onnx.cpp 83.1 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
19
#include <migraphx/pad_calc.hpp>
Paul's avatar
Paul committed
20
21

namespace migraphx {
Paul's avatar
Paul committed
22
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
27
28
29
30
31
32
    struct node_info
    {
        attribute_map attributes{};
        std::size_t num_outputs = 1;
    };
    using node_map = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
33
    using op_func =
34
        std::function<std::vector<instruction_ref>(node_info, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
35
36
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
37
38
39
40
    program prog                  = program();
    bool is_pytorch               = false;
    std::size_t default_dim_value = 1;
    std::unordered_map<std::string, std::vector<std::size_t>> map_input_dims;
Paul's avatar
Paul committed
41
42

    std::unordered_map<std::string, op_func> ops;
43
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
44
45
46

    onnx_parser()
    {
47
        // sort onnx operator alphabetically through name
Khalique's avatar
Khalique committed
48
        add_generic_op("Abs", op::abs{});
49
50
51
52
53
54
55
56
57
        add_generic_op("Acos", op::acos{});
        add_generic_op("Acosh", op::acosh{});
        add_generic_op("Asin", op::asin{});
        add_generic_op("Asinh", op::asinh{});
        add_generic_op("Atan", op::atan{});
        add_generic_op("Atanh", op::atanh{});
        add_generic_op("Ceil", op::ceil{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Cosh", op::cosh{});
Shucai Xiao's avatar
Shucai Xiao committed
58
        add_generic_op("Erf", op::erf{});
59
        add_generic_op("Exp", op::exp{});
Khalique's avatar
Khalique committed
60
        add_generic_op("Dropout", op::identity{});
61
62
        add_generic_op("Log", op::log{});
        add_generic_op("Floor", op::floor{});
Khalique's avatar
Khalique committed
63
        add_generic_op("Identity", op::identity{});
kahmed10's avatar
kahmed10 committed
64
        add_generic_op("Reciprocal", op::recip{});
65
66
67
68
        add_generic_op("Relu", op::relu{});
        add_generic_op("Round", op::round{});
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Sign", op::sign{});
Shucai Xiao's avatar
Shucai Xiao committed
69
        add_generic_op("Sin", op::sin{});
70
        add_generic_op("Sinh", op::sinh{});
71
        add_generic_op("Sqrt", op::sqrt{});
72
73
        add_generic_op("Tan", op::tan{});
        add_generic_op("Tanh", op::tanh{});
Paul's avatar
Paul committed
74

Khalique's avatar
Khalique committed
75
76
77
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
Shucai Xiao's avatar
Shucai Xiao committed
78
        add_binary_op("Pow", op::pow{});
Shucai Xiao's avatar
Shucai Xiao committed
79
        add_binary_op("PRelu", op::prelu{});
80
        add_binary_op("Sub", op::sub{});
Khalique's avatar
Khalique committed
81

Khalique's avatar
Khalique committed
82
83
84
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
85

86
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
87
88
        add_mem_op("ArgMax", &onnx_parser::parse_arg_op<op::argmax>);
        add_mem_op("ArgMin", &onnx_parser::parse_arg_op<op::argmin>);
89
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
90
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
91
        add_mem_op("Clip", &onnx_parser::parse_clip);
92
        add_mem_op("Concat", &onnx_parser::parse_concat);
Paul's avatar
Paul committed
93
        add_mem_op("Constant", &onnx_parser::parse_constant);
94
95
96
97
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
        add_mem_op("Conv", &onnx_parser::parse_conv<op::convolution>);
        add_mem_op("ConvInteger", &onnx_parser::parse_conv<op::quant_convolution>);
kahmed10's avatar
kahmed10 committed
98
        add_mem_op("ConvTranspose", &onnx_parser::parse_conv_transpose);
99
100
        add_mem_op("Elu", &onnx_parser::parse_elu);
        add_mem_op("Expand", &onnx_parser::parse_expand);
Paul's avatar
Paul committed
101
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
102
        add_mem_op("Gather", &onnx_parser::parse_gather);
Paul's avatar
Paul committed
103
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
104
105
106
107
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GRU", &onnx_parser::parse_gru);
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
kahmed10's avatar
kahmed10 committed
108
        add_mem_op("InstanceNormalization", &onnx_parser::parse_instancenorm);
109
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
110
        add_mem_op("LogSoftmax", &onnx_parser::parse_softmax<op::logsoftmax>);
111
112
113
114
        add_mem_op("LRN", &onnx_parser::parse_lrn);
        add_mem_op("MatMul", &onnx_parser::parse_matmul<op::dot>);
        add_mem_op("MatMulInteger", &onnx_parser::parse_matmul<op::quant_dot>);
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
kahmed10's avatar
kahmed10 committed
115
        add_mem_op("OneHot", &onnx_parser::parse_onehot);
Shucai Xiao's avatar
Shucai Xiao committed
116
117
118
119
120
        add_mem_op("ReduceL1", &onnx_parser::parse_reduce_l1);
        add_mem_op("ReduceL2", &onnx_parser::parse_reduce_l2);
        add_mem_op("ReduceLogSum", &onnx_parser::parse_reduce_log_sum);
        add_mem_op("ReduceLogSumExp", &onnx_parser::parse_reduce_log_sum_exp);
        add_mem_op("ReduceMax", &onnx_parser::parse_reduce_oper<op::reduce_max>);
Shucai Xiao's avatar
Shucai Xiao committed
121
        add_mem_op("ReduceMean", &onnx_parser::parse_reduce_oper<op::reduce_mean>);
Shucai Xiao's avatar
Shucai Xiao committed
122
        add_mem_op("ReduceMin", &onnx_parser::parse_reduce_oper<op::reduce_min>);
Shucai Xiao's avatar
Shucai Xiao committed
123
124
125
        add_mem_op("ReduceProd", &onnx_parser::parse_reduce_oper<op::reduce_prod>);
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_oper<op::reduce_sum>);
        add_mem_op("ReduceSumSquare", &onnx_parser::parse_reduce_sum_square);
126
127
128
129
130
131
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
        add_mem_op("RNN", &onnx_parser::parse_rnn);
        add_mem_op("Pad", &onnx_parser::parse_pad);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("Slice", &onnx_parser::parse_slice);
        add_mem_op("Softmax", &onnx_parser::parse_softmax<op::softmax>);
132
        add_mem_op("Split", &onnx_parser::parse_split);
133
134
135
136
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
137
138
139
140
141
142
143

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
144
145
146
147
148
149
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
150
151
152
153
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
154
155
156
157
158
159
160
161
162
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
163
164
165
166
167
168
169
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
170
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
171
172
173
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
174

175
    template <class T>
Khalique's avatar
Khalique committed
176
    void add_binary_op(std::string name, T x)
177
    {
178
        add_op(name, [this, x](node_info info, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
179
            if(args.size() != 2)
Paul's avatar
Paul committed
180
                MIGRAPHX_THROW("binary operators should have 2 operands");
181
            if(contains(info.attributes, "broadcast") and contains(info.attributes, "axis"))
182
            {
183
                uint64_t broadcasted = parse_value(info.attributes.at("broadcast")).at<uint64_t>();
184
185
                if(broadcasted != 0)
                {
186
                    uint64_t axis = parse_value(info.attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
187
188
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
189
190
                    return prog.add_instruction(x, args[0], l);
                }
191
                return prog.add_instruction(x, args);
192
            }
Paul's avatar
Paul committed
193
            else
194
            {
Khalique's avatar
Khalique committed
195
                return add_broadcastable_binary_op(args[0], args[1], x);
196
197
198
199
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
200
201
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
202
203
204
205
206
207
208
209
210
211
212
213
214
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
215
        if(s0.size() > s1.size())
216
217
218
219
220
221
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
222
223
224
225
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
226
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
227
                           if(a != b and a != 1 and b != 1)
228
                           {
Shucai Xiao's avatar
Shucai Xiao committed
229
230
231
232
233
234
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
235
236
237
238

        return out_lens;
    }

Shucai Xiao's avatar
Shucai Xiao committed
239
240
    instruction_ref make_contiguous(instruction_ref ins)
    {
Shucai Xiao's avatar
Shucai Xiao committed
241
        if(ins->get_shape().standard())
Shucai Xiao's avatar
Shucai Xiao committed
242
243
244
245
246
247
248
        {
            return ins;
        }

        return prog.add_instruction(op::contiguous{}, ins);
    }

Khalique's avatar
Khalique committed
249
250
251
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
252
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
253
254
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
255
256
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
257
            auto out_lens = compute_broadcasted_lens(s0, s1);
258
259
260
261
262
263
264
265
266

            auto l0 = arg0;
            if(arg0->get_shape().lens() != out_lens)
                l0 = prog.add_instruction(op::multibroadcast{out_lens}, arg0);

            auto l1 = arg1;
            if(arg1->get_shape().lens() != out_lens)
                l1 = prog.add_instruction(op::multibroadcast{out_lens}, arg1);

Khalique's avatar
Khalique committed
267
268
269
270
271
272
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
273
274
    }

Paul's avatar
Paul committed
275
    template <class T>
Paul's avatar
Paul committed
276
277
    void add_generic_op(std::string name, T x)
    {
278
        add_op(name, [this, x](const node_info&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
279
280
281
282
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
283
    template <class T>
Khalique's avatar
Khalique committed
284
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
285
    {
286
        add_op(name, [this, x](const node_info&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
287
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
288
289
290
291
292
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
293
        });
Khalique's avatar
Khalique committed
294
295
    }

kahmed10's avatar
kahmed10 committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
    template <class T>
    std::vector<int64_t> to_int64_vector(const std::vector<T>& input_vector)
    {
        std::vector<int64_t> output_vector(input_vector.begin(), input_vector.end());
        return output_vector;
    }

    instruction_ref
    add_bias(const std::vector<instruction_ref>& args, instruction_ref curr_ins, uint64_t axis)
    {
        if(args.size() == 3)
        {
            auto bias_bcast =
                prog.add_instruction(op::broadcast{axis, curr_ins->get_shape().lens()}, args[2]);
            return prog.add_instruction(op::add{}, curr_ins, bias_bcast);
        }
        return curr_ins;
    }

315
316
    template <class Op>
    void check_asym_padding(instruction_ref& ins,
317
                            const std::vector<int64_t>& padding,
318
319
320
321
322
                            Op& op,
                            float pad_val = 0)
    {
        if(padding[0] != padding[2] || padding[1] != padding[3])
        {
323
324
325
            ins = prog.add_instruction(
                op::pad{{0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]}, pad_val},
                ins);
326
327
328
329
330
331
332
333
        }
        else
        {
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
        }
    }

334
335
    instruction_ref
    parse_clip(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
336
    {
kahmed10's avatar
kahmed10 committed
337
338
339
340
341
342
343
        auto input_lens = args[0]->get_shape().lens();
        instruction_ref min_arg;
        instruction_ref max_arg;
        bool min_used = false;
        bool max_used = false;

        if(args.size() == 3)
Khalique's avatar
Khalique committed
344
        {
kahmed10's avatar
kahmed10 committed
345
346
347
348
            min_arg  = args[1];
            max_arg  = args[2];
            min_used = true;
            max_used = true;
Khalique's avatar
Khalique committed
349
        }
kahmed10's avatar
kahmed10 committed
350
        else if(args.size() == 2)
Khalique's avatar
Khalique committed
351
        {
kahmed10's avatar
kahmed10 committed
352
353
354
355
356
357
358
359
360
361
362
363
364
            min_arg  = args[1];
            min_used = true;
        }
        // if using previous opset for attributes
        else if(contains(info.attributes, "min") and contains(info.attributes, "max"))
        {

            float min_val = parse_value(info.attributes.at("min")).at<float>();
            float max_val = parse_value(info.attributes.at("max")).at<float>();
            min_arg       = prog.add_literal(min_val);
            max_arg       = prog.add_literal(max_val);
            min_used      = true;
            max_used      = true;
Khalique's avatar
Khalique committed
365
        }
kahmed10's avatar
kahmed10 committed
366
367
368
369
370
371
372
373
374
375
376
377
378

        if(min_used)
            min_arg = prog.add_instruction(op::multibroadcast{input_lens}, min_arg);

        if(max_used)
            max_arg = prog.add_instruction(op::multibroadcast{input_lens}, max_arg);

        if(min_used and max_used)
            return prog.add_instruction(op::clip{}, args[0], min_arg, max_arg);
        if(min_used)
            return prog.add_instruction(op::max{}, args[0], min_arg);

        return prog.add_instruction(op::identity{}, args[0]);
Khalique's avatar
Khalique committed
379
380
    }

Shucai Xiao's avatar
Shucai Xiao committed
381
    template <class Op>
382
383
    instruction_ref
    parse_softmax(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
384
    {
385
        int64_t axis = 1;
386
        if(contains(info.attributes, "axis"))
387
        {
388
            axis = parse_value(info.attributes.at("axis")).at<int>();
389
390
        }

391
        return prog.add_instruction(Op{axis}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
392
393
    }

Shucai Xiao's avatar
Shucai Xiao committed
394
    template <class Op>
395
396
    instruction_ref
    parse_arg_op(const std::string&, node_info info, std::vector<instruction_ref> args)
397
    {
398
        int64_t axis = 0;
399
        if(contains(info.attributes, "axis"))
400
        {
401
            axis = static_cast<int64_t>(parse_value(info.attributes.at("axis")).at<int>());
402
403
        }

Shucai Xiao's avatar
Shucai Xiao committed
404
        int keep_dims = 1;
405
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
406
        {
407
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
408
409
        }

Shucai Xiao's avatar
Shucai Xiao committed
410
        if(keep_dims == 0)
411
        {
412
            auto ins = prog.add_instruction(Op{axis}, std::move(args));
413
            return prog.add_instruction(op::squeeze{{axis}}, ins);
414
415
416
        }
        else
        {
417
            return prog.add_instruction(Op{axis}, std::move(args));
418
        }
419
420
    }

421
422
    template <class Op>
    instruction_ref process_auto_pad_attribute(instruction_ref ins,
423
                                               node_info info,
424
                                               Op& op,
425
426
427
428
                                               std::array<std::size_t, 2> k_lens,
                                               std::array<std::size_t, 2> dilation,
                                               const std::vector<std::size_t>& in_lens,
                                               float value = 0.0f)
429
    {
430
        if(!contains(info.attributes, "auto_pad"))
431
432
433
434
        {
            return ins;
        }

435
        auto auto_pad = info.attributes["auto_pad"].s();
436
437
        if(auto_pad.find("SAME") != std::string::npos)
        {
438
439
440
441
442
443
            bool is_same_upper = (auto_pad.find("SAME_UPPER") != std::string::npos);
            std::vector<int64_t> padding(in_lens.size());
            calculate_padding(
                0, padding, in_lens[2], op.stride[0], dilation[0], k_lens[0], is_same_upper);
            calculate_padding(
                1, padding, in_lens[3], op.stride[1], dilation[1], k_lens[1], is_same_upper);
444

445
            check_asym_padding(ins, padding, op, value);
446
447
448
449
450
        }

        return ins;
    }

451
    template <class Op>
Paul's avatar
Paul committed
452
    instruction_ref
453
    parse_conv(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
454
    {
455
        Op op;
456
457
        auto l0      = args[0];
        auto weights = args[1];
458
        std::vector<int64_t> padding;
459
        if(contains(info.attributes, "pads"))
Paul's avatar
Paul committed
460
        {
461
            if(contains(info.attributes, "auto_pad"))
462
            {
463
464
                auto s = info.attributes["auto_pad"].s();
                if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
465
                {
466
467
                    MIGRAPHX_THROW(
                        "PARSE_CONV: auto_pad and padding cannot be specified simultaneously");
468
                }
469
            }
470
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
471
            if(padding.size() != 4)
472
            {
473
                MIGRAPHX_THROW("PARSE_CONV: padding should have 4 values");
474
            }
475
            check_asym_padding(l0, padding, op);
Paul's avatar
Paul committed
476
        }
477
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
478
        {
479
            copy(info.attributes["strides"].ints(), op.stride.begin());
Paul's avatar
Paul committed
480
        }
481
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
482
        {
483
            copy(info.attributes["dilations"].ints(), op.dilation.begin());
Paul's avatar
Paul committed
484
        }
485
        if(contains(info.attributes, "auto_pad"))
486
        {
487
            auto s = info.attributes["auto_pad"].s();
wsttiger's avatar
fixes  
wsttiger committed
488
            if(s.find("SAME") != std::string::npos)
489
            {
490
491
492
493
494
495
                op.padding_mode                 = op::padding_mode_t::same;
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];

                auto input_dims = l0->get_shape().lens();
496
                padding.resize(input_dims.size());
497
498
499
500
501
502
                calculate_padding(
                    0, padding, input_dims[2], op.stride[0], op.dilation[0], weight_h);
                calculate_padding(
                    1, padding, input_dims[3], op.stride[1], op.dilation[1], weight_w);

                check_asym_padding(l0, padding, op);
503
            }
504
505
506
507
508

            auto in_lens                      = args[0]->get_shape().lens();
            auto weight_lens                  = args[1]->get_shape().lens();
            std::array<std::size_t, 2> k_lens = {weight_lens[2], weight_lens[3]};
            l0 = process_auto_pad_attribute(l0, info, op, k_lens, op.dilation, in_lens);
509
        }
510
        if(contains(info.attributes, "group"))
Khalique's avatar
Khalique committed
511
        {
512
            op.group = parse_value(info.attributes.at("group")).at<int>();
Khalique's avatar
Khalique committed
513
        }
kahmed10's avatar
kahmed10 committed
514
515
516
517
518

        auto l1 = prog.add_instruction(op, l0, args[1]);
        return add_bias(args, l1, 1);
    }

519
520
    instruction_ref
    parse_conv_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
521
522
523
524
525
    {
        op::deconvolution op;
        auto l0 = args[0];
        std::vector<std::int64_t> padding;
        bool asymm_padding = false;
526
        if(contains(info.attributes, "pads"))
kahmed10's avatar
kahmed10 committed
527
        {
528
            if(contains(info.attributes, "auto_pad"))
kahmed10's avatar
kahmed10 committed
529
            {
530
531
                auto s = info.attributes["auto_pad"].s();
                if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
kahmed10's avatar
kahmed10 committed
532
533
534
535
                {
                    MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
                }
            }
536
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
kahmed10's avatar
kahmed10 committed
537
538
539
540
541
542
543
544
545
546
547
548
549
550
            if(padding.size() != 4)
            {
                MIGRAPHX_THROW("padding should have 4 values");
            }
            if(padding[0] != padding[2] || padding[1] != padding[3])
            {
                asymm_padding = true;
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
551
        if(contains(info.attributes, "strides"))
kahmed10's avatar
kahmed10 committed
552
        {
553
            copy(info.attributes["strides"].ints(), op.stride.begin());
kahmed10's avatar
kahmed10 committed
554
        }
555
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
556
        {
557
            copy(info.attributes["dilations"].ints(), op.dilation.begin());
Paul's avatar
Paul committed
558
        }
559
        if(contains(info.attributes, "auto_pad"))
kahmed10's avatar
kahmed10 committed
560
        {
561
562
            auto s = info.attributes["auto_pad"].s();
            if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
kahmed10's avatar
kahmed10 committed
563
564
565
566
567
568
569
570
571
572
            {
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
            }

            if(s.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::same;
            }
        }

573
        if(contains(info.attributes, "group"))
kahmed10's avatar
kahmed10 committed
574
        {
575
            op.group = parse_value(info.attributes.at("group")).at<int>();
kahmed10's avatar
kahmed10 committed
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
        }

        auto l1                   = prog.add_instruction(op, l0, args[1]);
        std::vector<int64_t> dims = to_int64_vector(l1->get_shape().lens());
        std::vector<int64_t> curr_shape{dims[2], dims[3]};
        if(asymm_padding)
        {
            op::slice slice_op;
            slice_op.axes   = {0, 1, 2, 3};
            slice_op.starts = {0, 0, 0 + padding[0], 0 + padding[1]};
            slice_op.ends   = {
                dims[0], dims[1], curr_shape[0] - padding[2], curr_shape[1] - padding[3]};

            l1 = prog.add_instruction(slice_op, l1);
        }

592
        if(contains(info.attributes, "output_padding"))
kahmed10's avatar
kahmed10 committed
593
594
        {
            std::vector<int64_t> output_padding;
595
            copy(info.attributes["output_padding"].ints(), std::back_inserter(output_padding));
kahmed10's avatar
kahmed10 committed
596
597
598
599
            output_padding = {0, 0, 0, 0, 0, 0, output_padding[0], output_padding[1]};
            l1             = prog.add_instruction(op::pad{output_padding}, l1);
        }

600
        if(contains(info.attributes, "output_shape"))
kahmed10's avatar
kahmed10 committed
601
602
        {
            std::vector<int64_t> output_shape;
603
            copy(info.attributes["output_shape"].ints(), std::back_inserter(output_shape));
kahmed10's avatar
kahmed10 committed
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
            dims       = to_int64_vector(l1->get_shape().lens());
            curr_shape = {dims[2], dims[3]};
            if(curr_shape != output_shape)
            {
                std::vector<int64_t> target_padding = {0,
                                                       0,
                                                       0,
                                                       0,
                                                       0,
                                                       0,
                                                       output_shape[0] - curr_shape[0],
                                                       output_shape[1] - curr_shape[1]};
                l1 = prog.add_instruction(op::pad{target_padding}, l1);
            }
        }

        return add_bias(args, l1, 1);
Paul's avatar
Paul committed
621
    }
Paul's avatar
Paul committed
622

623
624
    instruction_ref
    parse_pooling(const std::string& name, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
625
    {
Khalique's avatar
Khalique committed
626
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
627
        auto l0 = args[0];
Khalique's avatar
Khalique committed
628
        if(starts_with(name, "Global"))
629
        {
Khalique's avatar
Khalique committed
630
631
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
632
        }
633

634
        if(contains(info.attributes, "pads"))
Paul's avatar
Paul committed
635
        {
636
            if(contains(info.attributes, "auto_pad"))
637
            {
638
                auto s = info.attributes["auto_pad"].s();
639
640
641
642
643
644
645
                if(to_upper(s) != "NOTSET")
                {
                    MIGRAPHX_THROW(
                        "PARSE_POOLING: auto_pad and padding cannot be specified simultaneously");
                }
            }

646
            std::vector<std::int64_t> padding;
647
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
648
            if(padding.size() != 4)
649
            {
650
                MIGRAPHX_THROW("PARSE_POOLING: padding should have 4 values");
651
            }
652
653
654
655
            float pad_val = 0;
            if(op.mode == "max")
                pad_val = std::numeric_limits<float>::lowest();
            check_asym_padding(l0, padding, op, pad_val);
Paul's avatar
Paul committed
656
        }
657

658
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
659
        {
660
            copy(info.attributes["strides"].ints(), op.stride.begin());
Paul's avatar
Paul committed
661
        }
662
        if(contains(info.attributes, "kernel_shape"))
Paul's avatar
Paul committed
663
        {
664
            copy(info.attributes["kernel_shape"].ints(), op.lengths.begin());
Paul's avatar
Paul committed
665
        }
666

667
        if(contains(info.attributes, "auto_pad"))
668
        {
669
670
671
672
673
674
            auto s = info.attributes["auto_pad"].s();
            if(s.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::same;
            }

675
            auto in_lens = args[0]->get_shape().lens();
676
677
678
679
680
681
682
683
            float val    = 0.0f;
            // MaxPool
            if(op.mode == "max")
            {
                val = std::numeric_limits<float>::lowest();
            }

            l0 = process_auto_pad_attribute(l0, info, op, op.lengths, {1, 1}, in_lens, val);
684
685
        }

686
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
687
688
    }

Paul's avatar
Paul committed
689
    instruction_ref
690
    parse_reshape(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
691
    {
692
        op::reshape op;
Paul's avatar
Paul committed
693
694
        if(args.size() == 1)
        {
695
            literal s = parse_value(info.attributes.at("shape"));
696
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
697
698
699
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
700
            auto s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
701
            check_arg_empty(s, "Reshape: dynamic shape is not supported");
Paul's avatar
Paul committed
702
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
703
        }
704

Shucai Xiao's avatar
Shucai Xiao committed
705
        return prog.add_instruction(op, make_contiguous(args[0]));
Paul's avatar
Paul committed
706
707
    }

Paul's avatar
Paul committed
708
    instruction_ref
709
    parse_flatten(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
710
    {
711
        int64_t axis = 1;
712
        if(contains(info.attributes, "axis"))
Paul's avatar
Paul committed
713
        {
714
            axis = parse_value(info.attributes.at("axis")).at<int>();
Paul's avatar
Paul committed
715
        }
716
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
717
718
    }

719
    instruction_ref
720
    parse_squeeze(const std::string&, node_info info, std::vector<instruction_ref> args)
721
722
    {
        op::squeeze op;
723
        literal s = parse_value(info.attributes.at("axes"));
724
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
725
        return prog.add_instruction(op, make_contiguous(args[0]));
726
727
728
    }

    instruction_ref
729
    parse_unsqueeze(const std::string&, node_info info, std::vector<instruction_ref> args)
730
731
    {
        op::unsqueeze op;
732
        literal s = parse_value(info.attributes.at("axes"));
733
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
734
        return prog.add_instruction(op, make_contiguous(args[0]));
735
736
    }

Scott Thornton's avatar
Scott Thornton committed
737
    instruction_ref
738
    parse_concat(const std::string&, node_info info, std::vector<instruction_ref> args)
Scott Thornton's avatar
Scott Thornton committed
739
    {
Shucai Xiao's avatar
Shucai Xiao committed
740
        // change to hande axis to be negative values
741
        if(!contains(info.attributes, "axis"))
Shucai Xiao's avatar
Shucai Xiao committed
742
743
744
745
        {
            MIGRAPHX_THROW("PARSE_CONCAT: attribute axis is required!");
        }

746
        int axis = parse_value(info.attributes.at("axis")).at<int>();
Scott Thornton's avatar
Scott Thornton committed
747
748
749
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
750

751
    instruction_ref
752
    parse_gather(const std::string&, node_info info, std::vector<instruction_ref> args)
753
    {
754
        int axis = 0;
755
        if(contains(info.attributes, "axis"))
756
        {
757
            axis = parse_value(info.attributes.at("axis")).at<int>();
758
        }
759

760
        op::gather op{axis};
Shucai Xiao's avatar
Shucai Xiao committed
761
        return prog.add_instruction(op, make_contiguous(args[0]), make_contiguous(args[1]));
762
763
    }

764
    instruction_ref
765
    parse_slice(const std::string&, node_info info, std::vector<instruction_ref> args)
766
767
    {
        op::slice op;
Shucai Xiao's avatar
Shucai Xiao committed
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789

        // slice can have up to 5 inputs, we first check the 5th one
        // to decide whether MIGRAPHX can handle this slice
        if(args.size() == 5)
        {
            migraphx::argument step_arg = args.back()->eval();
            check_arg_empty(step_arg, "PARSE_SLICE: cannot handle variable steps for slice");
            std::vector<int> steps;
            step_arg.visit([&](auto s) { steps.assign(s.begin(), s.end()); });
            if(!std::all_of(steps.begin(), steps.end(), [](auto s) { return s == 1; }))
            {
                MIGRAPHX_THROW("PARSE_SLICE: cannot handle step other than 1");
            }
        }

        if(args.size() >= 4)
        {
            migraphx::argument axes_arg = args.at(3)->eval();
            check_arg_empty(axes_arg, "PARSE_SLICE: cannot handle variable axes for slice");
            axes_arg.visit([&](auto s) { op.axes.assign(s.begin(), s.end()); });
        }
        else if(contains(info.attributes, "axes"))
790
        {
791
            literal s = parse_value(info.attributes.at("axes"));
792
793
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
Shucai Xiao's avatar
Shucai Xiao committed
794
795

        if(args.size() >= 3)
Khalique's avatar
Khalique committed
796
        {
Shucai Xiao's avatar
Shucai Xiao committed
797
798
799
            migraphx::argument end_arg = args.at(2)->eval();
            check_arg_empty(end_arg, "PARSE_SLICE: cannot handle variable ends for slice");
            end_arg.visit([&](auto s) { op.ends.assign(s.begin(), s.end()); });
Khalique's avatar
Khalique committed
800
        }
Shucai Xiao's avatar
Shucai Xiao committed
801
        else if(contains(info.attributes, "ends"))
802
        {
803
804
            literal s = parse_value(info.attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
805
        }
Shucai Xiao's avatar
Shucai Xiao committed
806
807
808
809
810
811
812
813

        if(args.size() >= 2)
        {
            migraphx::argument start_arg = args.at(1)->eval();
            check_arg_empty(start_arg, "PARSE_SLICE: cannot handle variable starts for slice");
            start_arg.visit([&](auto s) { op.starts.assign(s.begin(), s.end()); });
        }
        else if(contains(info.attributes, "starts"))
814
        {
815
            literal s = parse_value(info.attributes.at("starts"));
816
817
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
Shucai Xiao's avatar
Shucai Xiao committed
818

kahmed10's avatar
kahmed10 committed
819
820
821
822
823
824
825
        if(op.axes.empty())
        {
            std::vector<int64_t> axes(args[0]->get_shape().lens().size());
            std::iota(axes.begin(), axes.end(), int64_t{0});
            op.axes = axes;
        }

826
827
828
        return prog.add_instruction(op, args[0]);
    }

829
830
    instruction_ref
    parse_constant(const std::string&, node_info info, const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
831
    {
832
        literal v = parse_value(info.attributes.at("value"));
833
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
834
        if(v.get_shape().elements() == 0)
835
836
837
838
        {
            return prog.add_literal(literal{});
        }

839
        auto dim_size = info.attributes.at("value").t().dims_size();
840
841
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
842
        {
843
            migraphx::shape scalar_shape{v.get_shape().type()};
844
845
846
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
847
848
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
849

Paul's avatar
Paul committed
850
    instruction_ref
851
    parse_gemm(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
852
853
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
854
        float beta  = 1.0f;
Paul's avatar
Paul committed
855
856
        bool transa = false;
        bool transb = false;
857
        if(contains(info.attributes, "alpha"))
Paul's avatar
Paul committed
858
        {
859
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Paul's avatar
Paul committed
860
        }
861
        if(contains(info.attributes, "beta"))
Paul's avatar
Paul committed
862
        {
863
            beta = parse_value(info.attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
864
        }
865
        if(contains(info.attributes, "transA"))
Paul's avatar
Paul committed
866
        {
867
            transa = parse_value(info.attributes.at("transA")).at<bool>();
Paul's avatar
Paul committed
868
        }
869
        if(contains(info.attributes, "transB"))
Paul's avatar
Paul committed
870
        {
871
            transb = parse_value(info.attributes.at("transB")).at<bool>();
Paul's avatar
Paul committed
872
        }
873
874
875
876
877
878

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

879
880
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
881
882
        if(args.size() == 3)
        {
883
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
884
            {
Shucai Xiao's avatar
Shucai Xiao committed
885
                auto out_lens   = l1->get_shape().lens();
886
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
887
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
888
889
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
890
                {
891
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
892
                }
893
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
894
            }
Paul's avatar
Paul committed
895
        }
896
897

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
898
899
    }

900
    template <class Op>
901
    instruction_ref
902
    parse_matmul(const std::string&, const node_info&, std::vector<instruction_ref> args)
903
    {
Shucai Xiao's avatar
Shucai Xiao committed
904
905
        auto l0      = args[0];
        auto l1      = args[1];
906
907
908
909
910
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
911
        if(l0_lens.size() == 1)
912
913
914
915
916
917
918
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
919
        if(l1_lens.size() == 1)
920
921
922
923
924
925
926
927
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
928
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
929
930
931
932
933
934
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
935
            l0_broadcasted_lens = output_lens;
936
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
937
            l1_broadcasted_lens = output_lens;
938
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
939
            if(l0_lens != l0_broadcasted_lens)
940
941
942
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
943
            if(l1_lens != l1_broadcasted_lens)
944
945
946
947
948
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

949
        auto dot_res     = prog.add_instruction(Op{1, 0}, bl0, bl1);
950
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
951
        if(is_a_prepended)
952
953
954
955
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
956
        if(is_b_appended)
957
958
959
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
960

961
962
963
        return dot_res;
    }

964
    instruction_ref
965
    parse_batchnorm(const std::string&, node_info info, std::vector<instruction_ref> args)
966
    {
Scott Thornton's avatar
Scott Thornton committed
967
968
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
969
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
970
        if(contains(info.attributes, "epsilon"))
971
        {
972
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
973
        }
974
        if(contains(info.attributes, "momentum"))
975
        {
976
            momentum = parse_value(info.attributes.at("momentum")).at<float>();
977
        }
978
        if(contains(info.attributes, "spatial"))
979
        {
980
            bn_mode = (parse_value(info.attributes.at("spatial")).at<uint64_t>() > 0)
981
982
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
983
        }
Paul's avatar
Paul committed
984
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
985
        return prog.add_instruction(op, std::move(args));
986
987
    }

988
989
    instruction_ref
    parse_instancenorm(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
990
991
992
993
994
995
    {
        // y = scale * ( x - mean ) / sqrt ( variance + epsilon ) + bias
        // mean = reduce_mean({H, W}, x)
        // variance = reduce_mean({H, W}, (x - mean)^2)

        float epsilon = 1e-5f;
996
        if(contains(info.attributes, "epsilon"))
kahmed10's avatar
kahmed10 committed
997
        {
998
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
kahmed10's avatar
kahmed10 committed
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
        }
        auto x     = args[0];
        auto scale = args[1];
        auto bias  = args[2];
        auto dims  = x->get_shape().lens();

        auto mean            = prog.add_instruction(op::reduce_mean{{2, 3}}, x);
        auto mean_bcast      = prog.add_instruction(op::multibroadcast{dims}, mean);
        auto l0              = prog.add_instruction(op::sqdiff{}, x, mean_bcast);
        auto variance        = prog.add_instruction(op::reduce_mean{{2, 3}}, l0);
        auto l1              = prog.add_instruction(op::sub{}, x, mean_bcast);
        auto epsilon_literal = prog.add_literal(epsilon);
        auto epsilon_bcast   = prog.add_instruction(op::multibroadcast{dims}, epsilon_literal);
        auto variance_bcast  = prog.add_instruction(op::multibroadcast{dims}, variance);
        auto l2              = prog.add_instruction(op::add{}, variance_bcast, epsilon_bcast);
        auto l3              = prog.add_instruction(op::rsqrt{}, l2);
        auto l4              = prog.add_instruction(op::mul{}, l1, l3);
        auto scale_bcast     = prog.add_instruction(op::broadcast{1, dims}, scale);
        ;
        auto bias_bcast = prog.add_instruction(op::broadcast{1, dims}, bias);
        auto l5         = prog.add_instruction(op::mul{}, l4, scale_bcast);
        return prog.add_instruction(op::add{}, l5, bias_bcast);
    }

1023
1024
    instruction_ref
    parse_leaky_relu(const std::string&, node_info info, std::vector<instruction_ref> args)
1025
    {
Khalique's avatar
Khalique committed
1026
        float alpha = 0.01; // default alpha val for leaky relu
1027
        if(contains(info.attributes, "alpha"))
1028
        {
1029
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
1030
1031
1032
1033
1034
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

1035
    instruction_ref parse_elu(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1036
1037
    {
        float alpha = 1.0; // default alpha val for elu
1038
        if(contains(info.attributes, "alpha"))
Khalique's avatar
Khalique committed
1039
        {
1040
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Khalique's avatar
Khalique committed
1041
1042
1043
1044
1045
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

1046
    instruction_ref parse_lrn(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1047
1048
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
1049
1050
1051
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
1052
1053
1054
1055
1056
1057
1058
1059
        if(contains(info.attributes, "alpha"))
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
        if(contains(info.attributes, "beta"))
            beta = parse_value(info.attributes.at("beta")).at<float>();
        if(contains(info.attributes, "bias"))
            bias = parse_value(info.attributes.at("bias")).at<float>();
        if(contains(info.attributes, "size"))
            size = parse_value(info.attributes.at("size")).at<int>();
Khalique's avatar
Khalique committed
1060
1061
1062
1063
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

1064
1065
    instruction_ref
    parse_imagescaler(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1066
1067
1068
    {
        float scale = 1.0;
        std::vector<float> bias{};
1069
        if(contains(info.attributes, "scale"))
Khalique's avatar
Khalique committed
1070
        {
1071
            scale = parse_value(info.attributes.at("scale")).at<float>();
Khalique's avatar
Khalique committed
1072
1073
        }

1074
        if(contains(info.attributes, "bias"))
Khalique's avatar
Khalique committed
1075
        {
1076
            auto&& bias_floats = info.attributes["bias"].floats();
Khalique's avatar
Khalique committed
1077
1078
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
Shucai Xiao's avatar
Shucai Xiao committed
1079
1080
1081
        auto input_shape       = args.front()->get_shape();
        auto const& input_lens = input_shape.lens();
        auto input_type        = input_shape.type();
Khalique's avatar
Khalique committed
1082

Shucai Xiao's avatar
Shucai Xiao committed
1083
1084
        auto scale_val = prog.add_literal(literal{shape{input_type}, {scale}});
        auto bias_vals = prog.add_literal(literal{shape{input_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
1085

1086
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
1087
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
1088
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
1089
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
1090
    }
Khalique's avatar
Khalique committed
1091

Khalique's avatar
Khalique committed
1092
    instruction_ref
1093
    parse_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1094
1095
    {
        std::vector<int64_t> perm{};
1096
        if(contains(info.attributes, "perm"))
Khalique's avatar
Khalique committed
1097
        {
1098
            auto&& perm_vals = info.attributes["perm"].ints();
Khalique's avatar
Khalique committed
1099
1100
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
1101
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
1102
1103
    }

1104
    instruction_ref parse_pad(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1105
1106
    {
        std::vector<int64_t> pads{};
1107
1108
1109
1110
1111
1112
1113
        if(args.size() >= 2)
        {
            auto pad_arg = args.at(1)->eval();
            check_arg_empty(pad_arg, "PARSE_PAD: pad input must be constant");
            pad_arg.visit([&](auto v) { pads.assign(v.begin(), v.end()); });
        }
        else if(contains(info.attributes, "pads"))
Khalique's avatar
Khalique committed
1114
        {
1115
            auto&& pad_vals = info.attributes["pads"].ints();
Khalique's avatar
Khalique committed
1116
1117
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
1118
1119
1120
1121
1122
        else
        {
            MIGRAPHX_THROW("PARSE_PAD: pad must be available");
        }

1123
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
1124
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
1125
1126
1127
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145

        float value = 0.0f;
        // third input is the value
        if(args.size() == 3)
        {
            auto val_ins = args.at(2);
            if(!val_ins->can_eval())
            {
                MIGRAPHX_THROW("PARSE_PAD: input value must be constant");
            }
            auto val_arg = val_ins->eval();
            if(val_arg.get_shape().elements() != 1)
            {
                MIGRAPHX_THROW("PARSE_PAD: value should contain only one element");
            }
            value = val_arg.at<float>();
        }
        else if(contains(info.attributes, "value"))
Khalique's avatar
Khalique committed
1146
        {
1147
            value = parse_value(info.attributes.at("value")).at<float>();
Khalique's avatar
Khalique committed
1148
        }
1149

1150
        if(contains(info.attributes, "mode"))
Khalique's avatar
Khalique committed
1151
        {
1152
            auto mode = info.attributes.at("mode").s();
Khalique's avatar
Khalique committed
1153
            if(mode != "constant")
1154
1155
1156
            {
                MIGRAPHX_THROW("PARSE_PAD: migraphx currently only supports constant padding");
            }
Khalique's avatar
Khalique committed
1157
1158
1159
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
1160
1161
1162
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
1163
    parse_shape(const std::string&, const node_info&, std::vector<instruction_ref> args)
1164
1165
    {
        if(args.size() != 1)
1166
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
1179
1180
    instruction_ref
    parse_constant_fill(const std::string&, node_info info, std::vector<instruction_ref> args)
1181
1182
1183
1184
1185
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

1186
        if(contains(info.attributes, "dtype"))
1187
        {
1188
            dtype = parse_value(info.attributes.at("dtype")).at<int>();
1189
        }
Shucai Xiao's avatar
Shucai Xiao committed
1190
        shape::type_t type = get_type(dtype);
1191

1192
        if(contains(info.attributes, "input_as_shape"))
1193
        {
1194
            input_as_shape = parse_value(info.attributes.at("input_as_shape")).at<int>();
1195
1196
        }

1197
        if(contains(info.attributes, "value"))
1198
        {
1199
            value = parse_value(info.attributes.at("value")).at<float>();
1200
1201
        }

1202
        if(contains(info.attributes, "extra_shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1203
        {
1204
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
1205
1206
        }

1207
1208
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1209
            if(args.size() != 1)
1210
            {
1211
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
1212
1213
            }

1214
            if(contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1215
            {
1216
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
1217
                               "at the same time");
1218
1219
            }

1220
            migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1221
            check_arg_empty(in, "ConstantFill: dynamic shape is not supported");
1222

1223
1224
1225
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
1226
1227
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1228
1229
1230
        }
        else if(input_as_shape == 0)
        {
1231
            if(!contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1232
            {
1233
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
1234
1235
            }

1236
            literal ls = parse_value(info.attributes.at("shape"));
1237
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
1238
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
1239
            migraphx::shape s{type, dims};
1240
1241
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1242
1243
1244
        }
        else
        {
1245
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
1246
1247
1248
        }
    }

1249
1250
    instruction_ref
    parse_constant_of_shape(const std::string&, node_info info, std::vector<instruction_ref> args)
1251
1252
    {
        literal l_val{};
1253
        if(contains(info.attributes, "value"))
1254
        {
1255
            l_val = parse_value(info.attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
1256
            if(l_val.get_shape().elements() != 1)
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
1268

Shucai Xiao's avatar
Shucai Xiao committed
1269
        if(args.empty())
1270
        {
Shucai Xiao's avatar
Shucai Xiao committed
1271
            MIGRAPHX_THROW("ConstantOfShape : must have 1 input!");
1272
1273
1274
        }
        else
        {
1275
1276
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
1277
            if(args[0]->get_shape().elements() == 0)
1278
            {
1279
                s = migraphx::shape{type, {1}, {0}};
1280
            }
1281
1282
1283
            else
            {
                migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1284
                check_arg_empty(in, "ConstantOfShape: dynamic shape is not supported");
1285

1286
1287
1288
1289
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
1290

Shucai Xiao's avatar
Shucai Xiao committed
1291
            literal l_out{};
1292
            l_val.visit([&](auto val) {
Shucai Xiao's avatar
Shucai Xiao committed
1293
                using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
1294
                // l_val contains only one element
1295
                std::vector<val_type> out_vec(s.elements(), val.front());
1296
1297
1298
1299
1300
1301
1302
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1303
    instruction_ref
1304
    parse_expand(const std::string&, const node_info&, std::vector<instruction_ref> args)
1305
    {
Shucai Xiao's avatar
Shucai Xiao committed
1306
        auto in_lens             = args[0]->get_shape().lens();
1307
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1308
        check_arg_empty(arg_s, "Expand: dynamic shape is not supported");
1309
1310
1311
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
Shucai Xiao's avatar
Shucai Xiao committed
1312
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
1313
1314
    }

Shucai Xiao's avatar
Shucai Xiao committed
1315
    std::vector<instruction_ref>
1316
    parse_rnn(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1317
1318
    {
        migraphx::shape input_shape = args[0]->get_shape();
1319
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
1320

1321
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
1322
        {
1323
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1324
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1325
1326
1327
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
1328
1329
1330
1331
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1332
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
1333
        {
1334
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
1335
1336
        }

1337
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1338
1339
        if(direction == "bidirectional")
        {
1340
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1341
1342
1343
        }
        else if(direction == "reverse")
        {
1344
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1345
1346
        }

1347
        std::vector<std::string> vec_names{"tanh"};
1348
        if(contains(info.attributes, "activations"))
1349
        {
1350
            auto names = info.attributes.at("activations").strings();
1351
            vec_names.clear();
1352
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1353
1354
1355
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1356
1357
        }

1358
1359
1360
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1361
        if(name_it != vec_names.end())
1362
1363
1364
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1365

Shucai Xiao's avatar
Shucai Xiao committed
1366
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1367
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1368
        // if only one actv function is provided, we use it in both
1369
        // forward and reverse direction
1370
        if(dirct == op::rnn_direction::bidirectional)
1371
        {
Shucai Xiao's avatar
Shucai Xiao committed
1372
            if(vec_names.size() == 1)
1373
1374
1375
1376
1377
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1378
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1379
1380
1381
1382
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& fn) { return map_actv_funcs[fn]; });
Shucai Xiao's avatar
Shucai Xiao committed
1383

Shucai Xiao's avatar
Shucai Xiao committed
1384
1385
        // To be added later
        float clip = 0.0;
1386
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
1387
        {
1388
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
1389
1390
        }

1391
1392
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1393
        if(args.size() < 6)
1394
1395
1396
1397
1398
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1399
1400
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1401
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1402

1403
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1404
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1405

Shucai Xiao's avatar
Shucai Xiao committed
1406
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1407
1408
    }

1409
    std::vector<instruction_ref>
1410
    parse_gru(const std::string&, node_info info, std::vector<instruction_ref> args)
1411
1412
1413
1414
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

1415
        if(contains(info.attributes, "hidden_size"))
1416
        {
1417
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1418
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1419
1420
1421
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1422
1423
1424
1425
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1426
        if(contains(info.attributes, "direction"))
1427
        {
1428
            direction = info.attributes.at("direction").s();
1429
1430
        }

1431
        op::rnn_direction dirct = op::rnn_direction::forward;
1432
1433
        if(direction == "bidirectional")
        {
1434
            dirct = op::rnn_direction::bidirectional;
1435
1436
1437
        }
        else if(direction == "reverse")
        {
1438
            dirct = op::rnn_direction::reverse;
1439
1440
        }

1441
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1442
        if(contains(info.attributes, "activations"))
1443
        {
1444
            auto names = info.attributes.at("activations").strings();
1445
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1446
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1447
1448
1449
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1450
1451
        }

1452
        // need 4 activation functions
1453
        if(dirct == op::rnn_direction::bidirectional)
1454
        {
Shucai Xiao's avatar
Shucai Xiao committed
1455
            // 4 activation functions are used in the bidirectional
1456
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1457
1458
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1459
1460
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1461
1462
1463
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1464
            if(vec_names.size() == 1)
1465
            {
1466
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1467
            }
1468
            else if(vec_names.size() == 2)
1469
            {
1470
1471
1472
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1473
            }
1474
            else if(vec_names.size() == 3)
1475
            {
1476
                vec_names.push_back(vec_names.at(2));
1477
1478
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1479
        else
1480
        {
1481
            if(vec_names.size() == 1)
1482
            {
1483
                vec_names.push_back(vec_names.at(0));
1484
1485
1486
            }
        }

1487
1488
1489
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1490
        if(name_it != vec_names.end())
1491
1492
1493
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1494

Shucai Xiao's avatar
Shucai Xiao committed
1495
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1496
1497
1498
1499
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
1500
1501

        float clip = 0.0;
1502
        if(contains(info.attributes, "clip"))
1503
        {
1504
            clip = parse_value(info.attributes.at("clip")).at<float>();
1505
1506
1507
        }

        int linear_before_reset = 0;
1508
        if(contains(info.attributes, "linear_before_reset"))
1509
        {
1510
            linear_before_reset = parse_value(info.attributes.at("linear_before_reset")).at<int>();
1511
1512
        }

Shucai Xiao's avatar
Shucai Xiao committed
1513
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1514
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1515
1516
1517
1518
1519
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1520
1521
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1522
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1523
            std::move(args));
1524
1525

        // second output for last gru output
1526
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1527

Shucai Xiao's avatar
Shucai Xiao committed
1528
        return {hidden_states, last_output};
1529
1530
    }

Shucai Xiao's avatar
Shucai Xiao committed
1531
    std::vector<instruction_ref>
1532
    parse_lstm(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1533
1534
1535
1536
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

1537
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
1538
        {
1539
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1540
1541
1542
1543
1544
1545
1546
1547
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1548
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
1549
        {
1550
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
1551
1552
        }

Shucai Xiao's avatar
Shucai Xiao committed
1553
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1554
1555
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1556
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1557
1558
1559
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1560
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1561
        }
Shucai Xiao's avatar
Shucai Xiao committed
1562
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1563
        {
Shucai Xiao's avatar
Shucai Xiao committed
1564
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1565
1566
1567
1568
1569
1570
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1571
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
1572
        if(contains(info.attributes, "activations"))
Shucai Xiao's avatar
Shucai Xiao committed
1573
        {
1574
            auto names = info.attributes.at("activations").strings();
Shucai Xiao's avatar
Shucai Xiao committed
1575
1576
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1577
1578
1579
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1580
1581
1582
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1583
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1584
1585
1586
1587
1588
1589
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1590
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1591
1592
1593
1594
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1595
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1596
1597
1598
1599
1600
1601
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1602
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1603
1604
1605

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1606
1607
1608
1609
1610
1611
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1612
1613
1614
1615
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1616
1617
1618
1619
1620
1621
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1622
1623
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1624
1625
1626
1627
1628
1629
1630
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1631
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1632

Shucai Xiao's avatar
Shucai Xiao committed
1633
1634
1635
1636
1637
1638
1639
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1640
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1641

Shucai Xiao's avatar
Shucai Xiao committed
1642
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1643
1644
1645
1646
1647
1648
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1649
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1650
1651
1652

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1653
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1654
1655
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1656
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1657
1658
1659
            }
        }

1660
1661
1662
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1663
        if(name_it != vec_names.end())
1664
1665
1666
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1667
1668

        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1669
1670
1671
1672
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
Shucai Xiao's avatar
Shucai Xiao committed
1673
1674

        float clip = 0.0;
1675
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
1676
        {
1677
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
1678
1679
1680
        }

        int input_forget = 0;
1681
        if(contains(info.attributes, "input_forget"))
Shucai Xiao's avatar
Shucai Xiao committed
1682
        {
1683
            input_forget = parse_value(info.attributes.at("input_forget")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1684
1685
1686
1687
1688
1689
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1690
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1691
1692
1693
1694
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1695
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1696
1697

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1698
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1699
1700
1701
1702
1703
1704

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }
1705

Shucai Xiao's avatar
Shucai Xiao committed
1706
    template <class T>
1707
1708
    instruction_ref
    parse_reduce_oper(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1709
1710
1711
1712
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
1713
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
1714
        std::iota(axes.begin(), axes.end(), 0);
1715
        if(contains(info.attributes, "axes"))
Shucai Xiao's avatar
Shucai Xiao committed
1716
1717
        {
            axes.clear();
1718
            auto&& attr_axes = info.attributes["axes"].ints();
1719
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
1720
1721
1722
        }

        int keep_dims = 1;
1723
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
1724
        {
1725
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1726
1727
1728
1729
        }

        if(keep_dims == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1730
            return prog.add_instruction(T{axes}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1731
1732
1733
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
1734
            auto ins = prog.add_instruction(T{axes}, std::move(args));
1735
            return prog.add_instruction(op::squeeze{axes}, ins);
1736
1737
        }
    }
1738

Shucai Xiao's avatar
Shucai Xiao committed
1739
    instruction_ref
1740
    parse_reduce_l1(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1741
1742
    {
        auto abs_ins = prog.add_instruction(op::abs{}, args[0]);
1743
        return parse_reduce_oper<op::reduce_sum>({}, std::move(info), {abs_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1744
1745
1746
    }

    instruction_ref
1747
    parse_reduce_l2(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1748
1749
    {
        auto square_ins = prog.add_instruction(op::mul{}, args[0], args[0]);
1750
        auto sum_ins    = parse_reduce_oper<op::reduce_sum>({}, std::move(info), {square_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1751
1752
1753
        return prog.add_instruction(op::sqrt{}, sum_ins);
    }

1754
1755
    instruction_ref
    parse_reduce_log_sum(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1756
    {
1757
        auto sum_ins = parse_reduce_oper<op::reduce_sum>({}, std::move(info), std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1758
1759
1760
        return prog.add_instruction(op::log{}, sum_ins);
    }

1761
1762
    instruction_ref
    parse_reduce_log_sum_exp(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1763
1764
    {
        auto exp_ins = prog.add_instruction(op::exp{}, args[0]);
1765
        auto sum_ins = parse_reduce_oper<op::reduce_sum>({}, std::move(info), {exp_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1766
1767
1768
        return prog.add_instruction(op::log{}, sum_ins);
    }

1769
1770
    instruction_ref
    parse_reduce_sum_square(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1771
1772
    {
        auto square_ins = prog.add_instruction(op::mul{}, args[0], args[0]);
1773
        return parse_reduce_oper<op::reduce_sum>({}, std::move(info), {square_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1774
1775
    }

Shucai Xiao's avatar
Shucai Xiao committed
1776
    instruction_ref
1777
    parse_cast(const std::string&, node_info info, std::vector<instruction_ref> args)
1778
    {
1779
        if(!contains(info.attributes, "to"))
1780
1781
1782
1783
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

1784
        int to_type        = parse_value(info.attributes.at("to")).at<int>();
1785
1786
1787
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
1788

1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
    std::vector<instruction_ref>
    parse_split(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        int64_t axis = 0;
        if(contains(info.attributes, "axis"))
        {
            axis = parse_value(info.attributes.at("axis")).at<int>();
        }

        auto lens      = args[0]->get_shape().lens();
        int64_t n_rank = static_cast<int64_t>(lens.size());
        if((axis < -n_rank) || (axis >= n_rank))
        {
            MIGRAPHX_THROW("PARSE_SPLIT: axis attribute out of rank!");
        }
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;

        std::vector<int64_t> vec_splits;
        if(contains(info.attributes, "split"))
        {
            literal s = parse_value(info.attributes.at("split"));
            s.visit([&](auto v) { vec_splits.assign(v.begin(), v.end()); });

            if(std::accumulate(vec_splits.begin(), vec_splits.end(), int64_t(0)) !=
               static_cast<int64_t>(lens[tuned_axis]))
            {
                MIGRAPHX_THROW("PARSE_SPLIT: sum of split attribute unequal to dim size of axis!");
            }
        }
        // no split attribute, input is equally divided
        else
        {
            if((lens[tuned_axis] % info.num_outputs) != 0)
            {
                MIGRAPHX_THROW("PARSE_SPLIT: input cannot be equally divided into " +
                               to_string(info.num_outputs) + " splits!");
            }
            auto dl = lens[tuned_axis] / info.num_outputs;
            vec_splits.resize(info.num_outputs, dl);
        }

        std::vector<instruction_ref> ret_ins;
        int64_t start = 0;
        for(auto sl : vec_splits)
        {
            ret_ins.push_back(
                prog.add_instruction(op::slice{{axis}, {start}, {start + sl}}, args[0]));
            start += sl;
        }

        return ret_ins;
    }

kahmed10's avatar
kahmed10 committed
1842
1843
1844
1845
    instruction_ref
    parse_onehot(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        migraphx::argument depth_arg = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1846
        check_arg_empty(depth_arg, "PARSE_ONEHOT: depth - dynamic shape not supported");
kahmed10's avatar
kahmed10 committed
1847
1848
1849
        size_t depth = depth_arg.at<size_t>();

        int64_t axis = -1;
Shucai Xiao's avatar
Shucai Xiao committed
1850
1851
1852
1853
        if(contains(info.attributes, "axis"))
        {
            axis = info.attributes.at("axis").i();
        }
kahmed10's avatar
kahmed10 committed
1854

Shucai Xiao's avatar
Shucai Xiao committed
1855
        std::vector<float> depth_input(depth * depth, 0.0f);
kahmed10's avatar
kahmed10 committed
1856
1857
        for(int i = 0; i < depth; i++)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1858
            depth_input[depth * i + i] = 1.0f;
kahmed10's avatar
kahmed10 committed
1859
1860
        }

Shucai Xiao's avatar
Shucai Xiao committed
1861
1862
1863
1864
1865
1866
1867
1868
        auto type = args[2]->get_shape().type();
        shape s{type, {depth, depth}};
        auto l_val      = prog.add_literal({s, depth_input});
        auto gather_out = prog.add_instruction(op::gather{0}, {l_val, args[0]});

        // Finally, we need a transpose to move the inner most dim to the axis dim
        int n_rank = gather_out->get_shape().lens().size();
        if(axis < -n_rank or axis >= n_rank)
kahmed10's avatar
kahmed10 committed
1869
        {
Shucai Xiao's avatar
Shucai Xiao committed
1870
            MIGRAPHX_THROW("PARSE_ONEHOT: axis out of range");
kahmed10's avatar
kahmed10 committed
1871
        }
Shucai Xiao's avatar
Shucai Xiao committed
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;
        std::vector<int64_t> perm(n_rank - 1);
        std::iota(perm.begin(), perm.end(), 0);
        perm.insert(perm.begin() + tuned_axis, n_rank - 1);
        auto tr_out = prog.add_instruction(op::transpose{perm}, gather_out);
        auto lens   = tr_out->get_shape().lens();

        auto off_val       = prog.add_instruction(op::slice{{0}, {0}, {1}}, args[2]);
        auto on_val        = prog.add_instruction(op::slice{{0}, {1}, {2}}, args[2]);
        auto diff          = prog.add_instruction(op::sub{}, on_val, off_val);
        auto unsq_off_val  = prog.add_instruction(op::multibroadcast{lens}, off_val);
        auto unsq_diff_val = prog.add_instruction(op::multibroadcast{lens}, diff);
        auto l_mul         = prog.add_instruction(op::mul{}, tr_out, unsq_diff_val);
        return prog.add_instruction(op::add{}, l_mul, unsq_off_val);
kahmed10's avatar
kahmed10 committed
1886
1887
    }

Paul's avatar
Paul committed
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1900
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1901
1902
1903
        }
    }

Paul Fultz II's avatar
Paul Fultz II committed
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
    void parse_from(const void* data, std::size_t size)
    {
        onnx::ModelProto model;
        if(model.ParseFromArray(data, size))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            MIGRAPHX_THROW("Failed reading onnx file.");
        }
    }

Paul's avatar
Paul committed
1920
1921
    void parse_graph(const onnx::GraphProto& graph)
    {
1922
        for(auto&& f : graph.initializer())
1923
1924
            instructions[f.name()] = prog.add_literal(parse_tensor(f));

Paul's avatar
Paul committed
1925
1926
1927
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1928
1929
            // input not in initializer_data, so it is a real input
            if(!contains(instructions, name))
1930
            {
1931
1932
1933
1934
1935
1936
1937
                std::vector<std::size_t> dims;
                if(map_input_dims.count(name) > 0)
                {
                    dims = map_input_dims.at(name);
                }

                shape s            = parse_type(input.type(), dims);
1938
1939
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1940
        }
1941
1942

        for(auto&& node : graph.node())
Paul's avatar
Paul committed
1943
        {
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(input.empty())
                {
                    this->parse_undefined(input);
                }
                if(instructions.count(input) == 0)
                {
                    MIGRAPHX_THROW("PARSE_GRAPH: invalid onnx file. Input \"" + input +
                                   "\" is unavailable due to unordered nodes!");
                }
                args.push_back(instructions.at(input));
            }

            std::vector<instruction_ref> result;
            std::size_t output_num = static_cast<std::size_t>(node.output().size());
            if(ops.count(node.op_type()) == 0)
            {
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
            }
            else
            {
                result = ops[node.op_type()]({get_attributes(node), output_num}, args);
            }

            output_num = std::min<std::size_t>(output_num, result.size());
            std::transform(node.output().begin(),
                           node.output().begin() + output_num,
                           result.begin(),
                           std::inserter(instructions, instructions.end()),
                           [](auto&& x, auto&& y) { return std::make_pair(x, y); });
Paul's avatar
Paul committed
1976
        }
Shucai Xiao's avatar
Shucai Xiao committed
1977

1978
        // Find instructions corresponding to the output
Shucai Xiao's avatar
Shucai Xiao committed
1979
        auto prog_output = graph.output();
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
        std::vector<std::string> all_output_names;
        std::vector<std::string> prog_output_names;
        std::transform(prog_output.begin(),
                       prog_output.end(),
                       std::back_inserter(all_output_names),
                       [](auto& node) { return node.name(); });
        std::copy_if(
            all_output_names.begin(),
            all_output_names.end(),
            std::back_inserter(prog_output_names),
            [&](const auto& name) { return !(name.empty() or instructions.count(name) == 0); });

        std::vector<instruction_ref> output_ins;
        std::transform(prog_output_names.begin(),
                       prog_output_names.end(),
                       std::back_inserter(output_ins),
                       [&](const auto& name) { return instructions[name]; });

        // add the return instuction
        prog.add_return(output_ins);
Paul's avatar
Paul committed
2000
2001
    }

Shucai Xiao's avatar
Shucai Xiao committed
2002
    void parse_undefined(const std::string& name)
2003
    {
Shucai Xiao's avatar
Shucai Xiao committed
2004
        auto ins           = prog.add_instruction(op::undefined{});
2005
2006
2007
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
Paul's avatar
Paul committed
2032
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
2033
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
Paul's avatar
Paul committed
2034
2035
2036
2037
2038
        case onnx::AttributeProto::UNDEFINED:
        case onnx::AttributeProto::GRAPH:
        case onnx::AttributeProto::STRING:
        case onnx::AttributeProto::STRINGS:
        case onnx::AttributeProto::TENSORS:
2039
2040
        case onnx::AttributeProto::SPARSE_TENSOR:
        case onnx::AttributeProto::SPARSE_TENSORS:
Paul's avatar
Paul committed
2041
2042
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
2043
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
2044
2045
2046
2047
2048
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
2049
2050
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
2051
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
2052
2053
            switch(t.data_type())
            {
2054
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Khalique's avatar
Khalique committed
2055
2056
2057
2058
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
2059
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Paul's avatar
Paul committed
2060
2061
2062
2063
            case onnx::TensorProto::INT8:
            case onnx::TensorProto::UINT16:
            case onnx::TensorProto::INT16:
            case onnx::TensorProto::INT32:
2064
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Paul's avatar
Paul committed
2065
2066
2067
2068
2069
2070
            case onnx::TensorProto::UINT8:
            case onnx::TensorProto::STRING:
            case onnx::TensorProto::UNDEFINED:
            case onnx::TensorProto::UINT32:
            case onnx::TensorProto::UINT64:
            case onnx::TensorProto::COMPLEX64:
Scott Thornton's avatar
Scott Thornton committed
2071
2072
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
2073
            MIGRAPHX_THROW("Invalid tensor type");
2074
        }
Paul's avatar
Paul committed
2075
2076
2077
2078
2079
2080
        switch(t.data_type())
        {
        case onnx::TensorProto::INT8:
        case onnx::TensorProto::UINT16:
        case onnx::TensorProto::INT16:
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
2081
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
2082
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
2083
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
2084
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
2085
2086
2087
2088
        case onnx::TensorProto::DOUBLE:
            return create_literal(shape::double_type, dims, t.double_data());
        case onnx::TensorProto::FLOAT:
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
2089
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
2090
        {
Khalique's avatar
Khalique committed
2091
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
2092
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
2093
2094
2095
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
2096
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
2097
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
2098
        }
Paul's avatar
Paul committed
2099
2100
2101
2102
2103
2104
        case onnx::TensorProto::UNDEFINED:
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::UINT32:
        case onnx::TensorProto::UINT64:
        case onnx::TensorProto::COMPLEX64:
Paul's avatar
Paul committed
2105
2106
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
2107
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
2108
2109
    }

Khalique's avatar
Khalique committed
2110
    static literal
2111
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
2112
    {
Khalique's avatar
Khalique committed
2113
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
2114
        if(dims.empty())
2115
            return literal{{shape_type}, data};
2116
2117
2118
        return literal{{shape_type, dims}, data};
    }

2119
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
2120
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
2121
2122
    {
        if(dims.empty())
2123
            return literal{{shape_type}, data.begin(), data.end()};
2124
        return literal{{shape_type, dims}, data.begin(), data.end()};
2125
2126
    }

2127
    shape parse_type(const onnx::TypeProto& t, const std::vector<std::size_t>& input_dims)
Paul's avatar
Paul committed
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
Paul's avatar
Paul committed
2138
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
2139
2140
2141
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
Paul's avatar
Paul committed
2142
2143
2144
2145
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::BOOL:
        case onnx::TensorProto::UNDEFINED:
Paul's avatar
Paul committed
2146
2147
        case onnx::TensorProto::COMPLEX64:
        case onnx::TensorProto::COMPLEX128:
Paul's avatar
Paul committed
2148
            break; // throw std::runtime_error("Unsupported type");
Paul's avatar
Paul committed
2149
        }
2150
2151
2152
2153
2154
2155

        if(!input_dims.empty())
        {
            return {shape_type, input_dims};
        }

Paul's avatar
Paul committed
2156
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
2157
        auto&& tensor_dims = t.tensor_type().shape().dim();
2158
2159
2160
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
2161
2162
                       [&](auto&& d) -> std::size_t {
                           if(d.has_dim_value())
2163
                           {
2164
                               if(static_cast<int>(d.dim_value()) <= 0)
2165
2166
2167
                               {
                                   return default_dim_value;
                               }
2168
                               return d.dim_value();
2169
                           }
2170
2171
2172
2173
                           else
                           {
                               return default_dim_value;
                           }
2174
                       });
2175

2176
2177
2178
        if(dims.empty())
            return {shape_type};

Paul's avatar
Paul committed
2179
2180
        return {shape_type, dims};
    }
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
2203
2204
2205

    void check_arg_empty(const argument& arg, const std::string& msg)
    {
Shucai Xiao's avatar
Shucai Xiao committed
2206
        if(arg.empty())
Shucai Xiao's avatar
Shucai Xiao committed
2207
2208
2209
2210
        {
            MIGRAPHX_THROW(msg);
        }
    }
Paul's avatar
Paul committed
2211
2212
};

Paul Fultz II's avatar
Paul Fultz II committed
2213
template <class... Ts>
2214
program parse_onnx_from(const onnx_options& options, Ts&&... xs)
Paul's avatar
Paul committed
2215
2216
{
    onnx_parser parser;
2217
2218
2219
    parser.map_input_dims    = options.map_input_dims;
    parser.default_dim_value = options.default_dim_value;

Paul's avatar
Paul committed
2220
2221
2222
2223
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
Paul Fultz II's avatar
Paul Fultz II committed
2224
        parser.parse_from(std::forward<Ts>(xs)...);
Paul's avatar
Paul committed
2225
2226
2227
2228
2229
2230
2231
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
Paul Fultz II's avatar
Paul Fultz II committed
2232
    parser.parse_from(std::forward<Ts>(xs)...);
Paul's avatar
Paul committed
2233
2234
2235
2236
#endif
    return std::move(parser.prog);
}

2237
program parse_onnx(const std::string& name, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2238
2239
2240
2241
2242
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    return parse_onnx_from(options, input);
}

2243
program parse_onnx_buffer(const std::string& buffer, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2244
2245
2246
2247
{
    return parse_onnx_from(options, buffer.data(), buffer.size());
}

2248
program parse_onnx_buffer(const void* data, std::size_t size, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2249
2250
2251
2252
{
    return parse_onnx_from(options, data, size);
}

Paul's avatar
Paul committed
2253
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
2254
} // namespace migraphx