onnx.cpp 95.3 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
19
#include <migraphx/pad_calc.hpp>
Paul's avatar
Paul committed
20
21

namespace migraphx {
Paul's avatar
Paul committed
22
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
23

24
25
namespace onnx = onnx_for_migraphx;

Paul's avatar
Paul committed
26
27
28
struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
29
30
31
32
33
34
    struct node_info
    {
        attribute_map attributes{};
        std::size_t num_outputs = 1;
    };
    using node_map = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
35
    using op_func =
36
        std::function<std::vector<instruction_ref>(node_info, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
37
38
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
39
40
41
42
    program prog                  = program();
    bool is_pytorch               = false;
    std::size_t default_dim_value = 1;
    std::unordered_map<std::string, std::vector<std::size_t>> map_input_dims;
43
    bool skip_unknown_operators = false;
Paul's avatar
Paul committed
44
45

    std::unordered_map<std::string, op_func> ops;
46
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
47
48
49

    onnx_parser()
    {
50
        // sort onnx operator alphabetically through name
Khalique's avatar
Khalique committed
51
        add_generic_op("Abs", op::abs{});
52
53
54
55
56
57
58
59
60
        add_generic_op("Acos", op::acos{});
        add_generic_op("Acosh", op::acosh{});
        add_generic_op("Asin", op::asin{});
        add_generic_op("Asinh", op::asinh{});
        add_generic_op("Atan", op::atan{});
        add_generic_op("Atanh", op::atanh{});
        add_generic_op("Ceil", op::ceil{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Cosh", op::cosh{});
Shucai Xiao's avatar
Shucai Xiao committed
61
        add_generic_op("Erf", op::erf{});
62
        add_generic_op("Exp", op::exp{});
Khalique's avatar
Khalique committed
63
        add_generic_op("Dropout", op::identity{});
64
65
        add_generic_op("Log", op::log{});
        add_generic_op("Floor", op::floor{});
Khalique's avatar
Khalique committed
66
        add_generic_op("Identity", op::identity{});
kahmed10's avatar
kahmed10 committed
67
        add_generic_op("Reciprocal", op::recip{});
68
69
70
71
        add_generic_op("Relu", op::relu{});
        add_generic_op("Round", op::round{});
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Sign", op::sign{});
Shucai Xiao's avatar
Shucai Xiao committed
72
        add_generic_op("Sin", op::sin{});
73
        add_generic_op("Sinh", op::sinh{});
74
        add_generic_op("Sqrt", op::sqrt{});
75
76
        add_generic_op("Tan", op::tan{});
        add_generic_op("Tanh", op::tanh{});
Paul's avatar
Paul committed
77

Khalique's avatar
Khalique committed
78
79
80
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
Shucai Xiao's avatar
Shucai Xiao committed
81
        add_binary_op("Pow", op::pow{});
Shucai Xiao's avatar
Shucai Xiao committed
82
        add_binary_op("PRelu", op::prelu{});
83
        add_binary_op("Sub", op::sub{});
Khalique's avatar
Khalique committed
84

Khalique's avatar
Khalique committed
85
86
87
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
88

89
        add_mem_op("ATen", &onnx_parser::parse_aten);
90
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
91
92
        add_mem_op("ArgMax", &onnx_parser::parse_arg_op<op::argmax>);
        add_mem_op("ArgMin", &onnx_parser::parse_arg_op<op::argmin>);
93
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
94
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
95
        add_mem_op("Clip", &onnx_parser::parse_clip);
96
        add_mem_op("Concat", &onnx_parser::parse_concat);
Paul's avatar
Paul committed
97
        add_mem_op("Constant", &onnx_parser::parse_constant);
98
99
100
101
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
        add_mem_op("Conv", &onnx_parser::parse_conv<op::convolution>);
        add_mem_op("ConvInteger", &onnx_parser::parse_conv<op::quant_convolution>);
kahmed10's avatar
kahmed10 committed
102
        add_mem_op("ConvTranspose", &onnx_parser::parse_conv_transpose);
103
104
        add_mem_op("Elu", &onnx_parser::parse_elu);
        add_mem_op("Expand", &onnx_parser::parse_expand);
Paul's avatar
Paul committed
105
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
106
        add_mem_op("Gather", &onnx_parser::parse_gather);
Shucai Xiao's avatar
Shucai Xiao committed
107
        add_mem_op("GatherElements", &onnx_parser::parse_gather_elements);
Paul's avatar
Paul committed
108
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
109
110
111
112
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GRU", &onnx_parser::parse_gru);
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
kahmed10's avatar
kahmed10 committed
113
        add_mem_op("InstanceNormalization", &onnx_parser::parse_instancenorm);
114
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
115
        add_mem_op("LogSoftmax", &onnx_parser::parse_softmax<op::logsoftmax>);
116
        add_mem_op("LRN", &onnx_parser::parse_lrn);
117
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
118
119
120
        add_mem_op("MatMul", &onnx_parser::parse_matmul<op::dot>);
        add_mem_op("MatMulInteger", &onnx_parser::parse_matmul<op::quant_dot>);
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
kahmed10's avatar
kahmed10 committed
121
        add_mem_op("OneHot", &onnx_parser::parse_onehot);
122
        add_mem_op("Pad", &onnx_parser::parse_pad);
kahmed10's avatar
kahmed10 committed
123
        add_mem_op("Range", &onnx_parser::parse_range);
Shucai Xiao's avatar
Shucai Xiao committed
124
125
126
127
128
        add_mem_op("ReduceL1", &onnx_parser::parse_reduce_l1);
        add_mem_op("ReduceL2", &onnx_parser::parse_reduce_l2);
        add_mem_op("ReduceLogSum", &onnx_parser::parse_reduce_log_sum);
        add_mem_op("ReduceLogSumExp", &onnx_parser::parse_reduce_log_sum_exp);
        add_mem_op("ReduceMax", &onnx_parser::parse_reduce_oper<op::reduce_max>);
Shucai Xiao's avatar
Shucai Xiao committed
129
        add_mem_op("ReduceMean", &onnx_parser::parse_reduce_oper<op::reduce_mean>);
Shucai Xiao's avatar
Shucai Xiao committed
130
        add_mem_op("ReduceMin", &onnx_parser::parse_reduce_oper<op::reduce_min>);
Shucai Xiao's avatar
Shucai Xiao committed
131
132
133
        add_mem_op("ReduceProd", &onnx_parser::parse_reduce_oper<op::reduce_prod>);
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_oper<op::reduce_sum>);
        add_mem_op("ReduceSumSquare", &onnx_parser::parse_reduce_sum_square);
134
135
136
137
138
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
        add_mem_op("RNN", &onnx_parser::parse_rnn);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("Slice", &onnx_parser::parse_slice);
        add_mem_op("Softmax", &onnx_parser::parse_softmax<op::softmax>);
139
        add_mem_op("Split", &onnx_parser::parse_split);
140
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
kahmed10's avatar
kahmed10 committed
141
        add_mem_op("Tile", &onnx_parser::parse_tile);
142
143
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
144
145
146
147
148
149
150

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
151
152
153
154
155
156
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
157
158
159
160
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
161
162
163
164
165
166
167
168
169
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
170
171
172
173
174
175
176
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
177
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
178
179
180
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
181

182
    template <class T>
Khalique's avatar
Khalique committed
183
    void add_binary_op(std::string name, T x)
184
    {
185
        add_op(name, [this, x](node_info info, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
186
            if(args.size() != 2)
Paul's avatar
Paul committed
187
                MIGRAPHX_THROW("binary operators should have 2 operands");
188
            if(contains(info.attributes, "broadcast") and contains(info.attributes, "axis"))
189
            {
190
                uint64_t broadcasted = parse_value(info.attributes.at("broadcast")).at<uint64_t>();
191
192
                if(broadcasted != 0)
                {
193
                    uint64_t axis = parse_value(info.attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
194
195
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
196
197
                    return prog.add_instruction(x, args[0], l);
                }
198
                return prog.add_instruction(x, args);
199
            }
Paul's avatar
Paul committed
200
            else
201
            {
Khalique's avatar
Khalique committed
202
                return add_broadcastable_binary_op(args[0], args[1], x);
203
204
205
206
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
207
208
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
209
210
211
212
213
214
215
216
217
218
219
220
221
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
222
        if(s0.size() > s1.size())
223
224
225
226
227
228
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
229
230
231
232
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
233
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
234
                           if(a != b and a != 1 and b != 1)
235
                           {
Shucai Xiao's avatar
Shucai Xiao committed
236
237
238
239
240
241
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
242
243
244
245

        return out_lens;
    }

Shucai Xiao's avatar
Shucai Xiao committed
246
247
    instruction_ref make_contiguous(instruction_ref ins)
    {
Shucai Xiao's avatar
Shucai Xiao committed
248
        if(ins->get_shape().standard())
Shucai Xiao's avatar
Shucai Xiao committed
249
250
251
252
253
254
255
        {
            return ins;
        }

        return prog.add_instruction(op::contiguous{}, ins);
    }

Khalique's avatar
Khalique committed
256
257
258
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
259
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
260
261
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
262
263
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
264
            auto out_lens = compute_broadcasted_lens(s0, s1);
265
266
267
268
269
270
271
272
273

            auto l0 = arg0;
            if(arg0->get_shape().lens() != out_lens)
                l0 = prog.add_instruction(op::multibroadcast{out_lens}, arg0);

            auto l1 = arg1;
            if(arg1->get_shape().lens() != out_lens)
                l1 = prog.add_instruction(op::multibroadcast{out_lens}, arg1);

Khalique's avatar
Khalique committed
274
275
276
277
278
279
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
280
281
    }

Paul's avatar
Paul committed
282
    template <class T>
Paul's avatar
Paul committed
283
284
    void add_generic_op(std::string name, T x)
    {
285
        add_op(name, [this, x](const node_info&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
286
287
288
289
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
290
    template <class T>
Khalique's avatar
Khalique committed
291
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
292
    {
293
        add_op(name, [this, x](const node_info&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
294
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
295
296
297
298
299
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
300
        });
Khalique's avatar
Khalique committed
301
302
    }

kahmed10's avatar
kahmed10 committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
    template <class T>
    std::vector<int64_t> to_int64_vector(const std::vector<T>& input_vector)
    {
        std::vector<int64_t> output_vector(input_vector.begin(), input_vector.end());
        return output_vector;
    }

    instruction_ref
    add_bias(const std::vector<instruction_ref>& args, instruction_ref curr_ins, uint64_t axis)
    {
        if(args.size() == 3)
        {
            auto bias_bcast =
                prog.add_instruction(op::broadcast{axis, curr_ins->get_shape().lens()}, args[2]);
            return prog.add_instruction(op::add{}, curr_ins, bias_bcast);
        }
        return curr_ins;
    }

322
323
    template <class Op>
    void check_asym_padding(instruction_ref& ins,
324
                            const std::vector<int64_t>& padding,
325
326
327
                            Op& op,
                            float pad_val = 0)
    {
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
        bool asym_padding = false;
        assert(padding.size() % 2 == 0);
        size_t pad_ndims = padding.size() / 2;

        auto left_pad_it  = padding.begin();
        auto right_pad_it = left_pad_it + pad_ndims;

        for(size_t i = 0; i < pad_ndims; i++)
        {
            if(padding[i] != padding[i + pad_ndims])
            {
                asym_padding = true;
                break;
            }
        }

        if(asym_padding)
345
        {
346
347
348
349
350
351
            std::vector<int64_t> asym_pads{0, 0, 0, 0}; // don't pad N and C
            // add left pads
            asym_pads.insert(asym_pads.begin() + 2, left_pad_it, right_pad_it);
            // add right pads
            asym_pads.insert(asym_pads.begin() + pad_ndims + 4, right_pad_it, padding.end());
            ins = prog.add_instruction(op::pad{asym_pads, pad_val}, ins);
352
353
354
        }
        else
        {
355
            op.padding = std::vector<size_t>(left_pad_it, right_pad_it);
356
357
358
        }
    }

359
360
    instruction_ref
    parse_clip(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
361
    {
kahmed10's avatar
kahmed10 committed
362
363
364
365
366
367
368
        auto input_lens = args[0]->get_shape().lens();
        instruction_ref min_arg;
        instruction_ref max_arg;
        bool min_used = false;
        bool max_used = false;

        if(args.size() == 3)
Khalique's avatar
Khalique committed
369
        {
kahmed10's avatar
kahmed10 committed
370
371
372
373
            min_arg  = args[1];
            max_arg  = args[2];
            min_used = true;
            max_used = true;
Khalique's avatar
Khalique committed
374
        }
kahmed10's avatar
kahmed10 committed
375
        else if(args.size() == 2)
Khalique's avatar
Khalique committed
376
        {
kahmed10's avatar
kahmed10 committed
377
378
379
380
381
382
383
384
385
386
387
388
389
            min_arg  = args[1];
            min_used = true;
        }
        // if using previous opset for attributes
        else if(contains(info.attributes, "min") and contains(info.attributes, "max"))
        {

            float min_val = parse_value(info.attributes.at("min")).at<float>();
            float max_val = parse_value(info.attributes.at("max")).at<float>();
            min_arg       = prog.add_literal(min_val);
            max_arg       = prog.add_literal(max_val);
            min_used      = true;
            max_used      = true;
Khalique's avatar
Khalique committed
390
        }
kahmed10's avatar
kahmed10 committed
391
392
393
394
395
396
397
398
399
400
401
402
403

        if(min_used)
            min_arg = prog.add_instruction(op::multibroadcast{input_lens}, min_arg);

        if(max_used)
            max_arg = prog.add_instruction(op::multibroadcast{input_lens}, max_arg);

        if(min_used and max_used)
            return prog.add_instruction(op::clip{}, args[0], min_arg, max_arg);
        if(min_used)
            return prog.add_instruction(op::max{}, args[0], min_arg);

        return prog.add_instruction(op::identity{}, args[0]);
Khalique's avatar
Khalique committed
404
405
    }

Shucai Xiao's avatar
Shucai Xiao committed
406
    template <class Op>
407
408
    instruction_ref
    parse_softmax(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
409
    {
410
        int64_t axis = 1;
411
        if(contains(info.attributes, "axis"))
412
        {
413
            axis = parse_value(info.attributes.at("axis")).at<int>();
414
415
        }

416
        return prog.add_instruction(Op{axis}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
417
418
    }

Shucai Xiao's avatar
Shucai Xiao committed
419
    template <class Op>
420
421
    instruction_ref
    parse_arg_op(const std::string&, node_info info, std::vector<instruction_ref> args)
422
    {
423
        int64_t axis = 0;
424
        if(contains(info.attributes, "axis"))
425
        {
426
            axis = static_cast<int64_t>(parse_value(info.attributes.at("axis")).at<int>());
427
428
        }

Shucai Xiao's avatar
Shucai Xiao committed
429
        int keep_dims = 1;
430
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
431
        {
432
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
433
434
        }

Shucai Xiao's avatar
Shucai Xiao committed
435
        if(keep_dims == 0)
436
        {
437
            auto ins = prog.add_instruction(Op{axis}, std::move(args));
438
            return prog.add_instruction(op::squeeze{{axis}}, ins);
439
440
441
        }
        else
        {
442
            return prog.add_instruction(Op{axis}, std::move(args));
443
        }
444
445
    }

446
447
    template <class Op>
    instruction_ref process_auto_pad_attribute(instruction_ref ins,
448
                                               node_info info,
449
                                               Op& op,
450
451
                                               std::vector<std::size_t> k_lens,
                                               std::vector<std::size_t> dilation,
452
453
                                               const std::vector<std::size_t>& in_lens,
                                               float value = 0.0f)
454
    {
455
456
457
        size_t kdims = in_lens.size() - 2;
        assert(k_lens.size() == kdims and dilation.size() == kdims);

458
        if(!contains(info.attributes, "auto_pad"))
459
460
461
462
        {
            return ins;
        }

463
        auto auto_pad = info.attributes["auto_pad"].s();
464
465
        if(auto_pad.find("SAME") != std::string::npos)
        {
466
            op.padding_mode    = op::padding_mode_t::same;
467
            bool is_same_upper = (auto_pad.find("SAME_UPPER") != std::string::npos);
468
469
470
471
472
473
474
475
476
477
478
479
            std::vector<int64_t> padding(2 * kdims);

            for(size_t i = 0; i < padding.size() / 2; i++)
            {
                calculate_padding(i,
                                  padding,
                                  in_lens[i + 2],
                                  op.stride[i],
                                  dilation[i],
                                  k_lens[i],
                                  is_same_upper);
            }
480

481
            check_asym_padding(ins, padding, op, value);
482
483
484
485
486
        }

        return ins;
    }

kahmed10's avatar
kahmed10 committed
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
    void calc_reflect_indices(std::vector<int>& indices, const int64_t num_dims)
    {
        int k         = 0;
        bool reversed = false;
        // in reflect padding, if the num_pads > num_dims,
        // compute the extra pad indices periodically, ex. ( 1, 2, 3, 2, 1, 0)
        for(int& idx : indices)
        {
            if(k == num_dims - 1)
                reversed = true;
            if(k == 0)
                reversed = false;
            if(reversed)
                k--;
            else
                k++;
            idx = k;
        }
    }

    instruction_ref reflect_pad(const std::vector<int64_t>& pads, instruction_ref input)
    {
        size_t num_dims = pads.size() / 2;
        std::vector<int> ldims(pads.begin(), pads.begin() + num_dims);
        std::vector<int> rdims(pads.begin() + num_dims, pads.end());
        assert(ldims.size() == rdims.size());

        std::vector<int64_t> axes(num_dims);
        std::iota(axes.begin(), axes.end(), int64_t{0});

        // iterate over dimensions, starting from lowest dimension
        for(int64_t i = num_dims - 1; i >= 0; i--)
        {
            auto axis   = i;
            auto lcount = ldims.at(i);
            auto rcount = rdims.at(i);
            if(lcount == 0 and rcount == 0) // no padding for current dim
                continue;

            // calculate starts and ends for each iteration since shape may change
            std::vector<size_t> dims = input->get_shape().lens();
            std::vector<int64_t> starts(axes.size(), 0);
            std::vector<int64_t> ends(dims.begin(), dims.end());
            std::vector<instruction_ref> slices;

            auto starts_it = starts.begin() + i;
            auto ends_it   = ends.begin() + i;
            auto dims_it   = dims.begin() + i;

            std::vector<int> l_indices(lcount);
            std::vector<int> r_indices(rcount);

            // compute slice indices in a periodic fashion
            calc_reflect_indices(l_indices, *dims_it);
            calc_reflect_indices(r_indices, *dims_it);

            for(int idx : l_indices)
            {
                *starts_it = idx;
                *ends_it   = *starts_it + 1;
                slices.push_back(prog.add_instruction(op::slice{axes, starts, ends}, input));
            }
            // when padding on the left side, the outermost pad should be at the beginning
            std::reverse(slices.begin(), slices.end());
            slices.push_back(input);
            for(int idx : r_indices)
            {
                *starts_it = *dims_it - idx - 1;
                *ends_it   = *starts_it + 1;
                slices.push_back(prog.add_instruction(op::slice{axes, starts, ends}, input));
            }
            input = prog.add_instruction(op::concat{axis}, slices);
        }
        return input;
    }

563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
    void check_attr_sizes(size_t kdims, size_t attr_size, const std::string& error_msg)
    {
        if(kdims != attr_size)
        {
            MIGRAPHX_THROW(error_msg + " k-dims: " + to_string(kdims) +
                           " attribute size: " + to_string(attr_size));
        }
    }

    template <class Op>
    void recalc_conv_attributes(Op& op, size_t kdims)
    {
        if(op.padding.size() != kdims)
        {
            op.padding.resize(kdims);
            std::fill_n(op.padding.begin(), kdims, 0);
        }
        if(op.stride.size() != kdims)
        {
            op.stride.resize(kdims);
            std::fill_n(op.stride.begin(), kdims, 1);
        }
        if(op.dilation.size() != kdims)
        {
            op.dilation.resize(kdims);
            std::fill_n(op.dilation.begin(), kdims, 1);
        }
    }

592
    template <class Op>
Paul's avatar
Paul committed
593
    instruction_ref
594
    parse_conv(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
595
    {
596
        Op op;
597
598
        auto l0      = args[0];
        auto weights = args[1];
599
600
601
602
        auto in_lens = l0->get_shape().lens();
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

603
        std::vector<int64_t> padding;
604
        if(contains(info.attributes, "pads"))
Paul's avatar
Paul committed
605
        {
606
            if(contains(info.attributes, "auto_pad"))
607
            {
608
609
                auto s = info.attributes["auto_pad"].s();
                if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
610
                {
611
612
                    MIGRAPHX_THROW(
                        "PARSE_CONV: auto_pad and padding cannot be specified simultaneously");
613
                }
614
            }
615
            op.padding.clear();
616
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
617
            check_attr_sizes(kdims, padding.size() / 2, "PARSE_CONV: inconsistent paddings");
618
            check_asym_padding(l0, padding, op);
Paul's avatar
Paul committed
619
        }
620
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
621
        {
622
623
624
            op.stride.clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(op.stride));
            check_attr_sizes(kdims, op.stride.size(), "PARSE_CONV: inconsistent strides");
Paul's avatar
Paul committed
625
        }
626
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
627
        {
628
629
630
            op.dilation.clear();
            copy(info.attributes["dilations"].ints(), std::back_inserter(op.dilation));
            check_attr_sizes(kdims, op.dilation.size(), "PARSE_CONV: inconsistent dilations");
Paul's avatar
Paul committed
631
        }
632
        if(contains(info.attributes, "auto_pad"))
633
        {
634
            auto weight_lens = weights->get_shape().lens();
635

636
            std::vector<std::size_t> k_lens(weight_lens.begin() + 2, weight_lens.end());
637
            l0 = process_auto_pad_attribute(l0, info, op, k_lens, op.dilation, in_lens);
638
        }
639
        if(contains(info.attributes, "group"))
Khalique's avatar
Khalique committed
640
        {
641
            op.group = parse_value(info.attributes.at("group")).at<int>();
Khalique's avatar
Khalique committed
642
        }
kahmed10's avatar
kahmed10 committed
643

644
645
        recalc_conv_attributes(op, kdims);

kahmed10's avatar
kahmed10 committed
646
647
648
649
        auto l1 = prog.add_instruction(op, l0, args[1]);
        return add_bias(args, l1, 1);
    }

650
651
    instruction_ref
    parse_conv_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
652
653
654
655
656
    {
        op::deconvolution op;
        auto l0 = args[0];
        std::vector<std::int64_t> padding;
        bool asymm_padding = false;
657
        if(contains(info.attributes, "pads"))
kahmed10's avatar
kahmed10 committed
658
        {
659
            if(contains(info.attributes, "auto_pad"))
kahmed10's avatar
kahmed10 committed
660
            {
661
662
                auto s = info.attributes["auto_pad"].s();
                if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
kahmed10's avatar
kahmed10 committed
663
664
665
666
                {
                    MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
                }
            }
667
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
kahmed10's avatar
kahmed10 committed
668
669
670
671
672
673
674
675
676
677
678
679
680
681
            if(padding.size() != 4)
            {
                MIGRAPHX_THROW("padding should have 4 values");
            }
            if(padding[0] != padding[2] || padding[1] != padding[3])
            {
                asymm_padding = true;
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
682
        if(contains(info.attributes, "strides"))
kahmed10's avatar
kahmed10 committed
683
        {
684
            copy(info.attributes["strides"].ints(), op.stride.begin());
kahmed10's avatar
kahmed10 committed
685
        }
686
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
687
        {
688
            copy(info.attributes["dilations"].ints(), op.dilation.begin());
Paul's avatar
Paul committed
689
        }
690
        if(contains(info.attributes, "auto_pad"))
kahmed10's avatar
kahmed10 committed
691
        {
692
693
            auto s = info.attributes["auto_pad"].s();
            if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
kahmed10's avatar
kahmed10 committed
694
695
696
697
698
699
700
701
702
703
            {
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
            }

            if(s.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::same;
            }
        }

704
        if(contains(info.attributes, "group"))
kahmed10's avatar
kahmed10 committed
705
        {
706
            op.group = parse_value(info.attributes.at("group")).at<int>();
kahmed10's avatar
kahmed10 committed
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
        }

        auto l1                   = prog.add_instruction(op, l0, args[1]);
        std::vector<int64_t> dims = to_int64_vector(l1->get_shape().lens());
        std::vector<int64_t> curr_shape{dims[2], dims[3]};
        if(asymm_padding)
        {
            op::slice slice_op;
            slice_op.axes   = {0, 1, 2, 3};
            slice_op.starts = {0, 0, 0 + padding[0], 0 + padding[1]};
            slice_op.ends   = {
                dims[0], dims[1], curr_shape[0] - padding[2], curr_shape[1] - padding[3]};

            l1 = prog.add_instruction(slice_op, l1);
        }

723
        if(contains(info.attributes, "output_padding"))
kahmed10's avatar
kahmed10 committed
724
725
        {
            std::vector<int64_t> output_padding;
726
            copy(info.attributes["output_padding"].ints(), std::back_inserter(output_padding));
kahmed10's avatar
kahmed10 committed
727
728
729
730
            output_padding = {0, 0, 0, 0, 0, 0, output_padding[0], output_padding[1]};
            l1             = prog.add_instruction(op::pad{output_padding}, l1);
        }

731
        if(contains(info.attributes, "output_shape"))
kahmed10's avatar
kahmed10 committed
732
733
        {
            std::vector<int64_t> output_shape;
734
            copy(info.attributes["output_shape"].ints(), std::back_inserter(output_shape));
kahmed10's avatar
kahmed10 committed
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
            dims       = to_int64_vector(l1->get_shape().lens());
            curr_shape = {dims[2], dims[3]};
            if(curr_shape != output_shape)
            {
                std::vector<int64_t> target_padding = {0,
                                                       0,
                                                       0,
                                                       0,
                                                       0,
                                                       0,
                                                       output_shape[0] - curr_shape[0],
                                                       output_shape[1] - curr_shape[1]};
                l1 = prog.add_instruction(op::pad{target_padding}, l1);
            }
        }

        return add_bias(args, l1, 1);
Paul's avatar
Paul committed
752
    }
Paul's avatar
Paul committed
753

754
755
    instruction_ref
    parse_pooling(const std::string& name, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
756
    {
Khalique's avatar
Khalique committed
757
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
758
759
760
761
762
        auto l0      = args[0];
        auto in_lens = l0->get_shape().lens();
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

Khalique's avatar
Khalique committed
763
        if(starts_with(name, "Global"))
764
        {
765
            op.lengths = std::vector<size_t>(in_lens.begin() + 2, in_lens.end());
766
        }
767

768
        if(contains(info.attributes, "pads"))
Paul's avatar
Paul committed
769
        {
770
            if(contains(info.attributes, "auto_pad"))
771
            {
772
                auto s = info.attributes["auto_pad"].s();
773
774
775
776
777
778
                if(to_upper(s) != "NOTSET")
                {
                    MIGRAPHX_THROW(
                        "PARSE_POOLING: auto_pad and padding cannot be specified simultaneously");
                }
            }
779
780
            op.padding.clear();
            std::vector<int64_t> padding;
781
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
782
783
            check_attr_sizes(kdims, padding.size() / 2, "PARSE_POOLING: inconsistent paddings");

784
785
786
787
            float pad_val = 0;
            if(op.mode == "max")
                pad_val = std::numeric_limits<float>::lowest();
            check_asym_padding(l0, padding, op, pad_val);
788
            in_lens = l0->get_shape().lens();
Paul's avatar
Paul committed
789
        }
790

791
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
792
        {
793
794
795
            op.stride.clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(op.stride));
            check_attr_sizes(kdims, op.stride.size(), "PARSE_POOLING: inconsistent strides");
Paul's avatar
Paul committed
796
        }
797
        if(contains(info.attributes, "kernel_shape"))
Paul's avatar
Paul committed
798
        {
799
800
801
            op.lengths.clear();
            copy(info.attributes["kernel_shape"].ints(), std::back_inserter(op.lengths));
            check_attr_sizes(kdims, op.lengths.size(), "PARSE_POOLING: inconsistent lengths");
Paul's avatar
Paul committed
802
        }
803

804
        if(contains(info.attributes, "auto_pad"))
805
        {
806
807
            op.padding.clear();
            float val = 0.0f;
808
809
810
811
812
813
            // MaxPool
            if(op.mode == "max")
            {
                val = std::numeric_limits<float>::lowest();
            }

814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
            l0      = process_auto_pad_attribute(l0, info, op, op.lengths, {1, 1}, in_lens, val);
            in_lens = l0->get_shape().lens();
        }

        if(op.padding.size() != kdims)
        {
            op.padding.resize(kdims);
            std::fill_n(op.padding.begin(), kdims, 0);
        }
        if(op.stride.size() != kdims)
        {
            op.stride.resize(kdims);
            std::fill_n(op.stride.begin(), kdims, 1);
        }

        for(size_t i = 0; i < kdims; i++)
        {
            if(op.lengths[i] > in_lens[i + 2] + 2 * op.padding[i])
                MIGRAPHX_THROW("PARSE_POOLING: kernel shape is too large");
833
834
        }

835
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
836
837
    }

Paul's avatar
Paul committed
838
    instruction_ref
839
    parse_reshape(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
840
    {
841
        op::reshape op;
Paul's avatar
Paul committed
842
843
        if(args.size() == 1)
        {
844
            literal s = parse_value(info.attributes.at("shape"));
845
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
846
847
848
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
849
            auto s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
850
            check_arg_empty(s, "Reshape: dynamic shape is not supported");
Paul's avatar
Paul committed
851
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
852
        }
853

Shucai Xiao's avatar
Shucai Xiao committed
854
        return prog.add_instruction(op, make_contiguous(args[0]));
Paul's avatar
Paul committed
855
856
    }

Paul's avatar
Paul committed
857
    instruction_ref
858
    parse_flatten(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
859
    {
860
        int64_t axis = 1;
861
        if(contains(info.attributes, "axis"))
Paul's avatar
Paul committed
862
        {
863
            axis = parse_value(info.attributes.at("axis")).at<int>();
Paul's avatar
Paul committed
864
        }
865
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
866
867
    }

868
    instruction_ref
869
    parse_squeeze(const std::string&, node_info info, std::vector<instruction_ref> args)
870
871
    {
        op::squeeze op;
872
        literal s = parse_value(info.attributes.at("axes"));
873
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
874
        return prog.add_instruction(op, make_contiguous(args[0]));
875
876
877
    }

    instruction_ref
878
    parse_unsqueeze(const std::string&, node_info info, std::vector<instruction_ref> args)
879
880
    {
        op::unsqueeze op;
881
        literal s = parse_value(info.attributes.at("axes"));
882
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
883
        return prog.add_instruction(op, make_contiguous(args[0]));
884
885
    }

Scott Thornton's avatar
Scott Thornton committed
886
    instruction_ref
887
    parse_concat(const std::string&, node_info info, std::vector<instruction_ref> args)
Scott Thornton's avatar
Scott Thornton committed
888
    {
Shucai Xiao's avatar
Shucai Xiao committed
889
        // change to hande axis to be negative values
890
        if(!contains(info.attributes, "axis"))
Shucai Xiao's avatar
Shucai Xiao committed
891
892
893
894
        {
            MIGRAPHX_THROW("PARSE_CONCAT: attribute axis is required!");
        }

895
        int axis = parse_value(info.attributes.at("axis")).at<int>();
Scott Thornton's avatar
Scott Thornton committed
896
897
898
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
899

900
    instruction_ref
901
    parse_gather(const std::string&, node_info info, std::vector<instruction_ref> args)
902
    {
903
        int axis = 0;
904
        if(contains(info.attributes, "axis"))
905
        {
906
            axis = parse_value(info.attributes.at("axis")).at<int>();
907
        }
908

909
        op::gather op{axis};
Shucai Xiao's avatar
Shucai Xiao committed
910
        return prog.add_instruction(op, make_contiguous(args[0]), make_contiguous(args[1]));
911
912
    }

Shucai Xiao's avatar
Shucai Xiao committed
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
    instruction_ref
    parse_gather_elements(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        int axis = 0;
        if(contains(info.attributes, "axis"))
        {
            axis = parse_value(info.attributes.at("axis")).at<int>();
        }

        // standardize input data and index
        auto arg_data = make_contiguous(args[0]);
        auto arg_ind  = make_contiguous(args[1]);

        auto data_s = arg_data->get_shape();
        auto ind_s  = arg_ind->get_shape();

        if(data_s.lens().size() != ind_s.lens().size())
        {
            MIGRAPHX_THROW("PARSE_GATHER_ELEMENTS: input data and index must have the same rank!");
        }

        int n_rank     = static_cast<int>(data_s.lens().size());
        int tuned_axis = (axis < 0) ? (axis + n_rank) : axis;

        auto axis_stride      = data_s.strides()[tuned_axis];
        int64_t data_elem_num = static_cast<int64_t>(data_s.elements());
        // reshape the input data as one dimension and used as input data
        // to the gather operator
        arg_data = prog.add_instruction(op::reshape{{data_elem_num}}, arg_data);

        std::size_t elem_num = ind_s.elements();
        std::vector<int> ind_index(elem_num);
        std::iota(ind_index.begin(), ind_index.end(), 0);

        // convert index in input indices to that in input data
        std::vector<int> data_indices(elem_num);
        std::transform(ind_index.begin(), ind_index.end(), data_indices.begin(), [&](auto i) {
            return data_s.index(ind_s.multi(i));
        });

        std::vector<int> vec_axis_ind(elem_num);
        std::transform(ind_index.begin(), ind_index.end(), vec_axis_ind.begin(), [&](auto i) {
            return ind_s.multi(i)[tuned_axis];
        });

        auto l_shape_idx =
            prog.add_literal(literal(ind_s, data_indices.begin(), data_indices.end()));
        auto l_dim_idx = prog.add_literal(literal(ind_s, vec_axis_ind.begin(), vec_axis_ind.end()));
        auto l_stride  = prog.add_literal(literal{{ind_s.type(), {1}}, {axis_stride}});
        l_stride       = prog.add_instruction(op::multibroadcast{ind_s.lens()}, l_stride);
        auto dim_diff  = prog.add_instruction(op::sub{}, arg_ind, l_dim_idx);
        auto delta     = prog.add_instruction(op::mul{}, dim_diff, l_stride);
        auto ind       = prog.add_instruction(op::add{}, l_shape_idx, delta);

        op::gather op{0};
        return prog.add_instruction(op, arg_data, ind);
    }

971
    instruction_ref
972
    parse_slice(const std::string&, node_info info, std::vector<instruction_ref> args)
973
974
    {
        op::slice op;
Shucai Xiao's avatar
Shucai Xiao committed
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996

        // slice can have up to 5 inputs, we first check the 5th one
        // to decide whether MIGRAPHX can handle this slice
        if(args.size() == 5)
        {
            migraphx::argument step_arg = args.back()->eval();
            check_arg_empty(step_arg, "PARSE_SLICE: cannot handle variable steps for slice");
            std::vector<int> steps;
            step_arg.visit([&](auto s) { steps.assign(s.begin(), s.end()); });
            if(!std::all_of(steps.begin(), steps.end(), [](auto s) { return s == 1; }))
            {
                MIGRAPHX_THROW("PARSE_SLICE: cannot handle step other than 1");
            }
        }

        if(args.size() >= 4)
        {
            migraphx::argument axes_arg = args.at(3)->eval();
            check_arg_empty(axes_arg, "PARSE_SLICE: cannot handle variable axes for slice");
            axes_arg.visit([&](auto s) { op.axes.assign(s.begin(), s.end()); });
        }
        else if(contains(info.attributes, "axes"))
997
        {
998
            literal s = parse_value(info.attributes.at("axes"));
999
1000
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
Shucai Xiao's avatar
Shucai Xiao committed
1001
1002

        if(args.size() >= 3)
Khalique's avatar
Khalique committed
1003
        {
Shucai Xiao's avatar
Shucai Xiao committed
1004
1005
1006
            migraphx::argument end_arg = args.at(2)->eval();
            check_arg_empty(end_arg, "PARSE_SLICE: cannot handle variable ends for slice");
            end_arg.visit([&](auto s) { op.ends.assign(s.begin(), s.end()); });
Khalique's avatar
Khalique committed
1007
        }
Shucai Xiao's avatar
Shucai Xiao committed
1008
        else if(contains(info.attributes, "ends"))
1009
        {
1010
1011
            literal s = parse_value(info.attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
1012
        }
Shucai Xiao's avatar
Shucai Xiao committed
1013
1014
1015
1016
1017
1018
1019
1020

        if(args.size() >= 2)
        {
            migraphx::argument start_arg = args.at(1)->eval();
            check_arg_empty(start_arg, "PARSE_SLICE: cannot handle variable starts for slice");
            start_arg.visit([&](auto s) { op.starts.assign(s.begin(), s.end()); });
        }
        else if(contains(info.attributes, "starts"))
1021
        {
1022
            literal s = parse_value(info.attributes.at("starts"));
1023
1024
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
Shucai Xiao's avatar
Shucai Xiao committed
1025

kahmed10's avatar
kahmed10 committed
1026
1027
1028
1029
1030
1031
1032
        if(op.axes.empty())
        {
            std::vector<int64_t> axes(args[0]->get_shape().lens().size());
            std::iota(axes.begin(), axes.end(), int64_t{0});
            op.axes = axes;
        }

1033
1034
1035
        return prog.add_instruction(op, args[0]);
    }

1036
1037
    instruction_ref
    parse_constant(const std::string&, node_info info, const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
1038
    {
1039
        literal v = parse_value(info.attributes.at("value"));
1040
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
1041
        if(v.get_shape().elements() == 0)
1042
1043
1044
1045
        {
            return prog.add_literal(literal{});
        }

1046
        auto dim_size = info.attributes.at("value").t().dims_size();
1047
1048
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
1049
        {
1050
            migraphx::shape scalar_shape{v.get_shape().type()};
1051
1052
1053
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
1054
1055
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
1056

Paul's avatar
Paul committed
1057
    instruction_ref
1058
    parse_gemm(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
1059
1060
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
1061
        float beta  = 1.0f;
Paul's avatar
Paul committed
1062
1063
        bool transa = false;
        bool transb = false;
1064
        if(contains(info.attributes, "alpha"))
Paul's avatar
Paul committed
1065
        {
1066
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Paul's avatar
Paul committed
1067
        }
1068
        if(contains(info.attributes, "beta"))
Paul's avatar
Paul committed
1069
        {
1070
            beta = parse_value(info.attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
1071
        }
1072
        if(contains(info.attributes, "transA"))
Paul's avatar
Paul committed
1073
        {
1074
            transa = parse_value(info.attributes.at("transA")).at<bool>();
Paul's avatar
Paul committed
1075
        }
1076
        if(contains(info.attributes, "transB"))
Paul's avatar
Paul committed
1077
        {
1078
            transb = parse_value(info.attributes.at("transB")).at<bool>();
Paul's avatar
Paul committed
1079
        }
1080
1081
1082
1083
1084
1085

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

1086
1087
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
1088
1089
        if(args.size() == 3)
        {
1090
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
1091
            {
Shucai Xiao's avatar
Shucai Xiao committed
1092
                auto out_lens   = l1->get_shape().lens();
1093
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
1094
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
1095
1096
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
1097
                {
1098
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
1099
                }
1100
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
1101
            }
Paul's avatar
Paul committed
1102
        }
1103
1104

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
1105
1106
    }

1107
    template <class Op>
1108
    instruction_ref
1109
    parse_matmul(const std::string&, const node_info&, std::vector<instruction_ref> args)
1110
    {
Shucai Xiao's avatar
Shucai Xiao committed
1111
1112
        auto l0      = args[0];
        auto l1      = args[1];
1113
1114
1115
1116
1117
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
1118
        if(l0_lens.size() == 1)
1119
1120
1121
1122
1123
1124
1125
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
1126
        if(l1_lens.size() == 1)
1127
1128
1129
1130
1131
1132
1133
1134
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
1135
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
1136
1137
1138
1139
1140
1141
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
1142
            l0_broadcasted_lens = output_lens;
1143
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
1144
            l1_broadcasted_lens = output_lens;
1145
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
1146
            if(l0_lens != l0_broadcasted_lens)
1147
1148
1149
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
1150
            if(l1_lens != l1_broadcasted_lens)
1151
1152
1153
1154
1155
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

1156
        auto dot_res     = prog.add_instruction(Op{1, 0}, bl0, bl1);
1157
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
1158
        if(is_a_prepended)
1159
1160
1161
1162
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
1163
        if(is_b_appended)
1164
1165
1166
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
1167

1168
1169
1170
        return dot_res;
    }

1171
    instruction_ref
1172
    parse_batchnorm(const std::string&, node_info info, std::vector<instruction_ref> args)
1173
    {
Scott Thornton's avatar
Scott Thornton committed
1174
1175
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
1176
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
1177
        if(contains(info.attributes, "epsilon"))
1178
        {
1179
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
1180
        }
1181
        if(contains(info.attributes, "momentum"))
1182
        {
1183
            momentum = parse_value(info.attributes.at("momentum")).at<float>();
1184
        }
1185
        if(contains(info.attributes, "spatial"))
1186
        {
1187
            bn_mode = (parse_value(info.attributes.at("spatial")).at<uint64_t>() > 0)
1188
1189
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
1190
        }
Paul's avatar
Paul committed
1191
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
1192
        return prog.add_instruction(op, std::move(args));
1193
1194
    }

1195
1196
    instruction_ref
    parse_instancenorm(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
1197
1198
1199
1200
1201
1202
    {
        // y = scale * ( x - mean ) / sqrt ( variance + epsilon ) + bias
        // mean = reduce_mean({H, W}, x)
        // variance = reduce_mean({H, W}, (x - mean)^2)

        float epsilon = 1e-5f;
1203
        if(contains(info.attributes, "epsilon"))
kahmed10's avatar
kahmed10 committed
1204
        {
1205
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
kahmed10's avatar
kahmed10 committed
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
        }
        auto x     = args[0];
        auto scale = args[1];
        auto bias  = args[2];
        auto dims  = x->get_shape().lens();

        auto mean            = prog.add_instruction(op::reduce_mean{{2, 3}}, x);
        auto mean_bcast      = prog.add_instruction(op::multibroadcast{dims}, mean);
        auto l0              = prog.add_instruction(op::sqdiff{}, x, mean_bcast);
        auto variance        = prog.add_instruction(op::reduce_mean{{2, 3}}, l0);
        auto l1              = prog.add_instruction(op::sub{}, x, mean_bcast);
        auto epsilon_literal = prog.add_literal(epsilon);
        auto epsilon_bcast   = prog.add_instruction(op::multibroadcast{dims}, epsilon_literal);
        auto variance_bcast  = prog.add_instruction(op::multibroadcast{dims}, variance);
        auto l2              = prog.add_instruction(op::add{}, variance_bcast, epsilon_bcast);
        auto l3              = prog.add_instruction(op::rsqrt{}, l2);
        auto l4              = prog.add_instruction(op::mul{}, l1, l3);
        auto scale_bcast     = prog.add_instruction(op::broadcast{1, dims}, scale);
        ;
        auto bias_bcast = prog.add_instruction(op::broadcast{1, dims}, bias);
        auto l5         = prog.add_instruction(op::mul{}, l4, scale_bcast);
        return prog.add_instruction(op::add{}, l5, bias_bcast);
    }

1230
1231
    instruction_ref
    parse_leaky_relu(const std::string&, node_info info, std::vector<instruction_ref> args)
1232
    {
Khalique's avatar
Khalique committed
1233
        float alpha = 0.01; // default alpha val for leaky relu
1234
        if(contains(info.attributes, "alpha"))
1235
        {
1236
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
1237
1238
1239
1240
1241
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

1242
    instruction_ref parse_elu(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1243
1244
    {
        float alpha = 1.0; // default alpha val for elu
1245
        if(contains(info.attributes, "alpha"))
Khalique's avatar
Khalique committed
1246
        {
1247
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Khalique's avatar
Khalique committed
1248
1249
1250
1251
1252
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

1253
    instruction_ref parse_lrn(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1254
1255
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
1256
1257
1258
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
1259
1260
1261
1262
1263
1264
1265
1266
        if(contains(info.attributes, "alpha"))
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
        if(contains(info.attributes, "beta"))
            beta = parse_value(info.attributes.at("beta")).at<float>();
        if(contains(info.attributes, "bias"))
            bias = parse_value(info.attributes.at("bias")).at<float>();
        if(contains(info.attributes, "size"))
            size = parse_value(info.attributes.at("size")).at<int>();
Khalique's avatar
Khalique committed
1267
1268
1269
1270
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

1271
1272
    instruction_ref
    parse_imagescaler(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1273
1274
1275
    {
        float scale = 1.0;
        std::vector<float> bias{};
1276
        if(contains(info.attributes, "scale"))
Khalique's avatar
Khalique committed
1277
        {
1278
            scale = parse_value(info.attributes.at("scale")).at<float>();
Khalique's avatar
Khalique committed
1279
1280
        }

1281
        if(contains(info.attributes, "bias"))
Khalique's avatar
Khalique committed
1282
        {
1283
            auto&& bias_floats = info.attributes["bias"].floats();
Khalique's avatar
Khalique committed
1284
1285
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
Shucai Xiao's avatar
Shucai Xiao committed
1286
1287
1288
        auto input_shape       = args.front()->get_shape();
        auto const& input_lens = input_shape.lens();
        auto input_type        = input_shape.type();
Khalique's avatar
Khalique committed
1289

Shucai Xiao's avatar
Shucai Xiao committed
1290
1291
        auto scale_val = prog.add_literal(literal{shape{input_type}, {scale}});
        auto bias_vals = prog.add_literal(literal{shape{input_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
1292

1293
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
1294
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
1295
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
1296
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
1297
    }
Khalique's avatar
Khalique committed
1298

Khalique's avatar
Khalique committed
1299
    instruction_ref
1300
    parse_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1301
1302
    {
        std::vector<int64_t> perm{};
1303
        if(contains(info.attributes, "perm"))
Khalique's avatar
Khalique committed
1304
        {
1305
            auto&& perm_vals = info.attributes["perm"].ints();
Khalique's avatar
Khalique committed
1306
1307
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
1308
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
1309
1310
    }

1311
    instruction_ref parse_pad(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1312
1313
    {
        std::vector<int64_t> pads{};
1314
1315
1316
1317
1318
1319
1320
        if(args.size() >= 2)
        {
            auto pad_arg = args.at(1)->eval();
            check_arg_empty(pad_arg, "PARSE_PAD: pad input must be constant");
            pad_arg.visit([&](auto v) { pads.assign(v.begin(), v.end()); });
        }
        else if(contains(info.attributes, "pads"))
Khalique's avatar
Khalique committed
1321
        {
1322
            auto&& pad_vals = info.attributes["pads"].ints();
Khalique's avatar
Khalique committed
1323
1324
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
1325
1326
1327
1328
1329
        else
        {
            MIGRAPHX_THROW("PARSE_PAD: pad must be available");
        }

1330
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
1331
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
1332
1333
1334
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
1335

kahmed10's avatar
kahmed10 committed
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
        if(contains(info.attributes, "mode"))
        {
            auto mode = info.attributes.at("mode").s();
            if(mode == "reflect")
                return reflect_pad(pads, args.front());
            if(mode != "constant")
            {
                MIGRAPHX_THROW(
                    "PARSE_PAD: migraphx currently only supports constant and reflect padding");
            }
        }

1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
        float value = 0.0f;
        // third input is the value
        if(args.size() == 3)
        {
            auto val_ins = args.at(2);
            if(!val_ins->can_eval())
            {
                MIGRAPHX_THROW("PARSE_PAD: input value must be constant");
            }
            auto val_arg = val_ins->eval();
            if(val_arg.get_shape().elements() != 1)
            {
                MIGRAPHX_THROW("PARSE_PAD: value should contain only one element");
            }
            value = val_arg.at<float>();
        }
        else if(contains(info.attributes, "value"))
Khalique's avatar
Khalique committed
1365
        {
1366
            value = parse_value(info.attributes.at("value")).at<float>();
Khalique's avatar
Khalique committed
1367
        }
1368

Khalique's avatar
Khalique committed
1369
1370
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
1371
1372
1373
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
1374
    parse_shape(const std::string&, const node_info&, std::vector<instruction_ref> args)
1375
1376
    {
        if(args.size() != 1)
1377
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
1390
1391
    instruction_ref
    parse_constant_fill(const std::string&, node_info info, std::vector<instruction_ref> args)
1392
1393
1394
1395
1396
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

1397
        if(contains(info.attributes, "dtype"))
1398
        {
1399
            dtype = parse_value(info.attributes.at("dtype")).at<int>();
1400
        }
Shucai Xiao's avatar
Shucai Xiao committed
1401
        shape::type_t type = get_type(dtype);
1402

1403
        if(contains(info.attributes, "input_as_shape"))
1404
        {
1405
            input_as_shape = parse_value(info.attributes.at("input_as_shape")).at<int>();
1406
1407
        }

1408
        if(contains(info.attributes, "value"))
1409
        {
1410
            value = parse_value(info.attributes.at("value")).at<float>();
1411
1412
        }

1413
        if(contains(info.attributes, "extra_shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1414
        {
1415
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
1416
1417
        }

1418
1419
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1420
            if(args.size() != 1)
1421
            {
1422
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
1423
1424
            }

1425
            if(contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1426
            {
1427
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
1428
                               "at the same time");
1429
1430
            }

1431
            migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1432
            check_arg_empty(in, "ConstantFill: dynamic shape is not supported");
1433

1434
1435
1436
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
1437
1438
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1439
1440
1441
        }
        else if(input_as_shape == 0)
        {
1442
            if(!contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1443
            {
1444
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
1445
1446
            }

1447
            literal ls = parse_value(info.attributes.at("shape"));
1448
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
1449
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
1450
            migraphx::shape s{type, dims};
1451
1452
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1453
1454
1455
        }
        else
        {
1456
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
1457
1458
1459
        }
    }

1460
1461
    instruction_ref
    parse_constant_of_shape(const std::string&, node_info info, std::vector<instruction_ref> args)
1462
1463
    {
        literal l_val{};
1464
        if(contains(info.attributes, "value"))
1465
        {
1466
            l_val = parse_value(info.attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
1467
            if(l_val.get_shape().elements() != 1)
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
1479

Shucai Xiao's avatar
Shucai Xiao committed
1480
        if(args.empty())
1481
        {
Shucai Xiao's avatar
Shucai Xiao committed
1482
            MIGRAPHX_THROW("ConstantOfShape : must have 1 input!");
1483
1484
1485
        }
        else
        {
1486
1487
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
1488
            if(args[0]->get_shape().elements() == 0)
1489
            {
1490
                s = migraphx::shape{type, {1}, {0}};
1491
            }
1492
1493
1494
            else
            {
                migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1495
                check_arg_empty(in, "ConstantOfShape: dynamic shape is not supported");
1496

1497
1498
1499
1500
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
1501

Shucai Xiao's avatar
Shucai Xiao committed
1502
            literal l_out{};
1503
            l_val.visit([&](auto val) {
Shucai Xiao's avatar
Shucai Xiao committed
1504
                using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
1505
                // l_val contains only one element
1506
                std::vector<val_type> out_vec(s.elements(), val.front());
1507
1508
1509
1510
1511
1512
1513
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1514
    instruction_ref
1515
    parse_expand(const std::string&, const node_info&, std::vector<instruction_ref> args)
1516
    {
Shucai Xiao's avatar
Shucai Xiao committed
1517
        auto in_lens             = args[0]->get_shape().lens();
1518
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1519
        check_arg_empty(arg_s, "Expand: dynamic shape is not supported");
1520
1521
1522
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
Shucai Xiao's avatar
Shucai Xiao committed
1523
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
1524
1525
    }

Shucai Xiao's avatar
Shucai Xiao committed
1526
    std::vector<instruction_ref>
1527
    parse_rnn(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1528
1529
    {
        migraphx::shape input_shape = args[0]->get_shape();
1530
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
1531

1532
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
1533
        {
1534
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1535
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1536
1537
1538
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
1539
1540
1541
1542
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1543
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
1544
        {
1545
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
1546
1547
        }

1548
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1549
1550
        if(direction == "bidirectional")
        {
1551
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1552
1553
1554
        }
        else if(direction == "reverse")
        {
1555
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1556
1557
        }

1558
        std::vector<std::string> vec_names{"tanh"};
1559
        if(contains(info.attributes, "activations"))
1560
        {
1561
            auto names = info.attributes.at("activations").strings();
1562
            vec_names.clear();
1563
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1564
1565
1566
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1567
1568
        }

1569
1570
1571
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1572
        if(name_it != vec_names.end())
1573
1574
1575
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1576

Shucai Xiao's avatar
Shucai Xiao committed
1577
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1578
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1579
        // if only one actv function is provided, we use it in both
1580
        // forward and reverse direction
1581
        if(dirct == op::rnn_direction::bidirectional)
1582
        {
Shucai Xiao's avatar
Shucai Xiao committed
1583
            if(vec_names.size() == 1)
1584
1585
1586
1587
1588
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1589
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1590
1591
1592
1593
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& fn) { return map_actv_funcs[fn]; });
Shucai Xiao's avatar
Shucai Xiao committed
1594

Shucai Xiao's avatar
Shucai Xiao committed
1595
1596
        // To be added later
        float clip = 0.0;
1597
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
1598
        {
1599
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
1600
1601
        }

1602
1603
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1604
        if(args.size() < 6)
1605
1606
1607
1608
1609
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1610
1611
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1612
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1613

1614
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1615
        auto last_output = prog.add_instruction(op::rnn_last_hs_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1616

Shucai Xiao's avatar
Shucai Xiao committed
1617
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1618
1619
    }

1620
    std::vector<instruction_ref>
1621
    parse_gru(const std::string&, node_info info, std::vector<instruction_ref> args)
1622
1623
1624
1625
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

1626
        if(contains(info.attributes, "hidden_size"))
1627
        {
1628
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1629
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1630
1631
1632
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1633
1634
1635
1636
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1637
        if(contains(info.attributes, "direction"))
1638
        {
1639
            direction = info.attributes.at("direction").s();
1640
1641
        }

1642
        op::rnn_direction dirct = op::rnn_direction::forward;
1643
1644
        if(direction == "bidirectional")
        {
1645
            dirct = op::rnn_direction::bidirectional;
1646
1647
1648
        }
        else if(direction == "reverse")
        {
1649
            dirct = op::rnn_direction::reverse;
1650
1651
        }

1652
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1653
        if(contains(info.attributes, "activations"))
1654
        {
1655
            auto names = info.attributes.at("activations").strings();
1656
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1657
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1658
1659
1660
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1661
1662
        }

1663
        // need 4 activation functions
1664
        if(dirct == op::rnn_direction::bidirectional)
1665
        {
Shucai Xiao's avatar
Shucai Xiao committed
1666
            // 4 activation functions are used in the bidirectional
1667
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1668
1669
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1670
1671
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1672
1673
1674
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1675
            if(vec_names.size() == 1)
1676
            {
1677
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1678
            }
1679
            else if(vec_names.size() == 2)
1680
            {
1681
1682
1683
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1684
            }
1685
            else if(vec_names.size() == 3)
1686
            {
1687
                vec_names.push_back(vec_names.at(2));
1688
1689
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1690
        else
1691
        {
1692
            if(vec_names.size() == 1)
1693
            {
1694
                vec_names.push_back(vec_names.at(0));
1695
1696
1697
            }
        }

1698
1699
1700
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1701
        if(name_it != vec_names.end())
1702
1703
1704
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1705

Shucai Xiao's avatar
Shucai Xiao committed
1706
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1707
1708
1709
1710
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
1711
1712

        float clip = 0.0;
1713
        if(contains(info.attributes, "clip"))
1714
        {
1715
            clip = parse_value(info.attributes.at("clip")).at<float>();
1716
1717
1718
        }

        int linear_before_reset = 0;
1719
        if(contains(info.attributes, "linear_before_reset"))
1720
        {
1721
            linear_before_reset = parse_value(info.attributes.at("linear_before_reset")).at<int>();
1722
1723
        }

Shucai Xiao's avatar
Shucai Xiao committed
1724
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1725
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1726
1727
1728
1729
1730
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1731
1732
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1733
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1734
            std::move(args));
1735
1736

        // second output for last gru output
Shucai Xiao's avatar
Shucai Xiao committed
1737
        auto last_output = prog.add_instruction(op::rnn_last_hs_output{}, hidden_states);
1738

Shucai Xiao's avatar
Shucai Xiao committed
1739
        return {hidden_states, last_output};
1740
1741
    }

Shucai Xiao's avatar
Shucai Xiao committed
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
    void lstm_actv_functions(op::rnn_direction dirct, std::vector<std::string>& actv_func_names)
    {
        // need 6 activation functions for bidirectional directions
        if(dirct == op::rnn_direction::bidirectional)
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
            // if 3 actv funcs are provide, repeat all three once.
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(actv_func_names.size())
            {
            case 1:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0)};
                break;

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(1),
                                   actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(1)};
                break;

            case 3:
                // repeat all three actv funcs once
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2)};
                break;

            case 4:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(3),
                                   actv_func_names.at(3),
                                   actv_func_names.at(3)};
                break;

            case 5:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(3),
                                   actv_func_names.at(4),
                                   actv_func_names.at(4)};
                break;

            default: break;
            }
        }
        else
        {
            switch(actv_func_names.size())
            {
            case 1:
                actv_func_names = {
                    actv_func_names.at(0), actv_func_names.at(0), actv_func_names.at(0)};
                break;

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
                actv_func_names = {
                    actv_func_names.at(0), actv_func_names.at(1), actv_func_names.at(1)};
                break;

            default: break;
            }
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1827
    std::vector<instruction_ref>
1828
    parse_lstm(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1829
1830
1831
1832
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

1833
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
1834
        {
1835
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1836
1837
1838
1839
1840
1841
1842
1843
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1844
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
1845
        {
1846
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
1847
1848
        }

Shucai Xiao's avatar
Shucai Xiao committed
1849
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1850
1851
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1852
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1853
1854
1855
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1856
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1857
        }
Shucai Xiao's avatar
Shucai Xiao committed
1858
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1859
        {
Shucai Xiao's avatar
Shucai Xiao committed
1860
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1861
1862
1863
1864
1865
1866
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1867
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
1868
        if(contains(info.attributes, "activations"))
Shucai Xiao's avatar
Shucai Xiao committed
1869
        {
1870
            auto names = info.attributes.at("activations").strings();
Shucai Xiao's avatar
Shucai Xiao committed
1871
1872
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1873
1874
1875
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1876
1877
        }

Shucai Xiao's avatar
Shucai Xiao committed
1878
        lstm_actv_functions(dirct, vec_names);
Shucai Xiao's avatar
Shucai Xiao committed
1879

1880
1881
1882
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1883
        if(name_it != vec_names.end())
1884
1885
1886
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1887
1888

        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1889
1890
1891
1892
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
Shucai Xiao's avatar
Shucai Xiao committed
1893
1894

        float clip = 0.0;
1895
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
1896
        {
1897
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
1898
1899
1900
        }

        int input_forget = 0;
1901
        if(contains(info.attributes, "input_forget"))
Shucai Xiao's avatar
Shucai Xiao committed
1902
        {
1903
            input_forget = parse_value(info.attributes.at("input_forget")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1904
1905
1906
1907
1908
1909
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1910
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1911
1912
1913
1914
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1915
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1916

Shucai Xiao's avatar
Shucai Xiao committed
1917
        auto last_output = prog.add_instruction(op::rnn_last_hs_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1918
1919

        // third output for last cell output
Shucai Xiao's avatar
Shucai Xiao committed
1920
        auto last_cell_output = prog.add_instruction(op::rnn_last_cell_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1921
1922
1923

        return {hidden_states, last_output, last_cell_output};
    }
1924

Shucai Xiao's avatar
Shucai Xiao committed
1925
    template <class T>
1926
1927
    instruction_ref
    parse_reduce_oper(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1928
1929
1930
1931
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
1932
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
1933
        std::iota(axes.begin(), axes.end(), 0);
1934
        if(contains(info.attributes, "axes"))
Shucai Xiao's avatar
Shucai Xiao committed
1935
1936
        {
            axes.clear();
1937
            auto&& attr_axes = info.attributes["axes"].ints();
1938
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
1939
1940
1941
        }

        int keep_dims = 1;
1942
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
1943
        {
1944
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1945
1946
1947
1948
        }

        if(keep_dims == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1949
            return prog.add_instruction(T{axes}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1950
1951
1952
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
1953
            auto ins = prog.add_instruction(T{axes}, std::move(args));
1954
            return prog.add_instruction(op::squeeze{axes}, ins);
1955
1956
        }
    }
1957

Shucai Xiao's avatar
Shucai Xiao committed
1958
    instruction_ref
1959
    parse_reduce_l1(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1960
1961
    {
        auto abs_ins = prog.add_instruction(op::abs{}, args[0]);
1962
        return parse_reduce_oper<op::reduce_sum>({}, std::move(info), {abs_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1963
1964
1965
    }

    instruction_ref
1966
    parse_reduce_l2(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1967
1968
    {
        auto square_ins = prog.add_instruction(op::mul{}, args[0], args[0]);
1969
        auto sum_ins    = parse_reduce_oper<op::reduce_sum>({}, std::move(info), {square_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1970
1971
1972
        return prog.add_instruction(op::sqrt{}, sum_ins);
    }

1973
1974
    instruction_ref
    parse_reduce_log_sum(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1975
    {
1976
        auto sum_ins = parse_reduce_oper<op::reduce_sum>({}, std::move(info), std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1977
1978
1979
        return prog.add_instruction(op::log{}, sum_ins);
    }

1980
1981
    instruction_ref
    parse_reduce_log_sum_exp(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1982
1983
    {
        auto exp_ins = prog.add_instruction(op::exp{}, args[0]);
1984
        auto sum_ins = parse_reduce_oper<op::reduce_sum>({}, std::move(info), {exp_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1985
1986
1987
        return prog.add_instruction(op::log{}, sum_ins);
    }

1988
1989
    instruction_ref
    parse_reduce_sum_square(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1990
1991
    {
        auto square_ins = prog.add_instruction(op::mul{}, args[0], args[0]);
1992
        return parse_reduce_oper<op::reduce_sum>({}, std::move(info), {square_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1993
1994
    }

Shucai Xiao's avatar
Shucai Xiao committed
1995
    instruction_ref
1996
    parse_cast(const std::string&, node_info info, std::vector<instruction_ref> args)
1997
    {
1998
        if(!contains(info.attributes, "to"))
1999
2000
2001
2002
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

2003
        int to_type        = parse_value(info.attributes.at("to")).at<int>();
2004
2005
2006
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
2007

2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
    std::vector<instruction_ref>
    parse_split(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        int64_t axis = 0;
        if(contains(info.attributes, "axis"))
        {
            axis = parse_value(info.attributes.at("axis")).at<int>();
        }

        auto lens      = args[0]->get_shape().lens();
        int64_t n_rank = static_cast<int64_t>(lens.size());
        if((axis < -n_rank) || (axis >= n_rank))
        {
            MIGRAPHX_THROW("PARSE_SPLIT: axis attribute out of rank!");
        }
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;

        std::vector<int64_t> vec_splits;
        if(contains(info.attributes, "split"))
        {
            literal s = parse_value(info.attributes.at("split"));
            s.visit([&](auto v) { vec_splits.assign(v.begin(), v.end()); });

            if(std::accumulate(vec_splits.begin(), vec_splits.end(), int64_t(0)) !=
               static_cast<int64_t>(lens[tuned_axis]))
            {
                MIGRAPHX_THROW("PARSE_SPLIT: sum of split attribute unequal to dim size of axis!");
            }
        }
        // no split attribute, input is equally divided
        else
        {
            if((lens[tuned_axis] % info.num_outputs) != 0)
            {
                MIGRAPHX_THROW("PARSE_SPLIT: input cannot be equally divided into " +
                               to_string(info.num_outputs) + " splits!");
            }
            auto dl = lens[tuned_axis] / info.num_outputs;
            vec_splits.resize(info.num_outputs, dl);
        }

        std::vector<instruction_ref> ret_ins;
        int64_t start = 0;
        for(auto sl : vec_splits)
        {
            ret_ins.push_back(
                prog.add_instruction(op::slice{{axis}, {start}, {start + sl}}, args[0]));
            start += sl;
        }

        return ret_ins;
    }

kahmed10's avatar
kahmed10 committed
2061
2062
2063
2064
    instruction_ref
    parse_onehot(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        migraphx::argument depth_arg = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
2065
        check_arg_empty(depth_arg, "PARSE_ONEHOT: depth - dynamic shape not supported");
kahmed10's avatar
kahmed10 committed
2066
2067
2068
        size_t depth = depth_arg.at<size_t>();

        int64_t axis = -1;
Shucai Xiao's avatar
Shucai Xiao committed
2069
2070
2071
2072
        if(contains(info.attributes, "axis"))
        {
            axis = info.attributes.at("axis").i();
        }
kahmed10's avatar
kahmed10 committed
2073

Shucai Xiao's avatar
Shucai Xiao committed
2074
        std::vector<float> depth_input(depth * depth, 0.0f);
kahmed10's avatar
kahmed10 committed
2075
2076
        for(int i = 0; i < depth; i++)
        {
Shucai Xiao's avatar
Shucai Xiao committed
2077
            depth_input[depth * i + i] = 1.0f;
kahmed10's avatar
kahmed10 committed
2078
2079
        }

Shucai Xiao's avatar
Shucai Xiao committed
2080
2081
2082
2083
2084
2085
2086
2087
        auto type = args[2]->get_shape().type();
        shape s{type, {depth, depth}};
        auto l_val      = prog.add_literal({s, depth_input});
        auto gather_out = prog.add_instruction(op::gather{0}, {l_val, args[0]});

        // Finally, we need a transpose to move the inner most dim to the axis dim
        int n_rank = gather_out->get_shape().lens().size();
        if(axis < -n_rank or axis >= n_rank)
kahmed10's avatar
kahmed10 committed
2088
        {
Shucai Xiao's avatar
Shucai Xiao committed
2089
            MIGRAPHX_THROW("PARSE_ONEHOT: axis out of range");
kahmed10's avatar
kahmed10 committed
2090
        }
Shucai Xiao's avatar
Shucai Xiao committed
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;
        std::vector<int64_t> perm(n_rank - 1);
        std::iota(perm.begin(), perm.end(), 0);
        perm.insert(perm.begin() + tuned_axis, n_rank - 1);
        auto tr_out = prog.add_instruction(op::transpose{perm}, gather_out);
        auto lens   = tr_out->get_shape().lens();

        auto off_val       = prog.add_instruction(op::slice{{0}, {0}, {1}}, args[2]);
        auto on_val        = prog.add_instruction(op::slice{{0}, {1}, {2}}, args[2]);
        auto diff          = prog.add_instruction(op::sub{}, on_val, off_val);
        auto unsq_off_val  = prog.add_instruction(op::multibroadcast{lens}, off_val);
        auto unsq_diff_val = prog.add_instruction(op::multibroadcast{lens}, diff);
        auto l_mul         = prog.add_instruction(op::mul{}, tr_out, unsq_diff_val);
        return prog.add_instruction(op::add{}, l_mul, unsq_off_val);
kahmed10's avatar
kahmed10 committed
2105
2106
    }

kahmed10's avatar
kahmed10 committed
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
    instruction_ref
    parse_tile(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        migraphx::argument arg_s = args[1]->eval();
        check_arg_empty(arg_s, "PARSE_TILE: dynamic shape is not supported");
        std::vector<std::int64_t> repeats;
        arg_s.visit([&](auto input) { repeats.assign(input.begin(), input.end()); });

        auto l0 = args[0];
        for(int i = 0; i < repeats.size(); i++)
        {
            auto l1 = l0;
            for(int j = 1; j < repeats[i]; j++)
            {
                l0 = prog.add_instruction(op::concat{i}, l0, l1);
            }
        }
        return l0;
    }

kahmed10's avatar
kahmed10 committed
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
    instruction_ref
    parse_range(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {

        auto start_arg = args[0]->eval();
        check_arg_empty(start_arg, "PARSE_RANGE: start arg dynamic shape is not supported");
        auto limit_arg = args[1]->eval();
        check_arg_empty(limit_arg, "PARSE_RANGE: limit arg dynamic shape is not supported");
        auto delta_arg = args[2]->eval();
        check_arg_empty(delta_arg, "PARSE_RANGE: delta arg dynamic shape is not supported");

        assert(args[0]->get_shape().elements() == 1 and args[1]->get_shape().elements() == 1 and
               args[2]->get_shape().elements() == 1);

        instruction_ref l0;

        visit_all(start_arg, limit_arg, delta_arg)([&](auto start, auto limit, auto delta) {
            auto start_val = start.front();
            auto limit_val = limit.front();
            auto delta_val = delta.front();

            size_t num_elements = static_cast<size_t>(
                ceil(static_cast<double>(limit_val - start_val) / static_cast<double>(delta_val)));

            assert(num_elements > 0);

            using type = decltype(start_val);

            std::vector<type> range_vals(num_elements);

            std::generate(range_vals.begin(), range_vals.end(), [&]() {
                auto result = start_val;
                start_val += delta_val;
                return result;
            });

            l0 = prog.add_literal({shape{args[0]->get_shape().type(), {num_elements}}, range_vals});
        });
        return l0;
    }

2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
    enum class reduce_mode_t
    {
        sum  = 0,
        mean = 1,
        max  = 2
    };

    instruction_ref parse_embedding_bag(const node_info& info, std::vector<instruction_ref> args)
    {
        if(args[2]->get_shape().elements() != 1)
            MIGRAPHX_THROW("PARSE_EMBEDDING_BAG: MIGraphX only supports offsets of size 1");
        reduce_mode_t reduce_mode = reduce_mode_t::sum;
        if(contains(info.attributes, "mode"))
        {
            reduce_mode = static_cast<reduce_mode_t>(info.attributes.at("mode").i());
        }

        auto l0 = prog.add_instruction(op::gather{}, args[0], args[1]);
        switch(reduce_mode)
        {
        case reduce_mode_t::sum: l0 = prog.add_instruction(op::reduce_sum{{0}}, l0); break;
        case reduce_mode_t::mean: l0 = prog.add_instruction(op::reduce_mean{{0}}, l0); break;
        case reduce_mode_t::max: l0 = prog.add_instruction(op::reduce_max{{0}}, l0); break;
        }
        return l0;
    }

    instruction_ref
    parse_aten(const std::string&, const node_info& info, std::vector<instruction_ref> args)
    {
        if(contains(info.attributes, "operator"))
        {
            auto op_name = info.attributes.at("operator").s();
            if(op_name.find("embedding_bag") != std::string::npos)
            {
                return parse_embedding_bag(info, std::move(args));
            }
        }
        MIGRAPHX_THROW("PARSE_ATEN: unsupported custom operator");
    }

Paul's avatar
Paul committed
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
2221
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
2222
2223
2224
        }
    }

Paul Fultz II's avatar
Paul Fultz II committed
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
    void parse_from(const void* data, std::size_t size)
    {
        onnx::ModelProto model;
        if(model.ParseFromArray(data, size))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            MIGRAPHX_THROW("Failed reading onnx file.");
        }
    }

Paul's avatar
Paul committed
2241
2242
    void parse_graph(const onnx::GraphProto& graph)
    {
2243
        for(auto&& f : graph.initializer())
2244
2245
            instructions[f.name()] = prog.add_literal(parse_tensor(f));

Paul's avatar
Paul committed
2246
2247
2248
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
2249
2250
            // input not in initializer_data, so it is a real input
            if(!contains(instructions, name))
2251
            {
2252
2253
2254
2255
2256
2257
2258
                std::vector<std::size_t> dims;
                if(map_input_dims.count(name) > 0)
                {
                    dims = map_input_dims.at(name);
                }

                shape s            = parse_type(input.type(), dims);
2259
2260
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
2261
        }
2262
2263

        for(auto&& node : graph.node())
Paul's avatar
Paul committed
2264
        {
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(input.empty())
                {
                    this->parse_undefined(input);
                }
                if(instructions.count(input) == 0)
                {
                    MIGRAPHX_THROW("PARSE_GRAPH: invalid onnx file. Input \"" + input +
                                   "\" is unavailable due to unordered nodes!");
                }
                args.push_back(instructions.at(input));
            }

            std::vector<instruction_ref> result;
            std::size_t output_num = static_cast<std::size_t>(node.output().size());
            if(ops.count(node.op_type()) == 0)
            {
2284
2285
2286
2287
                if(skip_unknown_operators)
                    result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
                else
                    MIGRAPHX_THROW("Unknown operator: " + node.op_type());
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
            }
            else
            {
                result = ops[node.op_type()]({get_attributes(node), output_num}, args);
            }

            output_num = std::min<std::size_t>(output_num, result.size());
            std::transform(node.output().begin(),
                           node.output().begin() + output_num,
                           result.begin(),
                           std::inserter(instructions, instructions.end()),
                           [](auto&& x, auto&& y) { return std::make_pair(x, y); });
Paul's avatar
Paul committed
2300
        }
Shucai Xiao's avatar
Shucai Xiao committed
2301

2302
        // Find instructions corresponding to the output
Shucai Xiao's avatar
Shucai Xiao committed
2303
        auto prog_output = graph.output();
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
        std::vector<std::string> all_output_names;
        std::vector<std::string> prog_output_names;
        std::transform(prog_output.begin(),
                       prog_output.end(),
                       std::back_inserter(all_output_names),
                       [](auto& node) { return node.name(); });
        std::copy_if(
            all_output_names.begin(),
            all_output_names.end(),
            std::back_inserter(prog_output_names),
            [&](const auto& name) { return !(name.empty() or instructions.count(name) == 0); });

        std::vector<instruction_ref> output_ins;
        std::transform(prog_output_names.begin(),
                       prog_output_names.end(),
                       std::back_inserter(output_ins),
                       [&](const auto& name) { return instructions[name]; });

        // add the return instuction
        prog.add_return(output_ins);
Paul's avatar
Paul committed
2324
2325
    }

Shucai Xiao's avatar
Shucai Xiao committed
2326
    void parse_undefined(const std::string& name)
2327
    {
Shucai Xiao's avatar
Shucai Xiao committed
2328
        auto ins           = prog.add_instruction(op::undefined{});
2329
2330
2331
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
Paul's avatar
Paul committed
2356
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
2357
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
Paul's avatar
Paul committed
2358
2359
2360
2361
2362
        case onnx::AttributeProto::UNDEFINED:
        case onnx::AttributeProto::GRAPH:
        case onnx::AttributeProto::STRING:
        case onnx::AttributeProto::STRINGS:
        case onnx::AttributeProto::TENSORS:
2363
2364
        case onnx::AttributeProto::SPARSE_TENSOR:
        case onnx::AttributeProto::SPARSE_TENSORS:
Paul's avatar
Paul committed
2365
2366
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
2367
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
2368
2369
2370
2371
2372
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
2373
2374
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
2375
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
2376
2377
            switch(t.data_type())
            {
2378
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Khalique's avatar
Khalique committed
2379
2380
2381
2382
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
2383
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Paul's avatar
Paul committed
2384
2385
2386
2387
            case onnx::TensorProto::INT8:
            case onnx::TensorProto::UINT16:
            case onnx::TensorProto::INT16:
            case onnx::TensorProto::INT32:
2388
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Paul's avatar
Paul committed
2389
2390
2391
2392
2393
2394
            case onnx::TensorProto::UINT8:
            case onnx::TensorProto::STRING:
            case onnx::TensorProto::UNDEFINED:
            case onnx::TensorProto::UINT32:
            case onnx::TensorProto::UINT64:
            case onnx::TensorProto::COMPLEX64:
Scott Thornton's avatar
Scott Thornton committed
2395
2396
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
2397
            MIGRAPHX_THROW("Invalid tensor type");
2398
        }
Paul's avatar
Paul committed
2399
2400
2401
2402
2403
2404
        switch(t.data_type())
        {
        case onnx::TensorProto::INT8:
        case onnx::TensorProto::UINT16:
        case onnx::TensorProto::INT16:
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
2405
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
2406
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
2407
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
2408
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
2409
2410
2411
2412
        case onnx::TensorProto::DOUBLE:
            return create_literal(shape::double_type, dims, t.double_data());
        case onnx::TensorProto::FLOAT:
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
2413
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
2414
        {
Khalique's avatar
Khalique committed
2415
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
2416
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
2417
2418
2419
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
2420
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
2421
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
2422
        }
Paul's avatar
Paul committed
2423
2424
2425
2426
2427
2428
        case onnx::TensorProto::UNDEFINED:
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::UINT32:
        case onnx::TensorProto::UINT64:
        case onnx::TensorProto::COMPLEX64:
Paul's avatar
Paul committed
2429
2430
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
2431
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
2432
2433
    }

Khalique's avatar
Khalique committed
2434
    static literal
2435
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
2436
    {
Khalique's avatar
Khalique committed
2437
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
2438
        if(dims.empty())
2439
            return literal{{shape_type}, data};
2440
2441
2442
        return literal{{shape_type, dims}, data};
    }

2443
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
2444
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
2445
2446
    {
        if(dims.empty())
2447
            return literal{{shape_type}, data.begin(), data.end()};
2448
        return literal{{shape_type, dims}, data.begin(), data.end()};
2449
2450
    }

2451
    shape parse_type(const onnx::TypeProto& t, const std::vector<std::size_t>& input_dims)
Paul's avatar
Paul committed
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
Paul's avatar
Paul committed
2462
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
2463
2464
2465
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
2466
        case onnx::TensorProto::UINT8: shape_type = shape::uint8_type; break;
Paul's avatar
Paul committed
2467
2468
2469
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::BOOL:
        case onnx::TensorProto::UNDEFINED:
Paul's avatar
Paul committed
2470
2471
        case onnx::TensorProto::COMPLEX64:
        case onnx::TensorProto::COMPLEX128:
Paul's avatar
Paul committed
2472
            break; // throw std::runtime_error("Unsupported type");
Paul's avatar
Paul committed
2473
        }
2474
2475
2476
2477
2478
2479

        if(!input_dims.empty())
        {
            return {shape_type, input_dims};
        }

Paul's avatar
Paul committed
2480
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
2481
        auto&& tensor_dims = t.tensor_type().shape().dim();
2482
2483
2484
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
2485
2486
                       [&](auto&& d) -> std::size_t {
                           if(d.has_dim_value())
2487
                           {
2488
                               if(static_cast<int>(d.dim_value()) <= 0)
2489
2490
2491
                               {
                                   return default_dim_value;
                               }
2492
                               return d.dim_value();
2493
                           }
2494
2495
2496
2497
                           else
                           {
                               return default_dim_value;
                           }
2498
                       });
2499

2500
2501
2502
        if(dims.empty())
            return {shape_type};

Paul's avatar
Paul committed
2503
2504
        return {shape_type, dims};
    }
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
2527
2528
2529

    void check_arg_empty(const argument& arg, const std::string& msg)
    {
Shucai Xiao's avatar
Shucai Xiao committed
2530
        if(arg.empty())
Shucai Xiao's avatar
Shucai Xiao committed
2531
2532
2533
2534
        {
            MIGRAPHX_THROW(msg);
        }
    }
Paul's avatar
Paul committed
2535
2536
};

Paul Fultz II's avatar
Paul Fultz II committed
2537
template <class... Ts>
2538
program parse_onnx_from(const onnx_options& options, Ts&&... xs)
Paul's avatar
Paul committed
2539
2540
{
    onnx_parser parser;
2541
2542
2543
    parser.map_input_dims         = options.map_input_dims;
    parser.default_dim_value      = options.default_dim_value;
    parser.skip_unknown_operators = options.skip_unknown_operators;
2544

2545
    if(options.print_program_on_error)
Paul's avatar
Paul committed
2546
    {
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
        // Log the program when it can't be parsed
        try
        {
            parser.parse_from(std::forward<Ts>(xs)...);
        }
        catch(...)
        {
            std::cerr << parser.prog << std::endl;
            throw;
        }
Paul's avatar
Paul committed
2557
    }
2558
    else
Paul's avatar
Paul committed
2559
    {
2560
        parser.parse_from(std::forward<Ts>(xs)...);
Paul's avatar
Paul committed
2561
2562
2563
2564
    }
    return std::move(parser.prog);
}

2565
program parse_onnx(const std::string& name, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2566
2567
2568
2569
2570
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    return parse_onnx_from(options, input);
}

2571
program parse_onnx_buffer(const std::string& buffer, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2572
2573
2574
2575
{
    return parse_onnx_from(options, buffer.data(), buffer.size());
}

2576
program parse_onnx_buffer(const void* data, std::size_t size, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2577
2578
2579
2580
{
    return parse_onnx_from(options, data, size);
}

Paul's avatar
Paul committed
2581
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
2582
} // namespace migraphx