onnx.cpp 26.5 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
#include <migraph/fallthrough.hpp>
#include <migraph/program.hpp>
#include <migraph/operators.hpp>
#include <migraph/ranges.hpp>
16
#include <migraph/instruction.hpp>
17
#include <migraph/config.hpp>
Paul's avatar
Paul committed
18

Paul's avatar
Paul committed
19
namespace migraph {
20
inline namespace MIGRAPH_INLINE_NS {
Paul's avatar
Paul committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
struct unknown
{
    std::string op;
    std::string name() const { return "unknown:" + op; }
    shape compute_shape(std::vector<shape> input) const
    {
        if(input.empty())
            return {};
        else
            return input.front();
    }
    friend std::ostream& operator<<(std::ostream& os, const unknown& x)
    {
        os << x.name();
        return os;
    }
};

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
43
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
44
45
46
47
48
49
50
51
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();

    std::unordered_map<std::string, op_func> ops;

    onnx_parser()
    {
Shucai Xiao's avatar
Shucai Xiao committed
52
        add_generic_op("MatMul", op::dot{});
Khalique's avatar
Khalique committed
53
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
54
55
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Paul's avatar
Paul committed
56

57
58
59
60
61
        add_broadcastable_binary_op("Add", op::add{});
        add_broadcastable_binary_op("Div", op::div{});
        add_broadcastable_binary_op("Mul", op::mul{});
        add_broadcastable_binary_op("Sub", op::sub{});
        add_broadcastable_binary_op("Sum", op::add{});
Paul's avatar
Paul committed
62

Khalique's avatar
Khalique committed
63
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
64
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Paul's avatar
Paul committed
65
66
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
67
68
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
69
70
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
71
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
72
73
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
74
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
75
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
76
77
78
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
79
        add_mem_op("Concat", &onnx_parser::parse_concat);
Khalique's avatar
Khalique committed
80
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Paul's avatar
Paul committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    }

    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
96
97
98
99
    template <class T>
    void add_broadcastable_binary_op(std::string name, T x)
    {
        ops.emplace(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
100
            if(args.size() != 2)
Paul's avatar
Paul committed
101
                MIGRAPH_THROW("binary operators should have 2 operands");
102
103
104
105
106
107
108
109
110
111
112
113
            if(contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
                    return prog.add_instruction(x, args[0], l);
                }
114
                return prog.add_instruction(x, args);
115
116
117
118
119
120
            }
            else
            {
                // Example:
                // s0 = (3,2,4,5) and s1 = (2,1,1)
                //
Scott Thornton's avatar
Scott Thornton committed
121
122
                // In this case we need to broadcast (:,1,1) portion of
                // s1 plus broadcast the 1st dimension of s1
123
124
125
126
127
128
129
130
131
                // giving output_lens = (3,2,4,5)
                //
                // Another example:
                // s0 = (3,2,1,5) and s1 = (2,7,5)
                // In this case we need to broadcast the (:,:,1:,:) axis
                // of s0 plus the 1st dimension of s1 giving
                // output_lens = (3,2,7,5)
                //
                // Get lengths for both arguments
Paul's avatar
Paul committed
132
133
134
135
136
137
                const std::vector<std::size_t>* s0 = &args[0]->get_shape().lens();
                const std::vector<std::size_t>* s1 = &args[1]->get_shape().lens();

                // Make sure s0 is the smaller size
                if(s0->size() > s1->size())
                    std::swap(s0, s1);
138
139

                // Copy the larger vector to output_lens
Paul's avatar
Paul committed
140
141
                std::vector<std::size_t> output_lens(s1->size());
                auto offset = s1->size() - s0->size();
Paul's avatar
Paul committed
142
143
144
145
146
147
                std::transform(s0->begin(),
                               s0->end(),
                               s1->begin() + offset,
                               output_lens.begin() + offset,
                               [](auto a, auto b) { return std::max(a, b); });

148
149
150
                auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, args[0]);
                auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, args[1]);
                return prog.add_instruction(x, l0, l1);
151
152
153
154
            }
        });
    }

Paul's avatar
Paul committed
155
    template <class T>
Paul's avatar
Paul committed
156
157
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
158
        ops.emplace(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
159
160
161
162
            return prog.add_instruction(x, args);
        });
    }

Paul's avatar
Paul committed
163
    instruction_ref
Paul's avatar
Paul committed
164
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
165
166
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
167
168
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
169
170
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
171
172
    }

Paul's avatar
Paul committed
173
    instruction_ref
Paul's avatar
Paul committed
174
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
175
    {
176
        op::convolution op;
Paul's avatar
Paul committed
177
178
179
        if(contains(attributes, "pads"))
        {
            copy(attributes["pads"].ints(), op.padding.begin());
Paul's avatar
Paul committed
180
        }
Paul's avatar
Paul committed
181
182
183
184
185
186
187
188
189
190
191
192
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
193
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
194
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
195
        }
Paul's avatar
Paul committed
196
197
        return prog.add_instruction(op, args);
    }
Paul's avatar
Paul committed
198

Paul's avatar
Paul committed
199
200
201
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
202
    {
Khalique's avatar
Khalique committed
203
204
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
        if(starts_with(name, "Global"))
205
        {
Khalique's avatar
Khalique committed
206
207
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
208
        }
Paul's avatar
Paul committed
209
210
211
212
213
214
215
216
217
218
219
220
        if(contains(attributes, "pads"))
        {
            copy(attributes["pads"].ints(), op.padding.begin());
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Paul's avatar
Paul committed
221
        return prog.add_instruction(op, std::move(args));
Paul's avatar
Paul committed
222
223
    }

Paul's avatar
Paul committed
224
    instruction_ref
Paul's avatar
Paul committed
225
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
226
    {
227
        op::reshape op;
Paul's avatar
Paul committed
228
229
230
231
232
233
234
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
235
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
236
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
237
        }
Paul's avatar
Paul committed
238
239
240
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
241
    instruction_ref
Paul's avatar
Paul committed
242
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
243
244
    {
        uint64_t axis = 0;
Paul's avatar
Paul committed
245
246
247
248
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
249
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
250
251
    }

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
270
271
272
273
274
275
276
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
298
299
300
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
301
302
303
304
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
305

Paul's avatar
Paul committed
306
    instruction_ref
Paul's avatar
Paul committed
307
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
    {
        float alpha = 1.0f;
        float beta  = 0.0f;
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
            alpha = parse_value(attributes.at("beta")).at<float>();
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
330
331
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
332
333
334
        if(args.size() == 3)
        {
            uint64_t axis = 1;
Shucai Xiao's avatar
Shucai Xiao committed
335
            auto l3       = prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Scott Thornton's avatar
Scott Thornton committed
336
            auto l4       = prog.add_instruction(op::broadcast{axis, l3->get_shape()}, args[2]);
337
            return prog.add_instruction(op::add{}, l3, l4);
Paul's avatar
Paul committed
338
        }
Shucai Xiao's avatar
Shucai Xiao committed
339
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
340
341
    }

342
    instruction_ref
Paul's avatar
Paul committed
343
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
344
    {
Scott Thornton's avatar
Scott Thornton committed
345
346
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
347
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
348
        bool is_test                                      = false;
349
350
351
352
353
354
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
355
            momentum = parse_value(attributes.at("momentum")).at<float>();
356
357
358
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
359
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
360
361
362
        }
        if(contains(attributes, "spatial"))
        {
363
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
364
365
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
366
        }
Paul's avatar
Paul committed
367
        (void)is_test;
Paul's avatar
Paul committed
368
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
369
        return prog.add_instruction(op, std::move(args));
370
371
    }

372
373
374
375
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
376
        float alpha = 0.01; // default alpha val for leaky relu
377
378
379
380
381
382
383
384
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
        auto input_shape = args.front()->get_shape();
Khalique's avatar
Khalique committed
402

Khalique's avatar
Khalique committed
403
404
405
406
407
408
409
410
411
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
            migraph::literal{migraph::shape{migraph::shape::float_type, {bias.size()}}, bias});

        auto scale_tensor = prog.add_instruction(migraph::op::scalar{input_shape}, scale_val);
        auto img_scaled   = prog.add_instruction(migraph::op::mul{}, args.front(), scale_tensor);
        auto bias_bcast   = prog.add_instruction(migraph::op::broadcast{1, input_shape}, bias_vals);
        return prog.add_instruction(migraph::op::add{}, img_scaled, bias_bcast);
    }
Khalique's avatar
Khalique committed
412

Khalique's avatar
Khalique committed
413
414
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
415
416
417
418
419
420
421
422
423
424
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
        return prog.add_instruction(migraph::op::transpose{perm}, args.front());
    }

Paul's avatar
Paul committed
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            throw std::runtime_error("Failed reading");
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
444
445
446
447
448
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
449
450
451
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
452
453
454
455
456
457
458
459
460
461
462
463
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
464
465
466
        }
        for(auto&& p : nodes)
        {
467
            this->parse_node(get_name(p.second));
Paul's avatar
Paul committed
468
469
470
        }
    }

Paul's avatar
Paul committed
471
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
472
    {
Paul's avatar
Paul committed
473
        if(name.empty())
Paul's avatar
Paul committed
474
            MIGRAPH_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
475
476
477
478
479
480
481
482
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
483
                    auto&& iname = get_name(nodes.at(input));
Paul's avatar
Paul committed
484
                    assert(name != iname);
Paul's avatar
Paul committed
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op_type()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op_type()}, args);
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

514
515
516
517
518
    static std::string get_name(const onnx::NodeProto& node)
    {
        if(node.name().empty())
        {
            std::string generated = "migraph_unnamed_node";
Paul's avatar
Paul committed
519
520
521
522
            return std::accumulate(node.output().begin(),
                                   node.output().end(),
                                   generated,
                                   [](auto x, auto y) { return x + "_" + y; });
523
524
525
526
        }
        return node.name();
    }

Paul's avatar
Paul committed
527
528
529
530
531
    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
        for(auto&& node : graph.node())
        {
532
            result[get_name(node)] = node;
Paul's avatar
Paul committed
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
558
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
559
560
561
562
563
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
564
        MIGRAPH_THROW("Invalid attribute type");
Paul's avatar
Paul committed
565
566
567
568
569
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
570
571
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
572
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
573
574
575
576
577
578
579
580
581
582
583
584
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
Paul's avatar
Paul committed
585
            case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
Scott Thornton's avatar
Scott Thornton committed
586
587
588
589
590
591
592
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
            MIGRAPH_THROW("Invalid tensor type");
593
        }
Paul's avatar
Paul committed
594
595
596
597
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
598
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
599
600
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
601
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
602
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
603
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
604
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
605
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
606
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
607
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
608
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
609
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
610
611
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
612
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
613
614
        case onnx::TensorProto::FLOAT16:
            return literal{{shape::half_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
615
616
617
618
619
620
621
622
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
623
        MIGRAPH_THROW("Invalid tensor type");
Paul's avatar
Paul committed
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
645
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
646
647
648
649
650
651
652
653
654
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
655
        auto&& tensor_dims = t.tensor_type().shape().dim();
656
657
658
659
660
661
662
663
664
665
666
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
        return {shape_type, dims};
    }
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

692
} // namespace MIGRAPH_INLINE_NS
Paul's avatar
Paul committed
693
} // namespace migraph