's avatar
Khalique committed
148
149
150
151
152
153
154
155
            // Get lengths for both arguments
            const std::vector<std::size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<std::size_t>* s1 = &arg1->get_shape().lens();

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

Khalique's avatar
Khalique committed
156
            std::vector<std::size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
157
158
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
Khalique's avatar
Khalique committed
159
160
161
162
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });
Khalique's avatar
Khalique committed
163
164
165
166
167
168
169
170
171

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
172
173
    }

Paul's avatar
Paul committed
174
    template <class T>
Paul's avatar
Paul committed
175
176
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
177
        ops.emplace(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
178
179
180
181
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
182
    template <class T>
Khalique's avatar
Khalique committed
183
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
184
    {
Khalique's avatar
Khalique committed
185
186
        ops.emplace(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
187
188
189
190
191
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
192
        });
Khalique's avatar
Khalique committed
193
194
    }

Paul's avatar
Paul committed
195
    instruction_ref
Paul's avatar
Paul committed
196
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
197
198
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
199
200
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
201
202
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
203
204
    }

Paul's avatar
Paul committed
205
    instruction_ref
Paul's avatar
Paul committed
206
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
207
    {
208
        op::convolution op;
Paul's avatar
Paul committed
209
210
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
211
            if(contains(attributes, "auto_pad"))
212
            {
Paul's avatar
Paul committed
213
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
214
215
216
            }
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
217
            if(padding.size() != 4)
218
            {
Paul's avatar
Paul committed
219
                MIGRAPHX_THROW("padding should have 4 values");
220
            }
Scott Thornton's avatar
Scott Thornton committed
221
            if(padding[0] != padding[2] || padding[1] != padding[3])
222
            {
Paul's avatar
Paul committed
223
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
224
225
226
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
227
        }
Paul's avatar
Paul committed
228
229
230
231
232
233
234
235
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
236
        if(contains(attributes, "auto_pad"))
237
238
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
239
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
240
            {
Paul's avatar
Paul committed
241
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
242
243
            }

wsttiger's avatar
fixes  
wsttiger committed
244
            if(s.find("SAME") != std::string::npos)
245
246
247
248
            {
                op.padding_mode = op::convolution::same;
            }
        }
Khalique's avatar
Khalique committed
249
250
251
252
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
253
254
255
256
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
257
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
258
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
259
        }
Paul's avatar
Paul committed
260
261
        return prog.add_instruction(op, args);
    }
Paul's avatar
Paul committed
262

Paul's avatar
Paul committed
263
264
265
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
266
    {
Khalique's avatar
Khalique committed
267
268
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
        if(starts_with(name, "Global"))
269
        {
Khalique's avatar
Khalique committed
270
271
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
272
        }
Paul's avatar
Paul committed
273
274
        if(contains(attributes, "pads"))
        {
275
276
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
277
            if(padding.size() != 4)
278
            {
Paul's avatar
Paul committed
279
                MIGRAPHX_THROW("padding should have 4 values");
280
            }
Scott Thornton's avatar
Scott Thornton committed
281
            if(padding[0] != padding[2] || padding[1] != padding[3])
282
            {
Paul's avatar
Paul committed
283
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
284
285
286
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
287
288
289
290
291
292
293
294
295
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
296
        if(contains(attributes, "auto_pad"))
297
298
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
299
            if(to_upper(s) != "NOTSET")
300
            {
Paul's avatar
Paul committed
301
                MIGRAPHX_THROW("auto_pad is not supported for pooling");
302
303
304
            }
        }

Paul's avatar
Paul committed
305
        return prog.add_instruction(op, std::move(args));
Paul's avatar
Paul committed
306
307
    }

Paul's avatar
Paul committed
308
    instruction_ref
Paul's avatar
Paul committed
309
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
310
    {
311
        op::reshape op;
Paul's avatar
Paul committed
312
313
314
315
316
317
318
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
319
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
320
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
321
        }
Paul's avatar
Paul committed
322
323
324
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
325
    instruction_ref
Paul's avatar
Paul committed
326
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
327
    {
328
        uint64_t axis = 1;
Paul's avatar
Paul committed
329
330
331
332
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
333
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
334
335
    }

336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
354
355
356
357
358
359
360
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
361

362
363
364
365
366
367
368
369
370
371
372
373
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = 0;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
        op::gather_torch op{axis};
        return prog.add_instruction(op, std::move(args));
    }

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
394
395
396
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
397
398
399
400
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
401

Paul's avatar
Paul committed
402
    instruction_ref
Paul's avatar
Paul committed
403
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
404
405
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
406
        float beta  = 1.0f;
Paul's avatar
Paul committed
407
408
409
410
411
412
413
414
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
415
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
416
417
418
419
420
421
422
423
424
425
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
426
427
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
428
429
        if(args.size() == 3)
        {
Khalique's avatar
Khalique committed
430
            if(beta != 0.f)
431
            {
Khalique's avatar
Khalique committed
432
                auto l3 = prog.add_instruction(op::dot{alpha}, l1, l2);
Khalique's avatar
Khalique committed
433
                auto l4 = args[2];
Khalique's avatar
Khalique committed
434
                if(l4->get_shape().scalar()) // ignore args[2] (no C value added to alpha*A*B)
Khalique's avatar
Khalique committed
435
                    return l3;
Khalique's avatar
Khalique committed
436
                if(beta != 1.f)
Khalique's avatar
Khalique committed
437
438
                {
                    auto beta_val = prog.add_literal(beta);
Khalique's avatar
Khalique committed
439
440
                    auto l5 = prog.add_instruction(op::scalar{args[2]->get_shape()}, beta_val);
                    l4      = prog.add_instruction(op::mul{}, args[2], l5);
Khalique's avatar
Khalique committed
441
442
                }
                return add_broadcastable_binary_op(l3, l4, op::add{});
443
            }
Paul's avatar
Paul committed
444
        }
Shucai Xiao's avatar
Shucai Xiao committed
445
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
446
447
    }

448
    instruction_ref
Paul's avatar
Paul committed
449
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
450
    {
Scott Thornton's avatar
Scott Thornton committed
451
452
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
453
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
454
        bool is_test                                      = false;
455
456
457
458
459
460
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
461
            momentum = parse_value(attributes.at("momentum")).at<float>();
462
463
464
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
465
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
466
467
468
        }
        if(contains(attributes, "spatial"))
        {
469
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
470
471
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
472
        }
Paul's avatar
Paul committed
473
        (void)is_test;
Paul's avatar
Paul committed
474
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
475
        return prog.add_instruction(op, std::move(args));
476
477
    }

478
479
480
481
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
482
        float alpha = 0.01; // default alpha val for leaky relu
483
484
485
486
487
488
489
490
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
491
492
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
493
494
495
496
497
498
499
500
501
502
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
        auto input_shape = args.front()->get_shape();
Khalique's avatar
Khalique committed
520

Khalique's avatar
Khalique committed
521
522
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
523
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
524

Paul's avatar
Paul committed
525
526
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_shape}, scale_val);
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Paul's avatar
Paul committed
527
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_shape}, bias_vals);
Paul's avatar
Paul committed
528
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
529
    }
Khalique's avatar
Khalique committed
530

Khalique's avatar
Khalique committed
531
532
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
533
534
535
536
537
538
539
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
540
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
541
542
    }

543
544
545
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
546
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
    {
        if(args.size() != 1)
            MIGRAPHX_THROW("Shape, operator should have 1 operand");
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        if(args.size() != 1)
        {
            MIGRAPHX_THROW("Constantfill, MIGraphX only handle the case with 1 operand");
        }

        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

        if(input_as_shape == 1)
        {
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
                MIGRAPHX_THROW(
                    "ConstantFill, cannot handle dynamic shape as input for ConstantFill");
            }
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
            return prog.add_literal(migraphx::literal(s, {value}));
        }
        else if(input_as_shape == 0)
        {
            std::vector<std::size_t> dims = args[0]->get_shape().lens();
            migraphx::shape s{type, dims};
            return prog.add_literal(migraphx::literal(s, {value}));
        }
        else
        {
            MIGRAPHX_THROW("Wrong input for ConstantFill");
        }
    }

Paul's avatar
Paul committed
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            throw std::runtime_error("Failed reading");
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
635
636
637
638
639
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
640
641
642
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
643
644
645
646
647
648
649
650
651
652
653
654
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
655
656
657
        }
        for(auto&& p : nodes)
        {
658
            this->parse_node(get_name(p.second));
Paul's avatar
Paul committed
659
660
661
        }
    }

Paul's avatar
Paul committed
662
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
663
    {
Paul's avatar
Paul committed
664
        if(name.empty())
Paul's avatar
Paul committed
665
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
666
667
668
669
670
671
672
673
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
674
                    auto&& iname = get_name(nodes.at(input));
Paul's avatar
Paul committed
675
                    assert(name != iname);
Paul's avatar
Paul committed
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op_type()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op_type()}, args);
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

705
706
707
708
    static std::string get_name(const onnx::NodeProto& node)
    {
        if(node.name().empty())
        {
Paul's avatar
Paul committed
709
            std::string generated = "migraphx_unnamed_node";
Paul's avatar
Paul committed
710
711
712
713
            return std::accumulate(node.output().begin(),
                                   node.output().end(),
                                   generated,
                                   [](auto x, auto y) { return x + "_" + y; });
714
715
716
717
        }
        return node.name();
    }

Paul's avatar
Paul committed
718
719
720
721
722
    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
        for(auto&& node : graph.node())
        {
723
            result[get_name(node)] = node;
Paul's avatar
Paul committed
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
749
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
750
751
752
753
754
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
755
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
756
757
758
759
760
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
Khalique's avatar
Khalique committed
761
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
762
        if(dims.empty())
Khalique's avatar
Khalique committed
763
764
765
        {
            dims = {1};
        }
766
767
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
768
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
769
770
771
772
773
774
775
776
777
778
779
780
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
Paul's avatar
Paul committed
781
            case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
Scott Thornton's avatar
Scott Thornton committed
782
783
784
785
786
787
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
788
            MIGRAPHX_THROW("Invalid tensor type");
789
        }
Paul's avatar
Paul committed
790
791
792
793
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
794
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
795
796
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
797
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
798
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
799
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
800
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
801
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
802
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
803
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
804
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
805
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
806
807
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
808
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
809
810
        case onnx::TensorProto::FLOAT16:
            return literal{{shape::half_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
811
812
813
814
815
816
817
818
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
819
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
841
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
842
843
844
845
846
847
848
849
850
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
851
        auto&& tensor_dims = t.tensor_type().shape().dim();
852
853
854
855
856
857
858
859
860
861
862
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
863
864
        return {shape_type, dims};
    }
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
910
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
911
} // namespace migraphx