onnx.cpp 75.4 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
31
32
33
    program prog            = program();
    bool is_pytorch         = false;
    unsigned int batch_size = 1;
Paul's avatar
Paul committed
34
35

    std::unordered_map<std::string, op_func> ops;
36
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
37
38
39

    onnx_parser()
    {
Khalique's avatar
Khalique committed
40
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
41
42
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
43
        add_generic_op("Exp", op::exp{});
Shucai Xiao's avatar
Shucai Xiao committed
44
        add_generic_op("Erf", op::erf{});
Shucai Xiao's avatar
Shucai Xiao committed
45
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
46
47
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
48
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
49
50
51
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
52
53
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
54
        add_generic_op("Tanh", op::tanh{});
55
56
57
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
58
        add_generic_op("Sqrt", op::sqrt{});
59
        add_generic_op("Round", op::round{});
60
        add_generic_op("Sign", op::sign{});
Shucai Xiao's avatar
Shucai Xiao committed
61
62
        add_generic_op("Ceil", op::ceil{});
        add_generic_op("Floor", op::floor{});
Paul's avatar
Paul committed
63

Khalique's avatar
Khalique committed
64
65
66
67
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});
Shucai Xiao's avatar
Shucai Xiao committed
68
        add_binary_op("Pow", op::pow{});
Khalique's avatar
Khalique committed
69

Khalique's avatar
Khalique committed
70
71
72
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
73

74
75
        add_mem_op("ArgMax", &onnx_parser::parse_arg_op<op::argmax>);
        add_mem_op("ArgMin", &onnx_parser::parse_arg_op<op::argmin>);
76
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
77
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
78
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
79
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
80
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
81
        add_mem_op("Elu", &onnx_parser::parse_elu);
82
        add_mem_op("Expand", &onnx_parser::parse_expand);
Paul's avatar
Paul committed
83
84
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
kahmed10's avatar
kahmed10 committed
85
        add_mem_op("ConvTranspose", &onnx_parser::parse_conv_transpose);
Paul's avatar
Paul committed
86
87
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
88
89
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
90
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
91
92
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
93
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
94
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
kahmed10's avatar
kahmed10 committed
95
        add_mem_op("InstanceNormalization", &onnx_parser::parse_instancenorm);
96
97
        add_mem_op("Softmax", &onnx_parser::parse_softmax<op::softmax>);
        add_mem_op("LogSoftmax", &onnx_parser::parse_softmax<op::logsoftmax>);
98
99
100
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
101
        add_mem_op("Concat", &onnx_parser::parse_concat);
102
103
104
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
105
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
Khalique's avatar
Khalique committed
106
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
107
        add_mem_op("RNN", &onnx_parser::parse_rnn);
108
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
109
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
110
        add_mem_op("Pad", &onnx_parser::parse_pad);
Shucai Xiao's avatar
Shucai Xiao committed
111
112
113
114
115
116

        add_mem_op("ReduceL1", &onnx_parser::parse_reduce_l1);
        add_mem_op("ReduceL2", &onnx_parser::parse_reduce_l2);
        add_mem_op("ReduceLogSum", &onnx_parser::parse_reduce_log_sum);
        add_mem_op("ReduceLogSumExp", &onnx_parser::parse_reduce_log_sum_exp);
        add_mem_op("ReduceMax", &onnx_parser::parse_reduce_oper<op::reduce_max>);
Shucai Xiao's avatar
Shucai Xiao committed
117
        add_mem_op("ReduceMean", &onnx_parser::parse_reduce_oper<op::reduce_mean>);
Shucai Xiao's avatar
Shucai Xiao committed
118
        add_mem_op("ReduceMin", &onnx_parser::parse_reduce_oper<op::reduce_min>);
Shucai Xiao's avatar
Shucai Xiao committed
119
120
121
        add_mem_op("ReduceProd", &onnx_parser::parse_reduce_oper<op::reduce_prod>);
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_oper<op::reduce_sum>);
        add_mem_op("ReduceSumSquare", &onnx_parser::parse_reduce_sum_square);
122
123
124
125
126
127
128

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
129
130
131
132
133
134
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
135
136
137
138
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
139
140
141
142
143
144
145
146
147
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
148
149
150
151
152
153
154
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
155
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
156
157
158
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
159

160
    template <class T>
Khalique's avatar
Khalique committed
161
    void add_binary_op(std::string name, T x)
162
    {
Paul's avatar
Paul committed
163
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
164
            if(args.size() != 2)
Paul's avatar
Paul committed
165
                MIGRAPHX_THROW("binary operators should have 2 operands");
166
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
167
168
169
170
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
171
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
172
173
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
174
175
                    return prog.add_instruction(x, args[0], l);
                }
176
                return prog.add_instruction(x, args);
177
            }
Paul's avatar
Paul committed
178
            else
179
            {
Khalique's avatar
Khalique committed
180
                return add_broadcastable_binary_op(args[0], args[1], x);
181
182
183
184
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
185
186
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
187
188
189
190
191
192
193
194
195
196
197
198
199
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
200
        if(s0.size() > s1.size())
201
202
203
204
205
206
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
207
208
209
210
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
211
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
212
                           if(a != b and a != 1 and b != 1)
213
                           {
Shucai Xiao's avatar
Shucai Xiao committed
214
215
216
217
218
219
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
220
221
222
223

        return out_lens;
    }

Shucai Xiao's avatar
Shucai Xiao committed
224
225
    instruction_ref make_contiguous(instruction_ref ins)
    {
Shucai Xiao's avatar
Shucai Xiao committed
226
        if(ins->get_shape().standard())
Shucai Xiao's avatar
Shucai Xiao committed
227
228
229
230
231
232
233
        {
            return ins;
        }

        return prog.add_instruction(op::contiguous{}, ins);
    }

Khalique's avatar
Khalique committed
234
235
236
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
237
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
238
239
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
240
241
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
242
            auto out_lens = compute_broadcasted_lens(s0, s1);
243
244
245
246
247
248
249
250
251

            auto l0 = arg0;
            if(arg0->get_shape().lens() != out_lens)
                l0 = prog.add_instruction(op::multibroadcast{out_lens}, arg0);

            auto l1 = arg1;
            if(arg1->get_shape().lens() != out_lens)
                l1 = prog.add_instruction(op::multibroadcast{out_lens}, arg1);

Khalique's avatar
Khalique committed
252
253
254
255
256
257
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
258
259
    }

Paul's avatar
Paul committed
260
    template <class T>
Paul's avatar
Paul committed
261
262
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
263
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
264
265
266
267
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
268
    template <class T>
Khalique's avatar
Khalique committed
269
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
270
    {
Paul's avatar
Paul committed
271
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
272
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
273
274
275
276
277
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
278
        });
Khalique's avatar
Khalique committed
279
280
    }

kahmed10's avatar
kahmed10 committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
    template <class T>
    std::vector<int64_t> to_int64_vector(const std::vector<T>& input_vector)
    {
        std::vector<int64_t> output_vector(input_vector.begin(), input_vector.end());
        return output_vector;
    }

    instruction_ref
    add_bias(const std::vector<instruction_ref>& args, instruction_ref curr_ins, uint64_t axis)
    {
        if(args.size() == 3)
        {
            auto bias_bcast =
                prog.add_instruction(op::broadcast{axis, curr_ins->get_shape().lens()}, args[2]);
            return prog.add_instruction(op::add{}, curr_ins, bias_bcast);
        }
        return curr_ins;
    }

Khalique's avatar
Khalique committed
300
301
302
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
303
304
305
306
307
308
309
310
311
312
313
314
315
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Shucai Xiao's avatar
Shucai Xiao committed
316
    template <class Op>
317
    instruction_ref parse_softmax(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
318
319
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
320
    {
321
        int64_t axis = 1;
322
323
324
325
326
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

327
        return prog.add_instruction(Op{axis}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
328
329
    }

Shucai Xiao's avatar
Shucai Xiao committed
330
    template <class Op>
331
    instruction_ref parse_arg_op(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
332
333
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
334
    {
335
        int64_t axis = 0;
336
337
        if(contains(attributes, "axis"))
        {
338
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
339
340
        }

Shucai Xiao's avatar
Shucai Xiao committed
341
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
342
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
343
344
345
346
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
347
        if(keep_dims == 0)
348
        {
349
            auto ins = prog.add_instruction(Op{axis}, std::move(args));
350
            return prog.add_instruction(op::squeeze{{axis}}, ins);
351
352
353
        }
        else
        {
354
            return prog.add_instruction(Op{axis}, std::move(args));
355
        }
356
357
    }

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
    template <class Op>
    instruction_ref process_auto_pad_attribute(instruction_ref ins,
                                               attribute_map& attributes,
                                               Op& op,
                                               const std::vector<std::size_t>& in_lens)
    {
        if(!contains(attributes, "auto_pad"))
        {
            return ins;
        }

        auto auto_pad = attributes["auto_pad"].s();
        if(auto_pad.find("SAME") != std::string::npos)
        {
            // calculate the padding
            std::array<std::size_t, 2> out_lens;
            out_lens[0] = (in_lens[2] + op.stride[0] - 1) / op.stride[0];
            out_lens[1] = (in_lens[3] + op.stride[1] - 1) / op.stride[1];

            std::array<std::size_t, 2> explicit_pads;
            explicit_pads[0] = (out_lens[0] - 1) * op.stride[0] + op.lengths[0] - in_lens[2];
            explicit_pads[1] = (out_lens[1] - 1) * op.stride[1] + op.lengths[1] - in_lens[3];
            op.padding[0]    = explicit_pads[0] / 2;
            op.padding[1]    = explicit_pads[1] / 2;
            explicit_pads[0] -= 2 * op.padding[0];
            explicit_pads[1] -= 2 * op.padding[1];
            std::vector<std::int64_t> pads(8, 0);
            if(explicit_pads[0] != 0 or explicit_pads[1] != 0)
            {
                if(auto_pad == "SAME_UPPER")
                {
                    pads[6] = explicit_pads[0];
                    pads[7] = explicit_pads[1];
                }
                else if(auto_pad == "SAME_LOWER")
                {
                    pads[2] = explicit_pads[0];
                    pads[3] = explicit_pads[1];
                }

                // MaxPool
                if(op.mode == "max")
                {
                    ins = prog.add_instruction(op::pad{pads, std::numeric_limits<float>::lowest()},
                                               ins);
                }
                // AveragePool
                else
                {
                    ins = prog.add_instruction(op::pad{pads}, ins);
                }
            }

            op.padding_mode = op::padding_mode_t::same;
        }

        return ins;
    }

Paul's avatar
Paul committed
417
    instruction_ref
Paul's avatar
Paul committed
418
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
419
    {
420
        op::convolution op;
421
        auto l0 = args[0];
Paul's avatar
Paul committed
422
423
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
424
            if(contains(attributes, "auto_pad"))
425
            {
426
427
428
429
430
                auto s = attributes["auto_pad"].s();
                if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
                {
                    MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
                }
431
            }
432
433
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
434
            if(padding.size() != 4)
435
            {
Paul's avatar
Paul committed
436
                MIGRAPHX_THROW("padding should have 4 values");
437
            }
Scott Thornton's avatar
Scott Thornton committed
438
            if(padding[0] != padding[2] || padding[1] != padding[3])
439
            {
440
441
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
442
                l0      = prog.add_instruction(op::pad{padding}, l0);
443
            }
444
445
446
447
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
448
            }
Paul's avatar
Paul committed
449
        }
Paul's avatar
Paul committed
450
451
452
453
454
455
456
457
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
458
        if(contains(attributes, "auto_pad"))
459
460
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
461
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
462
            {
Paul's avatar
Paul committed
463
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
464
465
            }

wsttiger's avatar
fixes  
wsttiger committed
466
            if(s.find("SAME") != std::string::npos)
467
            {
468
                op.padding_mode = op::padding_mode_t::same;
469
470
            }
        }
Khalique's avatar
Khalique committed
471
472
473
474
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
kahmed10's avatar
kahmed10 committed
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

        auto l1 = prog.add_instruction(op, l0, args[1]);
        return add_bias(args, l1, 1);
    }

    instruction_ref parse_conv_transpose(const std::string&,
                                         attribute_map attributes,
                                         std::vector<instruction_ref> args)
    {
        op::deconvolution op;
        auto l0 = args[0];
        std::vector<std::int64_t> padding;
        bool asymm_padding = false;
        if(contains(attributes, "pads"))
        {
            if(contains(attributes, "auto_pad"))
            {
                auto s = attributes["auto_pad"].s();
                if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
                {
                    MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
                }
            }
            copy(attributes["pads"].ints(), std::back_inserter(padding));
            if(padding.size() != 4)
            {
                MIGRAPHX_THROW("padding should have 4 values");
            }
            if(padding[0] != padding[2] || padding[1] != padding[3])
            {
                asymm_padding = true;
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
Paul's avatar
Paul committed
518
        {
kahmed10's avatar
kahmed10 committed
519
            copy(attributes["dilations"].ints(), op.dilation.begin());
Paul's avatar
Paul committed
520
        }
kahmed10's avatar
kahmed10 committed
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
        if(contains(attributes, "auto_pad"))
        {
            auto s = attributes["auto_pad"].s();
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
            {
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
            }

            if(s.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::same;
            }
        }

        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }

        auto l1                   = prog.add_instruction(op, l0, args[1]);
        std::vector<int64_t> dims = to_int64_vector(l1->get_shape().lens());
        std::vector<int64_t> curr_shape{dims[2], dims[3]};
        if(asymm_padding)
        {
            op::slice slice_op;
            slice_op.axes   = {0, 1, 2, 3};
            slice_op.starts = {0, 0, 0 + padding[0], 0 + padding[1]};
            slice_op.ends   = {
                dims[0], dims[1], curr_shape[0] - padding[2], curr_shape[1] - padding[3]};

            l1 = prog.add_instruction(slice_op, l1);
        }

        if(contains(attributes, "output_padding"))
        {
            std::vector<int64_t> output_padding;
            copy(attributes["output_padding"].ints(), std::back_inserter(output_padding));
            output_padding = {0, 0, 0, 0, 0, 0, output_padding[0], output_padding[1]};
            l1             = prog.add_instruction(op::pad{output_padding}, l1);
        }

        if(contains(attributes, "output_shape"))
        {
            std::vector<int64_t> output_shape;
            copy(attributes["output_shape"].ints(), std::back_inserter(output_shape));
            dims       = to_int64_vector(l1->get_shape().lens());
            curr_shape = {dims[2], dims[3]};
            if(curr_shape != output_shape)
            {
                std::vector<int64_t> target_padding = {0,
                                                       0,
                                                       0,
                                                       0,
                                                       0,
                                                       0,
                                                       output_shape[0] - curr_shape[0],
                                                       output_shape[1] - curr_shape[1]};
                l1 = prog.add_instruction(op::pad{target_padding}, l1);
            }
        }

        return add_bias(args, l1, 1);
Paul's avatar
Paul committed
583
    }
Paul's avatar
Paul committed
584

Paul's avatar
Paul committed
585
586
587
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
588
    {
Khalique's avatar
Khalique committed
589
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
590
        auto l0 = args[0];
Khalique's avatar
Khalique committed
591
        if(starts_with(name, "Global"))
592
        {
Khalique's avatar
Khalique committed
593
594
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
595
        }
596

Paul's avatar
Paul committed
597
598
        if(contains(attributes, "pads"))
        {
599
600
601
602
603
604
605
606
607
608
            if(contains(attributes, "auto_pad"))
            {
                auto s = attributes["auto_pad"].s();
                if(to_upper(s) != "NOTSET")
                {
                    MIGRAPHX_THROW(
                        "PARSE_POOLING: auto_pad and padding cannot be specified simultaneously");
                }
            }

609
610
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
611
            if(padding.size() != 4)
612
            {
613
                MIGRAPHX_THROW("PARSE_POOLING: padding should have 4 values");
614
            }
Scott Thornton's avatar
Scott Thornton committed
615
            if(padding[0] != padding[2] || padding[1] != padding[3])
616
            {
617
618
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
619
620
621
622
623
624
625
626
627
628
629
                // MaxPool
                if(op.mode == "max")
                {
                    l0 = prog.add_instruction(
                        op::pad{padding, std::numeric_limits<float>::lowest()}, l0);
                }
                // AveragePool
                else
                {
                    l0 = prog.add_instruction(op::pad{padding}, l0);
                }
630
631
632
633
634
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
635
            }
Paul's avatar
Paul committed
636
        }
637

Paul's avatar
Paul committed
638
639
640
641
642
643
644
645
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
646

Scott Thornton's avatar
Scott Thornton committed
647
        if(contains(attributes, "auto_pad"))
648
        {
649
650
            auto in_lens = args[0]->get_shape().lens();
            l0           = process_auto_pad_attribute(l0, attributes, op, in_lens);
651
652
        }

653
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
654
655
    }

Paul's avatar
Paul committed
656
    instruction_ref
Paul's avatar
Paul committed
657
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
658
    {
659
        op::reshape op;
Paul's avatar
Paul committed
660
661
        if(args.size() == 1)
        {
662
663
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
664
665
666
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
667
            auto s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
668
            check_arg_empty(s, "Reshape: dynamic shape is not supported");
Paul's avatar
Paul committed
669
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
670
        }
671

Shucai Xiao's avatar
Shucai Xiao committed
672
        return prog.add_instruction(op, make_contiguous(args[0]));
Paul's avatar
Paul committed
673
674
    }

Paul's avatar
Paul committed
675
    instruction_ref
Paul's avatar
Paul committed
676
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
677
    {
678
        int64_t axis = 1;
Paul's avatar
Paul committed
679
680
681
682
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
683
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
684
685
    }

686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
704
705
706
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Shucai Xiao's avatar
Shucai Xiao committed
707
708
709
710
711
712
713
        // change to hande axis to be negative values
        if(!contains(attributes, "axis"))
        {
            MIGRAPHX_THROW("PARSE_CONCAT: attribute axis is required!");
        }

        int axis = parse_value(attributes.at("axis")).at<int>();
Scott Thornton's avatar
Scott Thornton committed
714
715
716
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
717

718
719
720
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
721
        int axis = 0;
722
723
724
725
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
726

727
        op::gather op{axis};
Shucai Xiao's avatar
Shucai Xiao committed
728
        return prog.add_instruction(op, make_contiguous(args[0]), make_contiguous(args[1]));
729
730
    }

731
732
733
734
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
Khalique's avatar
Khalique committed
735
        std::vector<size_t> dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
736
        size_t num_dims          = dims.size();
737
738
739
740
741
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
Khalique's avatar
Khalique committed
742
743
744
745
746
        else
        {
            op.axes = std::vector<int64_t>(num_dims);
            std::iota(op.axes.begin(), op.axes.end(), 0);
        }
Khalique's avatar
Khalique committed
747

Khalique's avatar
Khalique committed
748
        if(contains(attributes, "ends"))
749
        {
Paul's avatar
Paul committed
750
            op.ends = get_indices(attributes.at("ends"));
751
        }
Khalique's avatar
Khalique committed
752
        if(contains(attributes, "starts"))
753
754
755
756
757
758
759
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
760
761
762
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
763
    {
Shucai Xiao's avatar
Shucai Xiao committed
764
        literal v = parse_value(attributes.at("value"));
765
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
766
        if(v.get_shape().elements() == 0)
767
768
769
770
        {
            return prog.add_literal(literal{});
        }

771
772
773
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
774
        {
775
            migraphx::shape scalar_shape{v.get_shape().type()};
776
777
778
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
779
780
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
781

Paul's avatar
Paul committed
782
    instruction_ref
Paul's avatar
Paul committed
783
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
784
785
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
786
        float beta  = 1.0f;
Paul's avatar
Paul committed
787
788
789
790
791
792
793
794
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
795
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
796
797
798
799
800
801
802
803
804
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
805
806
807
808
809
810

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

811
812
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
813
814
        if(args.size() == 3)
        {
815
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
816
            {
Shucai Xiao's avatar
Shucai Xiao committed
817
                auto out_lens   = l1->get_shape().lens();
818
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
819
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
820
821
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
822
                {
823
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
824
                }
825
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
826
            }
Paul's avatar
Paul committed
827
        }
828
829

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
830
831
    }

832
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
833
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
834
    {
Shucai Xiao's avatar
Shucai Xiao committed
835
836
        auto l0      = args[0];
        auto l1      = args[1];
837
838
839
840
841
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
842
        if(l0_lens.size() == 1)
843
844
845
846
847
848
849
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
850
        if(l1_lens.size() == 1)
851
852
853
854
855
856
857
858
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
859
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
860
861
862
863
864
865
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
866
            l0_broadcasted_lens = output_lens;
867
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
868
            l1_broadcasted_lens = output_lens;
869
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
870
            if(l0_lens != l0_broadcasted_lens)
871
872
873
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
874
            if(l1_lens != l1_broadcasted_lens)
875
876
877
878
879
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
880
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
881
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
882
        if(is_a_prepended)
883
884
885
886
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
887
        if(is_b_appended)
888
889
890
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
891

892
893
894
        return dot_res;
    }

895
    instruction_ref
Paul's avatar
Paul committed
896
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
897
    {
Scott Thornton's avatar
Scott Thornton committed
898
899
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
900
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
901
902
903
904
905
906
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
907
            momentum = parse_value(attributes.at("momentum")).at<float>();
908
909
910
        }
        if(contains(attributes, "spatial"))
        {
911
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
912
913
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
914
        }
Paul's avatar
Paul committed
915
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
916
        return prog.add_instruction(op, std::move(args));
917
918
    }

kahmed10's avatar
kahmed10 committed
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
    instruction_ref parse_instancenorm(const std::string&,
                                       attribute_map attributes,
                                       std::vector<instruction_ref> args)
    {
        // y = scale * ( x - mean ) / sqrt ( variance + epsilon ) + bias
        // mean = reduce_mean({H, W}, x)
        // variance = reduce_mean({H, W}, (x - mean)^2)

        float epsilon = 1e-5f;
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        auto x     = args[0];
        auto scale = args[1];
        auto bias  = args[2];
        auto dims  = x->get_shape().lens();

        auto mean            = prog.add_instruction(op::reduce_mean{{2, 3}}, x);
        auto mean_bcast      = prog.add_instruction(op::multibroadcast{dims}, mean);
        auto l0              = prog.add_instruction(op::sqdiff{}, x, mean_bcast);
        auto variance        = prog.add_instruction(op::reduce_mean{{2, 3}}, l0);
        auto l1              = prog.add_instruction(op::sub{}, x, mean_bcast);
        auto epsilon_literal = prog.add_literal(epsilon);
        auto epsilon_bcast   = prog.add_instruction(op::multibroadcast{dims}, epsilon_literal);
        auto variance_bcast  = prog.add_instruction(op::multibroadcast{dims}, variance);
        auto l2              = prog.add_instruction(op::add{}, variance_bcast, epsilon_bcast);
        auto l3              = prog.add_instruction(op::rsqrt{}, l2);
        auto l4              = prog.add_instruction(op::mul{}, l1, l3);
        auto scale_bcast     = prog.add_instruction(op::broadcast{1, dims}, scale);
        ;
        auto bias_bcast = prog.add_instruction(op::broadcast{1, dims}, bias);
        auto l5         = prog.add_instruction(op::mul{}, l4, scale_bcast);
        return prog.add_instruction(op::add{}, l5, bias_bcast);
    }

955
956
957
958
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
959
        float alpha = 0.01; // default alpha val for leaky relu
960
961
962
963
964
965
966
967
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
968
969
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
970
971
972
973
974
975
976
977
978
979
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
980
981
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
982
983
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
984
985
986
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
987
988
989
990
991
992
993
994
995
996
997
998
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
1015
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
1016

Khalique's avatar
Khalique committed
1017
1018
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
1019
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
1020

1021
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
1022
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
1023
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
1024
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
1025
    }
Khalique's avatar
Khalique committed
1026

Khalique's avatar
Khalique committed
1027
1028
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1029
1030
1031
1032
1033
1034
1035
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
1036
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
1037
1038
    }

Khalique's avatar
Khalique committed
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
1049
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
1050
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
1051
1052
1053
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
1066
1067
1068
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
1069
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
1070
1071
    {
        if(args.size() != 1)
1072
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
Shucai Xiao's avatar
Shucai Xiao committed
1097
        shape::type_t type = get_type(dtype);
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1109
1110
        if(contains(attributes, "extra_shape"))
        {
1111
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
1112
1113
        }

1114
1115
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1116
            if(args.size() != 1)
1117
            {
1118
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
1119
1120
            }

Shucai Xiao's avatar
Shucai Xiao committed
1121
1122
            if(contains(attributes, "shape"))
            {
1123
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
1124
                               "at the same time");
1125
1126
            }

1127
            migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1128
            check_arg_empty(in, "ConstantFill: dynamic shape is not supported");
1129

1130
1131
1132
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
1133
1134
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1135
1136
1137
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1138
1139
            if(!contains(attributes, "shape"))
            {
1140
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
1141
1142
1143
            }

            literal ls = parse_value(attributes.at("shape"));
1144
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
1145
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
1146
            migraphx::shape s{type, dims};
1147
1148
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1149
1150
1151
        }
        else
        {
1152
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
1153
1154
1155
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1156
1157
1158
    instruction_ref parse_constant_of_shape(const std::string&,
                                            attribute_map attributes,
                                            std::vector<instruction_ref> args)
1159
1160
    {
        literal l_val{};
Shucai Xiao's avatar
Shucai Xiao committed
1161
        if(contains(attributes, "value"))
1162
1163
        {
            l_val = parse_value(attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
1164
            if(l_val.get_shape().elements() != 1)
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
1176

Shucai Xiao's avatar
Shucai Xiao committed
1177
        if(args.empty())
1178
        {
Shucai Xiao's avatar
Shucai Xiao committed
1179
            MIGRAPHX_THROW("ConstantOfShape : must have 1 input!");
1180
1181
1182
        }
        else
        {
1183
1184
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
1185
            if(args[0]->get_shape().elements() == 0)
1186
            {
1187
                s = migraphx::shape{type, {1}, {0}};
1188
            }
1189
1190
1191
            else
            {
                migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1192
                check_arg_empty(in, "ConstantOfShape: dynamic shape is not supported");
1193

1194
1195
1196
1197
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
1198

Shucai Xiao's avatar
Shucai Xiao committed
1199
            literal l_out{};
1200
            l_val.visit([&](auto val) {
Shucai Xiao's avatar
Shucai Xiao committed
1201
                using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
1202
                // l_val contains only one element
1203
                std::vector<val_type> out_vec(s.elements(), val.front());
1204
1205
1206
1207
1208
1209
1210
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1211
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
1212
    parse_expand(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
1213
    {
Shucai Xiao's avatar
Shucai Xiao committed
1214
        auto in_lens             = args[0]->get_shape().lens();
1215
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1216
        check_arg_empty(arg_s, "Expand: dynamic shape is not supported");
1217
1218
1219
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
Shucai Xiao's avatar
Shucai Xiao committed
1220
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
1221
1222
    }

Shucai Xiao's avatar
Shucai Xiao committed
1223
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
1224
1225
1226
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
1227
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
1228
1229
1230

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1231
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1232
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1233
1234
1235
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
1236
1237
1238
1239
1240
1241
1242
1243
1244
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1245
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1246
1247
        if(direction == "bidirectional")
        {
1248
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1249
1250
1251
        }
        else if(direction == "reverse")
        {
1252
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1253
1254
        }

1255
        std::vector<std::string> vec_names{"tanh"};
1256
1257
1258
1259
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
1260
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1261
1262
1263
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1264
1265
        }

1266
1267
1268
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1269
        if(name_it != vec_names.end())
1270
1271
1272
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1273

Shucai Xiao's avatar
Shucai Xiao committed
1274
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1275
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1276
        // if only one actv function is provided, we use it in both
1277
        // forward and reverse direction
1278
        if(dirct == op::rnn_direction::bidirectional)
1279
        {
Shucai Xiao's avatar
Shucai Xiao committed
1280
            if(vec_names.size() == 1)
1281
1282
1283
1284
1285
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1286
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1287
1288
1289
1290
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& fn) { return map_actv_funcs[fn]; });
Shucai Xiao's avatar
Shucai Xiao committed
1291

Shucai Xiao's avatar
Shucai Xiao committed
1292
1293
1294
1295
1296
1297
1298
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

1299
1300
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1301
        if(args.size() < 6)
1302
1303
1304
1305
1306
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1307
1308
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1309
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1310

1311
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1312
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1313

Shucai Xiao's avatar
Shucai Xiao committed
1314
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1315
1316
    }

1317
    std::vector<instruction_ref>
1318
1319
1320
1321
1322
1323
1324
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1325
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1326
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1327
1328
1329
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1330
1331
1332
1333
1334
1335
1336
1337
1338
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1339
        op::rnn_direction dirct = op::rnn_direction::forward;
1340
1341
        if(direction == "bidirectional")
        {
1342
            dirct = op::rnn_direction::bidirectional;
1343
1344
1345
        }
        else if(direction == "reverse")
        {
1346
            dirct = op::rnn_direction::reverse;
1347
1348
        }

1349
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1350
1351
        if(contains(attributes, "activations"))
        {
1352
            auto names = attributes.at("activations").strings();
1353
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1354
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1355
1356
1357
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1358
1359
        }

1360
        // need 4 activation functions
1361
        if(dirct == op::rnn_direction::bidirectional)
1362
        {
Shucai Xiao's avatar
Shucai Xiao committed
1363
            // 4 activation functions are used in the bidirectional
1364
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1365
1366
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1367
1368
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1369
1370
1371
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1372
            if(vec_names.size() == 1)
1373
            {
1374
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1375
            }
1376
            else if(vec_names.size() == 2)
1377
            {
1378
1379
1380
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1381
            }
1382
            else if(vec_names.size() == 3)
1383
            {
1384
                vec_names.push_back(vec_names.at(2));
1385
1386
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1387
        else
1388
        {
1389
            if(vec_names.size() == 1)
1390
            {
1391
                vec_names.push_back(vec_names.at(0));
1392
1393
1394
            }
        }

1395
1396
1397
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1398
        if(name_it != vec_names.end())
1399
1400
1401
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1402

Shucai Xiao's avatar
Shucai Xiao committed
1403
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1404
1405
1406
1407
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
1408
1409
1410
1411
1412
1413
1414
1415

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1416
        if(contains(attributes, "linear_before_reset"))
1417
1418
1419
1420
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1421
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1422
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1423
1424
1425
1426
1427
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1428
1429
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1430
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1431
            std::move(args));
1432
1433

        // second output for last gru output
1434
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1435

Shucai Xiao's avatar
Shucai Xiao committed
1436
        return {hidden_states, last_output};
1437
1438
    }

Shucai Xiao's avatar
Shucai Xiao committed
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1461
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1462
1463
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1464
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1465
1466
1467
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1468
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1469
        }
Shucai Xiao's avatar
Shucai Xiao committed
1470
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1471
        {
Shucai Xiao's avatar
Shucai Xiao committed
1472
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1473
1474
1475
1476
1477
1478
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1479
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1480
1481
1482
1483
1484
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1485
1486
1487
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1488
1489
1490
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1491
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1492
1493
1494
1495
1496
1497
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1498
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1499
1500
1501
1502
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1503
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1504
1505
1506
1507
1508
1509
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1510
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1511
1512
1513

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1514
1515
1516
1517
1518
1519
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1520
1521
1522
1523
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1524
1525
1526
1527
1528
1529
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1530
1531
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1532
1533
1534
1535
1536
1537
1538
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1539
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1540

Shucai Xiao's avatar
Shucai Xiao committed
1541
1542
1543
1544
1545
1546
1547
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1548
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1549

Shucai Xiao's avatar
Shucai Xiao committed
1550
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1551
1552
1553
1554
1555
1556
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1557
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1558
1559
1560

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1561
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1562
1563
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1564
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1565
1566
1567
            }
        }

1568
1569
1570
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1571
        if(name_it != vec_names.end())
1572
1573
1574
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1575
1576

        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1577
1578
1579
1580
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
Shucai Xiao's avatar
Shucai Xiao committed
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1598
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1599
1600
1601
1602
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1603
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1604
1605

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1606
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1607
1608
1609
1610
1611
1612

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }
1613

Shucai Xiao's avatar
Shucai Xiao committed
1614
    template <class T>
Shucai Xiao's avatar
Shucai Xiao committed
1615
    instruction_ref parse_reduce_oper(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
1616
1617
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1618
1619
1620
1621
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
1622
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
1623
1624
1625
1626
1627
        std::iota(axes.begin(), axes.end(), 0);
        if(contains(attributes, "axes"))
        {
            axes.clear();
            auto&& attr_axes = attributes["axes"].ints();
1628
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
        }

        int keep_dims = 1;
        if(contains(attributes, "keepdims"))
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

        if(keep_dims == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1639
            return prog.add_instruction(T{axes}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1640
1641
1642
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
1643
            auto ins = prog.add_instruction(T{axes}, std::move(args));
1644
            return prog.add_instruction(op::squeeze{axes}, ins);
1645
1646
        }
    }
1647

Shucai Xiao's avatar
Shucai Xiao committed
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
    instruction_ref
    parse_reduce_l1(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        auto abs_ins = prog.add_instruction(op::abs{}, args[0]);
        return parse_reduce_oper<op::reduce_sum>({}, std::move(attributes), {abs_ins});
    }

    instruction_ref
    parse_reduce_l2(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        auto square_ins = prog.add_instruction(op::mul{}, args[0], args[0]);
        auto sum_ins = parse_reduce_oper<op::reduce_sum>({}, std::move(attributes), {square_ins});
        return prog.add_instruction(op::sqrt{}, sum_ins);
    }

    instruction_ref parse_reduce_log_sum(const std::string&,
                                         attribute_map attributes,
                                         std::vector<instruction_ref> args)
    {
        auto sum_ins =
            parse_reduce_oper<op::reduce_sum>({}, std::move(attributes), std::move(args));
        return prog.add_instruction(op::log{}, sum_ins);
    }

    instruction_ref parse_reduce_log_sum_exp(const std::string&,
                                             attribute_map attributes,
                                             std::vector<instruction_ref> args)
    {
        auto exp_ins = prog.add_instruction(op::exp{}, args[0]);
        auto sum_ins = parse_reduce_oper<op::reduce_sum>({}, std::move(attributes), {exp_ins});
        return prog.add_instruction(op::log{}, sum_ins);
    }

    instruction_ref parse_reduce_sum_square(const std::string&,
                                            attribute_map attributes,
                                            std::vector<instruction_ref> args)
    {
        auto square_ins = prog.add_instruction(op::mul{}, args[0], args[0]);
        return parse_reduce_oper<op::reduce_sum>({}, std::move(attributes), {square_ins});
    }

Shucai Xiao's avatar
Shucai Xiao committed
1689
1690
    instruction_ref
    parse_cast(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
1691
    {
Shucai Xiao's avatar
Shucai Xiao committed
1692
        if(!contains(attributes, "to"))
1693
1694
1695
1696
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

Shucai Xiao's avatar
Shucai Xiao committed
1697
        int to_type        = parse_value(attributes.at("to")).at<int>();
1698
1699
1700
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
1701

Paul's avatar
Paul committed
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1714
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1715
1716
1717
1718
1719
1720
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1721
        for(auto&& f : graph.initializer())
1722
1723
            instructions[f.name()] = prog.add_literal(parse_tensor(f));

Paul's avatar
Paul committed
1724
1725
1726
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1727
1728
            // input not in initializer_data, so it is a real input
            if(!contains(instructions, name))
1729
1730
            {
                // TODO: Get shape of input parameter
1731
                shape s            = parse_type(input.type(), batch_size);
1732
1733
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1734
        }
Paul's avatar
Paul committed
1735
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1736
        {
Paul's avatar
Paul committed
1737
            this->parse_node(output.name());
Paul's avatar
Paul committed
1738
        }
Shucai Xiao's avatar
Shucai Xiao committed
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751

        // For now, the last output with a valid name is considered
        // as the program output, and add an identity instruction at
        // the program end
        auto prog_output = graph.output();
        auto oit         = std::find_if(prog_output.rbegin(), prog_output.rend(), [](auto& node) {
            return !node.name().empty();
        });

        if(instructions.count(oit->name()) > 0)
        {
            prog.add_instruction(op::identity{}, instructions[oit->name()]);
        }
Paul's avatar
Paul committed
1752
1753
    }

Shucai Xiao's avatar
Shucai Xiao committed
1754
    void parse_undefined(const std::string& name)
1755
    {
Shucai Xiao's avatar
Shucai Xiao committed
1756
        auto ins           = prog.add_instruction(op::undefined{});
1757
1758
1759
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1760
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1761
    {
Paul's avatar
Paul committed
1762
        if(name.empty())
Paul's avatar
Paul committed
1763
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1764
1765
1766
1767
1768
1769
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1770
                if(input.empty())
Paul's avatar
Paul committed
1771
                {
Shucai Xiao's avatar
Shucai Xiao committed
1772
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1773
                }
Shucai Xiao's avatar
Shucai Xiao committed
1774
                else if(nodes.count(input) > 0)
Paul's avatar
Paul committed
1775
                {
Shucai Xiao's avatar
Shucai Xiao committed
1776
1777
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1778
                }
1779
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1780
            }
Paul's avatar
Paul committed
1781
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1782
1783
            if(ops.count(node.op_type()) == 0)
            {
1784
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1785
1786
1787
            }
            else
            {
Paul's avatar
Paul committed
1788
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1789
            }
Paul's avatar
Paul committed
1790
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1791
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1792
1793
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1794
1795
1796
            }
            else
            {
Shucai Xiao's avatar
Shucai Xiao committed
1797
1798
1799
1800
                assert(node.output().size() <= result.size());
                std::transform(node.output().begin(),
                               node.output().end(),
                               result.begin(),
Paul's avatar
Paul committed
1801
                               std::inserter(instructions, instructions.end()),
Shucai Xiao's avatar
Shucai Xiao committed
1802
                               [](auto&& x, auto&& y) { return std::make_pair(x, y); });
Paul's avatar
Paul committed
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1820
        std::size_t n = 0;
Paul's avatar
Paul committed
1821
1822
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1823
            if(node.output().empty())
Paul's avatar
Paul committed
1824
            {
Paul's avatar
Paul committed
1825
                if(node.name().empty())
Paul's avatar
Paul committed
1826
1827
1828
1829
1830
1831
1832
1833
1834
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1835
1836
1837
1838
1839
1840
1841
1842
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

Paul's avatar
Paul committed
1843
1844
1845
1846
1847
1848
    static std::vector<int64_t> get_indices(const onnx::AttributeProto& attr)
    {
        std::vector<int64_t> result;
        literal s = parse_value(attr);
        s.visit([&](auto v) { copy(v, std::back_inserter(result)); });
        // Clamp large indices to -1
Paul's avatar
Paul committed
1849
1850
1851
1852
1853
        std::replace_if(
            result.begin(),
            result.end(),
            [](auto x) { return x > int64_t{std::numeric_limits<std::int32_t>::max()} / 2; },
            -1);
Paul's avatar
Paul committed
1854
1855
1856
        return result;
    }

Paul's avatar
Paul committed
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
Paul's avatar
Paul committed
1871
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1872
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
Paul's avatar
Paul committed
1873
1874
1875
1876
1877
        case onnx::AttributeProto::UNDEFINED:
        case onnx::AttributeProto::GRAPH:
        case onnx::AttributeProto::STRING:
        case onnx::AttributeProto::STRINGS:
        case onnx::AttributeProto::TENSORS:
Paul's avatar
Paul committed
1878
1879
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1880
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1881
1882
1883
1884
1885
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1886
1887
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1888
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1889
1890
            switch(t.data_type())
            {
1891
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Khalique's avatar
Khalique committed
1892
1893
1894
1895
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
1896
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Paul's avatar
Paul committed
1897
1898
1899
1900
            case onnx::TensorProto::INT8:
            case onnx::TensorProto::UINT16:
            case onnx::TensorProto::INT16:
            case onnx::TensorProto::INT32:
1901
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Paul's avatar
Paul committed
1902
1903
1904
1905
1906
1907
            case onnx::TensorProto::UINT8:
            case onnx::TensorProto::STRING:
            case onnx::TensorProto::UNDEFINED:
            case onnx::TensorProto::UINT32:
            case onnx::TensorProto::UINT64:
            case onnx::TensorProto::COMPLEX64:
Scott Thornton's avatar
Scott Thornton committed
1908
1909
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1910
            MIGRAPHX_THROW("Invalid tensor type");
1911
        }
Paul's avatar
Paul committed
1912
1913
1914
1915
1916
1917
        switch(t.data_type())
        {
        case onnx::TensorProto::INT8:
        case onnx::TensorProto::UINT16:
        case onnx::TensorProto::INT16:
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
1918
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1919
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1920
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1921
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1922
1923
1924
1925
        case onnx::TensorProto::DOUBLE:
            return create_literal(shape::double_type, dims, t.double_data());
        case onnx::TensorProto::FLOAT:
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1926
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1927
        {
Khalique's avatar
Khalique committed
1928
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1929
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1930
1931
1932
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1933
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1934
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1935
        }
Paul's avatar
Paul committed
1936
1937
1938
1939
1940
1941
        case onnx::TensorProto::UNDEFINED:
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::UINT32:
        case onnx::TensorProto::UINT64:
        case onnx::TensorProto::COMPLEX64:
Paul's avatar
Paul committed
1942
1943
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1944
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1945
1946
    }

Khalique's avatar
Khalique committed
1947
    static literal
1948
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1949
    {
Khalique's avatar
Khalique committed
1950
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1951
        if(dims.empty())
1952
            return literal{{shape_type}, data};
1953
1954
1955
        return literal{{shape_type, dims}, data};
    }

1956
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1957
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1958
1959
    {
        if(dims.empty())
1960
            return literal{{shape_type}, data.begin(), data.end()};
1961
        return literal{{shape_type, dims}, data.begin(), data.end()};
1962
1963
    }

1964
    static shape parse_type(const onnx::TypeProto& t, const unsigned int batch_size)
Paul's avatar
Paul committed
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
Paul's avatar
Paul committed
1975
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1976
1977
1978
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
Paul's avatar
Paul committed
1979
1980
1981
1982
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::BOOL:
        case onnx::TensorProto::UNDEFINED:
Paul's avatar
Paul committed
1983
1984
        case onnx::TensorProto::COMPLEX64:
        case onnx::TensorProto::COMPLEX128:
Paul's avatar
Paul committed
1985
            break; // throw std::runtime_error("Unsupported type");
Paul's avatar
Paul committed
1986
1987
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1988
        auto&& tensor_dims = t.tensor_type().shape().dim();
1989
1990
1991
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
1992
1993
                       [&](auto&& d) -> std::size_t {
                           if(d.has_dim_value())
1994
                           {
1995
1996
1997
                               if(static_cast<int>(d.dim_value()) <= 0)
                                   return batch_size;
                               return d.dim_value();
1998
                           }
1999
                           return batch_size;
2000
                       });
2001
2002
2003
        if(dims.empty())
            return {shape_type};

Paul's avatar
Paul committed
2004
2005
        return {shape_type, dims};
    }
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
2028
2029
2030

    void check_arg_empty(const argument& arg, const std::string& msg)
    {
Shucai Xiao's avatar
Shucai Xiao committed
2031
        if(arg.empty())
Shucai Xiao's avatar
Shucai Xiao committed
2032
2033
2034
2035
        {
            MIGRAPHX_THROW(msg);
        }
    }
Paul's avatar
Paul committed
2036
2037
};

2038
program parse_onnx(const std::string& name, onnx_options options)
Paul's avatar
Paul committed
2039
2040
2041
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
2042
    parser.batch_size = options.batch_size;
Paul's avatar
Paul committed
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
2060
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
2061
} // namespace migraphx