onnx.cpp 80.1 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
19
#include <migraphx/pad_calc.hpp>
Paul's avatar
Paul committed
20
21

namespace migraphx {
Paul's avatar
Paul committed
22
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
27
28
29
30
31
32
    struct node_info
    {
        attribute_map attributes{};
        std::size_t num_outputs = 1;
    };
    using node_map = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
33
    using op_func =
34
        std::function<std::vector<instruction_ref>(node_info, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
35
36
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
37
38
39
    program prog            = program();
    bool is_pytorch         = false;
    unsigned int batch_size = 1;
Paul's avatar
Paul committed
40
41

    std::unordered_map<std::string, op_func> ops;
42
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
43
44
45

    onnx_parser()
    {
46
        // sort onnx operator alphabetically through name
Khalique's avatar
Khalique committed
47
        add_generic_op("Abs", op::abs{});
48
49
50
51
52
53
54
55
56
        add_generic_op("Acos", op::acos{});
        add_generic_op("Acosh", op::acosh{});
        add_generic_op("Asin", op::asin{});
        add_generic_op("Asinh", op::asinh{});
        add_generic_op("Atan", op::atan{});
        add_generic_op("Atanh", op::atanh{});
        add_generic_op("Ceil", op::ceil{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Cosh", op::cosh{});
Shucai Xiao's avatar
Shucai Xiao committed
57
        add_generic_op("Erf", op::erf{});
58
        add_generic_op("Exp", op::exp{});
Khalique's avatar
Khalique committed
59
        add_generic_op("Dropout", op::identity{});
60
61
        add_generic_op("Log", op::log{});
        add_generic_op("Floor", op::floor{});
Khalique's avatar
Khalique committed
62
        add_generic_op("Identity", op::identity{});
63
64
65
66
        add_generic_op("Relu", op::relu{});
        add_generic_op("Round", op::round{});
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Sign", op::sign{});
Shucai Xiao's avatar
Shucai Xiao committed
67
        add_generic_op("Sin", op::sin{});
68
        add_generic_op("Sinh", op::sinh{});
69
        add_generic_op("Sqrt", op::sqrt{});
70
71
        add_generic_op("Tan", op::tan{});
        add_generic_op("Tanh", op::tanh{});
Paul's avatar
Paul committed
72

Khalique's avatar
Khalique committed
73
74
75
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
Shucai Xiao's avatar
Shucai Xiao committed
76
        add_binary_op("Pow", op::pow{});
Shucai Xiao's avatar
Shucai Xiao committed
77
        add_binary_op("PRelu", op::prelu{});
78
        add_binary_op("Sub", op::sub{});
Khalique's avatar
Khalique committed
79

Khalique's avatar
Khalique committed
80
81
82
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
83

84
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
85
86
        add_mem_op("ArgMax", &onnx_parser::parse_arg_op<op::argmax>);
        add_mem_op("ArgMin", &onnx_parser::parse_arg_op<op::argmin>);
87
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
88
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
89
        add_mem_op("Clip", &onnx_parser::parse_clip);
90
        add_mem_op("Concat", &onnx_parser::parse_concat);
Paul's avatar
Paul committed
91
        add_mem_op("Constant", &onnx_parser::parse_constant);
92
93
94
95
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
        add_mem_op("Conv", &onnx_parser::parse_conv<op::convolution>);
        add_mem_op("ConvInteger", &onnx_parser::parse_conv<op::quant_convolution>);
kahmed10's avatar
kahmed10 committed
96
        add_mem_op("ConvTranspose", &onnx_parser::parse_conv_transpose);
97
98
        add_mem_op("Elu", &onnx_parser::parse_elu);
        add_mem_op("Expand", &onnx_parser::parse_expand);
Paul's avatar
Paul committed
99
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
100
        add_mem_op("Gather", &onnx_parser::parse_gather);
Paul's avatar
Paul committed
101
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
102
103
104
105
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GRU", &onnx_parser::parse_gru);
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
kahmed10's avatar
kahmed10 committed
106
        add_mem_op("InstanceNormalization", &onnx_parser::parse_instancenorm);
107
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
108
        add_mem_op("LogSoftmax", &onnx_parser::parse_softmax<op::logsoftmax>);
109
110
111
112
        add_mem_op("LRN", &onnx_parser::parse_lrn);
        add_mem_op("MatMul", &onnx_parser::parse_matmul<op::dot>);
        add_mem_op("MatMulInteger", &onnx_parser::parse_matmul<op::quant_dot>);
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
Shucai Xiao's avatar
Shucai Xiao committed
113
114
115
116
117
        add_mem_op("ReduceL1", &onnx_parser::parse_reduce_l1);
        add_mem_op("ReduceL2", &onnx_parser::parse_reduce_l2);
        add_mem_op("ReduceLogSum", &onnx_parser::parse_reduce_log_sum);
        add_mem_op("ReduceLogSumExp", &onnx_parser::parse_reduce_log_sum_exp);
        add_mem_op("ReduceMax", &onnx_parser::parse_reduce_oper<op::reduce_max>);
Shucai Xiao's avatar
Shucai Xiao committed
118
        add_mem_op("ReduceMean", &onnx_parser::parse_reduce_oper<op::reduce_mean>);
Shucai Xiao's avatar
Shucai Xiao committed
119
        add_mem_op("ReduceMin", &onnx_parser::parse_reduce_oper<op::reduce_min>);
Shucai Xiao's avatar
Shucai Xiao committed
120
121
122
        add_mem_op("ReduceProd", &onnx_parser::parse_reduce_oper<op::reduce_prod>);
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_oper<op::reduce_sum>);
        add_mem_op("ReduceSumSquare", &onnx_parser::parse_reduce_sum_square);
123
124
125
126
127
128
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
        add_mem_op("RNN", &onnx_parser::parse_rnn);
        add_mem_op("Pad", &onnx_parser::parse_pad);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("Slice", &onnx_parser::parse_slice);
        add_mem_op("Softmax", &onnx_parser::parse_softmax<op::softmax>);
129
        add_mem_op("Split", &onnx_parser::parse_split);
130
131
132
133
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
134
135
136
137
138
139
140

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
141
142
143
144
145
146
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
147
148
149
150
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
151
152
153
154
155
156
157
158
159
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
160
161
162
163
164
165
166
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
167
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
168
169
170
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
171

172
    template <class T>
Khalique's avatar
Khalique committed
173
    void add_binary_op(std::string name, T x)
174
    {
175
        add_op(name, [this, x](node_info info, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
176
            if(args.size() != 2)
Paul's avatar
Paul committed
177
                MIGRAPHX_THROW("binary operators should have 2 operands");
178
            if(contains(info.attributes, "broadcast") and contains(info.attributes, "axis"))
179
            {
180
                uint64_t broadcasted = parse_value(info.attributes.at("broadcast")).at<uint64_t>();
181
182
                if(broadcasted != 0)
                {
183
                    uint64_t axis = parse_value(info.attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
184
185
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
186
187
                    return prog.add_instruction(x, args[0], l);
                }
188
                return prog.add_instruction(x, args);
189
            }
Paul's avatar
Paul committed
190
            else
191
            {
Khalique's avatar
Khalique committed
192
                return add_broadcastable_binary_op(args[0], args[1], x);
193
194
195
196
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
197
198
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
199
200
201
202
203
204
205
206
207
208
209
210
211
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
212
        if(s0.size() > s1.size())
213
214
215
216
217
218
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
219
220
221
222
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
223
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
224
                           if(a != b and a != 1 and b != 1)
225
                           {
Shucai Xiao's avatar
Shucai Xiao committed
226
227
228
229
230
231
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
232
233
234
235

        return out_lens;
    }

Shucai Xiao's avatar
Shucai Xiao committed
236
237
    instruction_ref make_contiguous(instruction_ref ins)
    {
Shucai Xiao's avatar
Shucai Xiao committed
238
        if(ins->get_shape().standard())
Shucai Xiao's avatar
Shucai Xiao committed
239
240
241
242
243
244
245
        {
            return ins;
        }

        return prog.add_instruction(op::contiguous{}, ins);
    }

Khalique's avatar
Khalique committed
246
247
248
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
249
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
250
251
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
252
253
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
254
            auto out_lens = compute_broadcasted_lens(s0, s1);
255
256
257
258
259
260
261
262
263

            auto l0 = arg0;
            if(arg0->get_shape().lens() != out_lens)
                l0 = prog.add_instruction(op::multibroadcast{out_lens}, arg0);

            auto l1 = arg1;
            if(arg1->get_shape().lens() != out_lens)
                l1 = prog.add_instruction(op::multibroadcast{out_lens}, arg1);

Khalique's avatar
Khalique committed
264
265
266
267
268
269
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
270
271
    }

Paul's avatar
Paul committed
272
    template <class T>
Paul's avatar
Paul committed
273
274
    void add_generic_op(std::string name, T x)
    {
275
        add_op(name, [this, x](const node_info&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
276
277
278
279
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
280
    template <class T>
Khalique's avatar
Khalique committed
281
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
282
    {
283
        add_op(name, [this, x](const node_info&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
284
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
285
286
287
288
289
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
290
        });
Khalique's avatar
Khalique committed
291
292
    }

kahmed10's avatar
kahmed10 committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
    template <class T>
    std::vector<int64_t> to_int64_vector(const std::vector<T>& input_vector)
    {
        std::vector<int64_t> output_vector(input_vector.begin(), input_vector.end());
        return output_vector;
    }

    instruction_ref
    add_bias(const std::vector<instruction_ref>& args, instruction_ref curr_ins, uint64_t axis)
    {
        if(args.size() == 3)
        {
            auto bias_bcast =
                prog.add_instruction(op::broadcast{axis, curr_ins->get_shape().lens()}, args[2]);
            return prog.add_instruction(op::add{}, curr_ins, bias_bcast);
        }
        return curr_ins;
    }

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
    template <class Op>
    void check_asym_padding(instruction_ref& ins,
                            std::vector<int64_t>& padding,
                            Op& op,
                            float pad_val = 0)
    {
        if(padding[0] != padding[2] || padding[1] != padding[3])
        {
            padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
            ins     = prog.add_instruction(op::pad{padding, pad_val}, ins);
        }
        else
        {
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
        }
    }

330
331
    instruction_ref
    parse_clip(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
332
    {
kahmed10's avatar
kahmed10 committed
333
334
335
336
337
338
339
        auto input_lens = args[0]->get_shape().lens();
        instruction_ref min_arg;
        instruction_ref max_arg;
        bool min_used = false;
        bool max_used = false;

        if(args.size() == 3)
Khalique's avatar
Khalique committed
340
        {
kahmed10's avatar
kahmed10 committed
341
342
343
344
            min_arg  = args[1];
            max_arg  = args[2];
            min_used = true;
            max_used = true;
Khalique's avatar
Khalique committed
345
        }
kahmed10's avatar
kahmed10 committed
346
        else if(args.size() == 2)
Khalique's avatar
Khalique committed
347
        {
kahmed10's avatar
kahmed10 committed
348
349
350
351
352
353
354
355
356
357
358
359
360
            min_arg  = args[1];
            min_used = true;
        }
        // if using previous opset for attributes
        else if(contains(info.attributes, "min") and contains(info.attributes, "max"))
        {

            float min_val = parse_value(info.attributes.at("min")).at<float>();
            float max_val = parse_value(info.attributes.at("max")).at<float>();
            min_arg       = prog.add_literal(min_val);
            max_arg       = prog.add_literal(max_val);
            min_used      = true;
            max_used      = true;
Khalique's avatar
Khalique committed
361
        }
kahmed10's avatar
kahmed10 committed
362
363
364
365
366
367
368
369
370
371
372
373
374

        if(min_used)
            min_arg = prog.add_instruction(op::multibroadcast{input_lens}, min_arg);

        if(max_used)
            max_arg = prog.add_instruction(op::multibroadcast{input_lens}, max_arg);

        if(min_used and max_used)
            return prog.add_instruction(op::clip{}, args[0], min_arg, max_arg);
        if(min_used)
            return prog.add_instruction(op::max{}, args[0], min_arg);

        return prog.add_instruction(op::identity{}, args[0]);
Khalique's avatar
Khalique committed
375
376
    }

Shucai Xiao's avatar
Shucai Xiao committed
377
    template <class Op>
378
379
    instruction_ref
    parse_softmax(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
380
    {
381
        int64_t axis = 1;
382
        if(contains(info.attributes, "axis"))
383
        {
384
            axis = parse_value(info.attributes.at("axis")).at<int>();
385
386
        }

387
        return prog.add_instruction(Op{axis}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
388
389
    }

Shucai Xiao's avatar
Shucai Xiao committed
390
    template <class Op>
391
392
    instruction_ref
    parse_arg_op(const std::string&, node_info info, std::vector<instruction_ref> args)
393
    {
394
        int64_t axis = 0;
395
        if(contains(info.attributes, "axis"))
396
        {
397
            axis = static_cast<int64_t>(parse_value(info.attributes.at("axis")).at<int>());
398
399
        }

Shucai Xiao's avatar
Shucai Xiao committed
400
        int keep_dims = 1;
401
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
402
        {
403
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
404
405
        }

Shucai Xiao's avatar
Shucai Xiao committed
406
        if(keep_dims == 0)
407
        {
408
            auto ins = prog.add_instruction(Op{axis}, std::move(args));
409
            return prog.add_instruction(op::squeeze{{axis}}, ins);
410
411
412
        }
        else
        {
413
            return prog.add_instruction(Op{axis}, std::move(args));
414
        }
415
416
    }

417
418
    template <class Op>
    instruction_ref process_auto_pad_attribute(instruction_ref ins,
419
                                               node_info info,
420
421
422
                                               Op& op,
                                               const std::vector<std::size_t>& in_lens)
    {
423
        if(!contains(info.attributes, "auto_pad"))
424
425
426
427
        {
            return ins;
        }

428
        auto auto_pad = info.attributes["auto_pad"].s();
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
        if(auto_pad.find("SAME") != std::string::npos)
        {
            // calculate the padding
            std::array<std::size_t, 2> out_lens;
            out_lens[0] = (in_lens[2] + op.stride[0] - 1) / op.stride[0];
            out_lens[1] = (in_lens[3] + op.stride[1] - 1) / op.stride[1];

            std::array<std::size_t, 2> explicit_pads;
            explicit_pads[0] = (out_lens[0] - 1) * op.stride[0] + op.lengths[0] - in_lens[2];
            explicit_pads[1] = (out_lens[1] - 1) * op.stride[1] + op.lengths[1] - in_lens[3];
            op.padding[0]    = explicit_pads[0] / 2;
            op.padding[1]    = explicit_pads[1] / 2;
            explicit_pads[0] -= 2 * op.padding[0];
            explicit_pads[1] -= 2 * op.padding[1];
            std::vector<std::int64_t> pads(8, 0);
            if(explicit_pads[0] != 0 or explicit_pads[1] != 0)
            {
                if(auto_pad == "SAME_UPPER")
                {
                    pads[6] = explicit_pads[0];
                    pads[7] = explicit_pads[1];
                }
                else if(auto_pad == "SAME_LOWER")
                {
                    pads[2] = explicit_pads[0];
                    pads[3] = explicit_pads[1];
                }

                // MaxPool
                if(op.mode == "max")
                {
                    ins = prog.add_instruction(op::pad{pads, std::numeric_limits<float>::lowest()},
                                               ins);
                }
                // AveragePool
                else
                {
                    ins = prog.add_instruction(op::pad{pads}, ins);
                }
            }

            op.padding_mode = op::padding_mode_t::same;
        }

        return ins;
    }

476
    template <class Op>
Paul's avatar
Paul committed
477
    instruction_ref
478
    parse_conv(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
479
    {
480
        Op op;
481
482
        auto l0      = args[0];
        auto weights = args[1];
483
        if(contains(info.attributes, "pads"))
Paul's avatar
Paul committed
484
        {
485
            if(contains(info.attributes, "auto_pad"))
486
            {
487
488
                auto s = info.attributes["auto_pad"].s();
                if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
489
490
491
                {
                    MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
                }
492
            }
493
            std::vector<std::int64_t> padding;
494
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
495
            if(padding.size() != 4)
496
            {
Paul's avatar
Paul committed
497
                MIGRAPHX_THROW("padding should have 4 values");
498
            }
499
            check_asym_padding(l0, padding, op);
Paul's avatar
Paul committed
500
        }
501
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
502
        {
503
            copy(info.attributes["strides"].ints(), op.stride.begin());
Paul's avatar
Paul committed
504
        }
505
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
506
        {
507
            copy(info.attributes["dilations"].ints(), op.dilation.begin());
Paul's avatar
Paul committed
508
        }
509
        if(contains(info.attributes, "auto_pad"))
510
        {
511
512
            auto s = info.attributes["auto_pad"].s();
            if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
513
            {
Paul's avatar
Paul committed
514
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
515
516
            }

wsttiger's avatar
fixes  
wsttiger committed
517
            if(s.find("SAME") != std::string::npos)
518
            {
519
520
521
522
523
524
525
526
527
528
529
530
531
                op.padding_mode                 = op::padding_mode_t::same;
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];

                auto input_dims = l0->get_shape().lens();
                std::vector<int64_t> padding(input_dims.size());
                calculate_padding(
                    0, padding, input_dims[2], op.stride[0], op.dilation[0], weight_h);
                calculate_padding(
                    1, padding, input_dims[3], op.stride[1], op.dilation[1], weight_w);

                check_asym_padding(l0, padding, op);
532
533
            }
        }
534
        if(contains(info.attributes, "group"))
Khalique's avatar
Khalique committed
535
        {
536
            op.group = parse_value(info.attributes.at("group")).at<int>();
Khalique's avatar
Khalique committed
537
        }
kahmed10's avatar
kahmed10 committed
538
539
540
541
542

        auto l1 = prog.add_instruction(op, l0, args[1]);
        return add_bias(args, l1, 1);
    }

543
544
    instruction_ref
    parse_conv_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
545
546
547
548
549
    {
        op::deconvolution op;
        auto l0 = args[0];
        std::vector<std::int64_t> padding;
        bool asymm_padding = false;
550
        if(contains(info.attributes, "pads"))
kahmed10's avatar
kahmed10 committed
551
        {
552
            if(contains(info.attributes, "auto_pad"))
kahmed10's avatar
kahmed10 committed
553
            {
554
555
                auto s = info.attributes["auto_pad"].s();
                if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
kahmed10's avatar
kahmed10 committed
556
557
558
559
                {
                    MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
                }
            }
560
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
kahmed10's avatar
kahmed10 committed
561
562
563
564
565
566
567
568
569
570
571
572
573
574
            if(padding.size() != 4)
            {
                MIGRAPHX_THROW("padding should have 4 values");
            }
            if(padding[0] != padding[2] || padding[1] != padding[3])
            {
                asymm_padding = true;
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
575
        if(contains(info.attributes, "strides"))
kahmed10's avatar
kahmed10 committed
576
        {
577
            copy(info.attributes["strides"].ints(), op.stride.begin());
kahmed10's avatar
kahmed10 committed
578
        }
579
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
580
        {
581
            copy(info.attributes["dilations"].ints(), op.dilation.begin());
Paul's avatar
Paul committed
582
        }
583
        if(contains(info.attributes, "auto_pad"))
kahmed10's avatar
kahmed10 committed
584
        {
585
586
            auto s = info.attributes["auto_pad"].s();
            if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
kahmed10's avatar
kahmed10 committed
587
588
589
590
591
592
593
594
595
596
            {
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
            }

            if(s.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::same;
            }
        }

597
        if(contains(info.attributes, "group"))
kahmed10's avatar
kahmed10 committed
598
        {
599
            op.group = parse_value(info.attributes.at("group")).at<int>();
kahmed10's avatar
kahmed10 committed
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
        }

        auto l1                   = prog.add_instruction(op, l0, args[1]);
        std::vector<int64_t> dims = to_int64_vector(l1->get_shape().lens());
        std::vector<int64_t> curr_shape{dims[2], dims[3]};
        if(asymm_padding)
        {
            op::slice slice_op;
            slice_op.axes   = {0, 1, 2, 3};
            slice_op.starts = {0, 0, 0 + padding[0], 0 + padding[1]};
            slice_op.ends   = {
                dims[0], dims[1], curr_shape[0] - padding[2], curr_shape[1] - padding[3]};

            l1 = prog.add_instruction(slice_op, l1);
        }

616
        if(contains(info.attributes, "output_padding"))
kahmed10's avatar
kahmed10 committed
617
618
        {
            std::vector<int64_t> output_padding;
619
            copy(info.attributes["output_padding"].ints(), std::back_inserter(output_padding));
kahmed10's avatar
kahmed10 committed
620
621
622
623
            output_padding = {0, 0, 0, 0, 0, 0, output_padding[0], output_padding[1]};
            l1             = prog.add_instruction(op::pad{output_padding}, l1);
        }

624
        if(contains(info.attributes, "output_shape"))
kahmed10's avatar
kahmed10 committed
625
626
        {
            std::vector<int64_t> output_shape;
627
            copy(info.attributes["output_shape"].ints(), std::back_inserter(output_shape));
kahmed10's avatar
kahmed10 committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
            dims       = to_int64_vector(l1->get_shape().lens());
            curr_shape = {dims[2], dims[3]};
            if(curr_shape != output_shape)
            {
                std::vector<int64_t> target_padding = {0,
                                                       0,
                                                       0,
                                                       0,
                                                       0,
                                                       0,
                                                       output_shape[0] - curr_shape[0],
                                                       output_shape[1] - curr_shape[1]};
                l1 = prog.add_instruction(op::pad{target_padding}, l1);
            }
        }

        return add_bias(args, l1, 1);
Paul's avatar
Paul committed
645
    }
Paul's avatar
Paul committed
646

647
648
    instruction_ref
    parse_pooling(const std::string& name, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
649
    {
Khalique's avatar
Khalique committed
650
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
651
        auto l0 = args[0];
Khalique's avatar
Khalique committed
652
        if(starts_with(name, "Global"))
653
        {
Khalique's avatar
Khalique committed
654
655
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
656
        }
657

658
        if(contains(info.attributes, "pads"))
Paul's avatar
Paul committed
659
        {
660
            if(contains(info.attributes, "auto_pad"))
661
            {
662
                auto s = info.attributes["auto_pad"].s();
663
664
665
666
667
668
669
                if(to_upper(s) != "NOTSET")
                {
                    MIGRAPHX_THROW(
                        "PARSE_POOLING: auto_pad and padding cannot be specified simultaneously");
                }
            }

670
            std::vector<std::int64_t> padding;
671
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
672
            if(padding.size() != 4)
673
            {
674
                MIGRAPHX_THROW("PARSE_POOLING: padding should have 4 values");
675
            }
676
677
678
679
            float pad_val = 0;
            if(op.mode == "max")
                pad_val = std::numeric_limits<float>::lowest();
            check_asym_padding(l0, padding, op, pad_val);
Paul's avatar
Paul committed
680
        }
681

682
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
683
        {
684
            copy(info.attributes["strides"].ints(), op.stride.begin());
Paul's avatar
Paul committed
685
        }
686
        if(contains(info.attributes, "kernel_shape"))
Paul's avatar
Paul committed
687
        {
688
            copy(info.attributes["kernel_shape"].ints(), op.lengths.begin());
Paul's avatar
Paul committed
689
        }
690

691
        if(contains(info.attributes, "auto_pad"))
692
        {
693
            auto in_lens = args[0]->get_shape().lens();
694
            l0           = process_auto_pad_attribute(l0, info, op, in_lens);
695
696
        }

697
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
698
699
    }

Paul's avatar
Paul committed
700
    instruction_ref
701
    parse_reshape(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
702
    {
703
        op::reshape op;
Paul's avatar
Paul committed
704
705
        if(args.size() == 1)
        {
706
            literal s = parse_value(info.attributes.at("shape"));
707
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
708
709
710
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
711
            auto s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
712
            check_arg_empty(s, "Reshape: dynamic shape is not supported");
Paul's avatar
Paul committed
713
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
714
        }
715

Shucai Xiao's avatar
Shucai Xiao committed
716
        return prog.add_instruction(op, make_contiguous(args[0]));
Paul's avatar
Paul committed
717
718
    }

Paul's avatar
Paul committed
719
    instruction_ref
720
    parse_flatten(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
721
    {
722
        int64_t axis = 1;
723
        if(contains(info.attributes, "axis"))
Paul's avatar
Paul committed
724
        {
725
            axis = parse_value(info.attributes.at("axis")).at<int>();
Paul's avatar
Paul committed
726
        }
727
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
728
729
    }

730
    instruction_ref
731
    parse_squeeze(const std::string&, node_info info, std::vector<instruction_ref> args)
732
733
    {
        op::squeeze op;
734
        literal s = parse_value(info.attributes.at("axes"));
735
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
736
        return prog.add_instruction(op, make_contiguous(args[0]));
737
738
739
    }

    instruction_ref
740
    parse_unsqueeze(const std::string&, node_info info, std::vector<instruction_ref> args)
741
742
    {
        op::unsqueeze op;
743
        literal s = parse_value(info.attributes.at("axes"));
744
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
745
        return prog.add_instruction(op, make_contiguous(args[0]));
746
747
    }

Scott Thornton's avatar
Scott Thornton committed
748
    instruction_ref
749
    parse_concat(const std::string&, node_info info, std::vector<instruction_ref> args)
Scott Thornton's avatar
Scott Thornton committed
750
    {
Shucai Xiao's avatar
Shucai Xiao committed
751
        // change to hande axis to be negative values
752
        if(!contains(info.attributes, "axis"))
Shucai Xiao's avatar
Shucai Xiao committed
753
754
755
756
        {
            MIGRAPHX_THROW("PARSE_CONCAT: attribute axis is required!");
        }

757
        int axis = parse_value(info.attributes.at("axis")).at<int>();
Scott Thornton's avatar
Scott Thornton committed
758
759
760
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
761

762
    instruction_ref
763
    parse_gather(const std::string&, node_info info, std::vector<instruction_ref> args)
764
    {
765
        int axis = 0;
766
        if(contains(info.attributes, "axis"))
767
        {
768
            axis = parse_value(info.attributes.at("axis")).at<int>();
769
        }
770

771
        op::gather op{axis};
Shucai Xiao's avatar
Shucai Xiao committed
772
        return prog.add_instruction(op, make_contiguous(args[0]), make_contiguous(args[1]));
773
774
    }

775
    instruction_ref
776
    parse_slice(const std::string&, node_info info, std::vector<instruction_ref> args)
777
778
    {
        op::slice op;
Khalique's avatar
Khalique committed
779
        std::vector<size_t> dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
780
        size_t num_dims          = dims.size();
781
        if(contains(info.attributes, "axes"))
782
        {
783
            literal s = parse_value(info.attributes.at("axes"));
784
785
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
Khalique's avatar
Khalique committed
786
787
788
789
790
        else
        {
            op.axes = std::vector<int64_t>(num_dims);
            std::iota(op.axes.begin(), op.axes.end(), 0);
        }
Khalique's avatar
Khalique committed
791

792
        if(contains(info.attributes, "ends"))
793
        {
794
            op.ends = get_indices(info.attributes.at("ends"));
795
        }
796
        if(contains(info.attributes, "starts"))
797
        {
798
            literal s = parse_value(info.attributes.at("starts"));
799
800
801
802
803
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

804
805
    instruction_ref
    parse_constant(const std::string&, node_info info, const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
806
    {
807
        literal v = parse_value(info.attributes.at("value"));
808
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
809
        if(v.get_shape().elements() == 0)
810
811
812
813
        {
            return prog.add_literal(literal{});
        }

814
        auto dim_size = info.attributes.at("value").t().dims_size();
815
816
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
817
        {
818
            migraphx::shape scalar_shape{v.get_shape().type()};
819
820
821
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
822
823
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
824

Paul's avatar
Paul committed
825
    instruction_ref
826
    parse_gemm(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
827
828
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
829
        float beta  = 1.0f;
Paul's avatar
Paul committed
830
831
        bool transa = false;
        bool transb = false;
832
        if(contains(info.attributes, "alpha"))
Paul's avatar
Paul committed
833
        {
834
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Paul's avatar
Paul committed
835
        }
836
        if(contains(info.attributes, "beta"))
Paul's avatar
Paul committed
837
        {
838
            beta = parse_value(info.attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
839
        }
840
        if(contains(info.attributes, "transA"))
Paul's avatar
Paul committed
841
        {
842
            transa = parse_value(info.attributes.at("transA")).at<bool>();
Paul's avatar
Paul committed
843
        }
844
        if(contains(info.attributes, "transB"))
Paul's avatar
Paul committed
845
        {
846
            transb = parse_value(info.attributes.at("transB")).at<bool>();
Paul's avatar
Paul committed
847
        }
848
849
850
851
852
853

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

854
855
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
856
857
        if(args.size() == 3)
        {
858
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
859
            {
Shucai Xiao's avatar
Shucai Xiao committed
860
                auto out_lens   = l1->get_shape().lens();
861
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
862
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
863
864
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
865
                {
866
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
867
                }
868
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
869
            }
Paul's avatar
Paul committed
870
        }
871
872

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
873
874
    }

875
    template <class Op>
876
    instruction_ref
877
    parse_matmul(const std::string&, const node_info&, std::vector<instruction_ref> args)
878
    {
Shucai Xiao's avatar
Shucai Xiao committed
879
880
        auto l0      = args[0];
        auto l1      = args[1];
881
882
883
884
885
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
886
        if(l0_lens.size() == 1)
887
888
889
890
891
892
893
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
894
        if(l1_lens.size() == 1)
895
896
897
898
899
900
901
902
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
903
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
904
905
906
907
908
909
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
910
            l0_broadcasted_lens = output_lens;
911
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
912
            l1_broadcasted_lens = output_lens;
913
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
914
            if(l0_lens != l0_broadcasted_lens)
915
916
917
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
918
            if(l1_lens != l1_broadcasted_lens)
919
920
921
922
923
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

924
        auto dot_res     = prog.add_instruction(Op{1, 0}, bl0, bl1);
925
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
926
        if(is_a_prepended)
927
928
929
930
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
931
        if(is_b_appended)
932
933
934
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
935

936
937
938
        return dot_res;
    }

939
    instruction_ref
940
    parse_batchnorm(const std::string&, node_info info, std::vector<instruction_ref> args)
941
    {
Scott Thornton's avatar
Scott Thornton committed
942
943
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
944
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
945
        if(contains(info.attributes, "epsilon"))
946
        {
947
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
948
        }
949
        if(contains(info.attributes, "momentum"))
950
        {
951
            momentum = parse_value(info.attributes.at("momentum")).at<float>();
952
        }
953
        if(contains(info.attributes, "spatial"))
954
        {
955
            bn_mode = (parse_value(info.attributes.at("spatial")).at<uint64_t>() > 0)
956
957
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
958
        }
Paul's avatar
Paul committed
959
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
960
        return prog.add_instruction(op, std::move(args));
961
962
    }

963
964
    instruction_ref
    parse_instancenorm(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
965
966
967
968
969
970
    {
        // y = scale * ( x - mean ) / sqrt ( variance + epsilon ) + bias
        // mean = reduce_mean({H, W}, x)
        // variance = reduce_mean({H, W}, (x - mean)^2)

        float epsilon = 1e-5f;
971
        if(contains(info.attributes, "epsilon"))
kahmed10's avatar
kahmed10 committed
972
        {
973
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
kahmed10's avatar
kahmed10 committed
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
        }
        auto x     = args[0];
        auto scale = args[1];
        auto bias  = args[2];
        auto dims  = x->get_shape().lens();

        auto mean            = prog.add_instruction(op::reduce_mean{{2, 3}}, x);
        auto mean_bcast      = prog.add_instruction(op::multibroadcast{dims}, mean);
        auto l0              = prog.add_instruction(op::sqdiff{}, x, mean_bcast);
        auto variance        = prog.add_instruction(op::reduce_mean{{2, 3}}, l0);
        auto l1              = prog.add_instruction(op::sub{}, x, mean_bcast);
        auto epsilon_literal = prog.add_literal(epsilon);
        auto epsilon_bcast   = prog.add_instruction(op::multibroadcast{dims}, epsilon_literal);
        auto variance_bcast  = prog.add_instruction(op::multibroadcast{dims}, variance);
        auto l2              = prog.add_instruction(op::add{}, variance_bcast, epsilon_bcast);
        auto l3              = prog.add_instruction(op::rsqrt{}, l2);
        auto l4              = prog.add_instruction(op::mul{}, l1, l3);
        auto scale_bcast     = prog.add_instruction(op::broadcast{1, dims}, scale);
        ;
        auto bias_bcast = prog.add_instruction(op::broadcast{1, dims}, bias);
        auto l5         = prog.add_instruction(op::mul{}, l4, scale_bcast);
        return prog.add_instruction(op::add{}, l5, bias_bcast);
    }

998
999
    instruction_ref
    parse_leaky_relu(const std::string&, node_info info, std::vector<instruction_ref> args)
1000
    {
Khalique's avatar
Khalique committed
1001
        float alpha = 0.01; // default alpha val for leaky relu
1002
        if(contains(info.attributes, "alpha"))
1003
        {
1004
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
1005
1006
1007
1008
1009
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

1010
    instruction_ref parse_elu(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1011
1012
    {
        float alpha = 1.0; // default alpha val for elu
1013
        if(contains(info.attributes, "alpha"))
Khalique's avatar
Khalique committed
1014
        {
1015
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Khalique's avatar
Khalique committed
1016
1017
1018
1019
1020
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

1021
    instruction_ref parse_lrn(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1022
1023
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
1024
1025
1026
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
1027
1028
1029
1030
1031
1032
1033
1034
        if(contains(info.attributes, "alpha"))
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
        if(contains(info.attributes, "beta"))
            beta = parse_value(info.attributes.at("beta")).at<float>();
        if(contains(info.attributes, "bias"))
            bias = parse_value(info.attributes.at("bias")).at<float>();
        if(contains(info.attributes, "size"))
            size = parse_value(info.attributes.at("size")).at<int>();
Khalique's avatar
Khalique committed
1035
1036
1037
1038
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

1039
1040
    instruction_ref
    parse_imagescaler(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1041
1042
1043
    {
        float scale = 1.0;
        std::vector<float> bias{};
1044
        if(contains(info.attributes, "scale"))
Khalique's avatar
Khalique committed
1045
        {
1046
            scale = parse_value(info.attributes.at("scale")).at<float>();
Khalique's avatar
Khalique committed
1047
1048
        }

1049
        if(contains(info.attributes, "bias"))
Khalique's avatar
Khalique committed
1050
        {
1051
            auto&& bias_floats = info.attributes["bias"].floats();
Khalique's avatar
Khalique committed
1052
1053
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
Shucai Xiao's avatar
Shucai Xiao committed
1054
1055
1056
        auto input_shape       = args.front()->get_shape();
        auto const& input_lens = input_shape.lens();
        auto input_type        = input_shape.type();
Khalique's avatar
Khalique committed
1057

Shucai Xiao's avatar
Shucai Xiao committed
1058
1059
        auto scale_val = prog.add_literal(literal{shape{input_type}, {scale}});
        auto bias_vals = prog.add_literal(literal{shape{input_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
1060

1061
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
1062
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
1063
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
1064
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
1065
    }
Khalique's avatar
Khalique committed
1066

Khalique's avatar
Khalique committed
1067
    instruction_ref
1068
    parse_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1069
1070
    {
        std::vector<int64_t> perm{};
1071
        if(contains(info.attributes, "perm"))
Khalique's avatar
Khalique committed
1072
        {
1073
            auto&& perm_vals = info.attributes["perm"].ints();
Khalique's avatar
Khalique committed
1074
1075
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
1076
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
1077
1078
    }

1079
    instruction_ref parse_pad(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1080
1081
1082
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
1083
        if(contains(info.attributes, "pads"))
Khalique's avatar
Khalique committed
1084
        {
1085
            auto&& pad_vals = info.attributes["pads"].ints();
Khalique's avatar
Khalique committed
1086
1087
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
1088
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
1089
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
1090
1091
1092
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
1093
        if(contains(info.attributes, "value"))
Khalique's avatar
Khalique committed
1094
        {
1095
            value = parse_value(info.attributes.at("value")).at<float>();
Khalique's avatar
Khalique committed
1096
        }
1097
        if(contains(info.attributes, "mode"))
Khalique's avatar
Khalique committed
1098
        {
1099
            auto mode = info.attributes.at("mode").s();
Khalique's avatar
Khalique committed
1100
1101
1102
1103
1104
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
1105
1106
1107
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
1108
    parse_shape(const std::string&, const node_info&, std::vector<instruction_ref> args)
1109
1110
    {
        if(args.size() != 1)
1111
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
1124
1125
    instruction_ref
    parse_constant_fill(const std::string&, node_info info, std::vector<instruction_ref> args)
1126
1127
1128
1129
1130
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

1131
        if(contains(info.attributes, "dtype"))
1132
        {
1133
            dtype = parse_value(info.attributes.at("dtype")).at<int>();
1134
        }
Shucai Xiao's avatar
Shucai Xiao committed
1135
        shape::type_t type = get_type(dtype);
1136

1137
        if(contains(info.attributes, "input_as_shape"))
1138
        {
1139
            input_as_shape = parse_value(info.attributes.at("input_as_shape")).at<int>();
1140
1141
        }

1142
        if(contains(info.attributes, "value"))
1143
        {
1144
            value = parse_value(info.attributes.at("value")).at<float>();
1145
1146
        }

1147
        if(contains(info.attributes, "extra_shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1148
        {
1149
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
1150
1151
        }

1152
1153
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1154
            if(args.size() != 1)
1155
            {
1156
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
1157
1158
            }

1159
            if(contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1160
            {
1161
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
1162
                               "at the same time");
1163
1164
            }

1165
            migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1166
            check_arg_empty(in, "ConstantFill: dynamic shape is not supported");
1167

1168
1169
1170
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
1171
1172
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1173
1174
1175
        }
        else if(input_as_shape == 0)
        {
1176
            if(!contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1177
            {
1178
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
1179
1180
            }

1181
            literal ls = parse_value(info.attributes.at("shape"));
1182
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
1183
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
1184
            migraphx::shape s{type, dims};
1185
1186
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1187
1188
1189
        }
        else
        {
1190
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
1191
1192
1193
        }
    }

1194
1195
    instruction_ref
    parse_constant_of_shape(const std::string&, node_info info, std::vector<instruction_ref> args)
1196
1197
    {
        literal l_val{};
1198
        if(contains(info.attributes, "value"))
1199
        {
1200
            l_val = parse_value(info.attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
1201
            if(l_val.get_shape().elements() != 1)
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
1213

Shucai Xiao's avatar
Shucai Xiao committed
1214
        if(args.empty())
1215
        {
Shucai Xiao's avatar
Shucai Xiao committed
1216
            MIGRAPHX_THROW("ConstantOfShape : must have 1 input!");
1217
1218
1219
        }
        else
        {
1220
1221
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
1222
            if(args[0]->get_shape().elements() == 0)
1223
            {
1224
                s = migraphx::shape{type, {1}, {0}};
1225
            }
1226
1227
1228
            else
            {
                migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1229
                check_arg_empty(in, "ConstantOfShape: dynamic shape is not supported");
1230

1231
1232
1233
1234
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
1235

Shucai Xiao's avatar
Shucai Xiao committed
1236
            literal l_out{};
1237
            l_val.visit([&](auto val) {
Shucai Xiao's avatar
Shucai Xiao committed
1238
                using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
1239
                // l_val contains only one element
1240
                std::vector<val_type> out_vec(s.elements(), val.front());
1241
1242
1243
1244
1245
1246
1247
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1248
    instruction_ref
1249
    parse_expand(const std::string&, const node_info&, std::vector<instruction_ref> args)
1250
    {
Shucai Xiao's avatar
Shucai Xiao committed
1251
        auto in_lens             = args[0]->get_shape().lens();
1252
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1253
        check_arg_empty(arg_s, "Expand: dynamic shape is not supported");
1254
1255
1256
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
Shucai Xiao's avatar
Shucai Xiao committed
1257
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
1258
1259
    }

Shucai Xiao's avatar
Shucai Xiao committed
1260
    std::vector<instruction_ref>
1261
    parse_rnn(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1262
1263
    {
        migraphx::shape input_shape = args[0]->get_shape();
1264
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
1265

1266
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
1267
        {
1268
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1269
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1270
1271
1272
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
1273
1274
1275
1276
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1277
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
1278
        {
1279
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
1280
1281
        }

1282
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1283
1284
        if(direction == "bidirectional")
        {
1285
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1286
1287
1288
        }
        else if(direction == "reverse")
        {
1289
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1290
1291
        }

1292
        std::vector<std::string> vec_names{"tanh"};
1293
        if(contains(info.attributes, "activations"))
1294
        {
1295
            auto names = info.attributes.at("activations").strings();
1296
            vec_names.clear();
1297
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1298
1299
1300
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1301
1302
        }

1303
1304
1305
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1306
        if(name_it != vec_names.end())
1307
1308
1309
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1310

Shucai Xiao's avatar
Shucai Xiao committed
1311
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1312
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1313
        // if only one actv function is provided, we use it in both
1314
        // forward and reverse direction
1315
        if(dirct == op::rnn_direction::bidirectional)
1316
        {
Shucai Xiao's avatar
Shucai Xiao committed
1317
            if(vec_names.size() == 1)
1318
1319
1320
1321
1322
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1323
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1324
1325
1326
1327
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& fn) { return map_actv_funcs[fn]; });
Shucai Xiao's avatar
Shucai Xiao committed
1328

Shucai Xiao's avatar
Shucai Xiao committed
1329
1330
        // To be added later
        float clip = 0.0;
1331
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
1332
        {
1333
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
1334
1335
        }

1336
1337
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1338
        if(args.size() < 6)
1339
1340
1341
1342
1343
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1344
1345
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1346
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1347

1348
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1349
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1350

Shucai Xiao's avatar
Shucai Xiao committed
1351
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1352
1353
    }

1354
    std::vector<instruction_ref>
1355
    parse_gru(const std::string&, node_info info, std::vector<instruction_ref> args)
1356
1357
1358
1359
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

1360
        if(contains(info.attributes, "hidden_size"))
1361
        {
1362
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1363
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1364
1365
1366
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1367
1368
1369
1370
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1371
        if(contains(info.attributes, "direction"))
1372
        {
1373
            direction = info.attributes.at("direction").s();
1374
1375
        }

1376
        op::rnn_direction dirct = op::rnn_direction::forward;
1377
1378
        if(direction == "bidirectional")
        {
1379
            dirct = op::rnn_direction::bidirectional;
1380
1381
1382
        }
        else if(direction == "reverse")
        {
1383
            dirct = op::rnn_direction::reverse;
1384
1385
        }

1386
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1387
        if(contains(info.attributes, "activations"))
1388
        {
1389
            auto names = info.attributes.at("activations").strings();
1390
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1391
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1392
1393
1394
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1395
1396
        }

1397
        // need 4 activation functions
1398
        if(dirct == op::rnn_direction::bidirectional)
1399
        {
Shucai Xiao's avatar
Shucai Xiao committed
1400
            // 4 activation functions are used in the bidirectional
1401
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1402
1403
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1404
1405
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1406
1407
1408
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1409
            if(vec_names.size() == 1)
1410
            {
1411
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1412
            }
1413
            else if(vec_names.size() == 2)
1414
            {
1415
1416
1417
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1418
            }
1419
            else if(vec_names.size() == 3)
1420
            {
1421
                vec_names.push_back(vec_names.at(2));
1422
1423
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1424
        else
1425
        {
1426
            if(vec_names.size() == 1)
1427
            {
1428
                vec_names.push_back(vec_names.at(0));
1429
1430
1431
            }
        }

1432
1433
1434
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1435
        if(name_it != vec_names.end())
1436
1437
1438
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1439

Shucai Xiao's avatar
Shucai Xiao committed
1440
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1441
1442
1443
1444
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
1445
1446

        float clip = 0.0;
1447
        if(contains(info.attributes, "clip"))
1448
        {
1449
            clip = parse_value(info.attributes.at("clip")).at<float>();
1450
1451
1452
        }

        int linear_before_reset = 0;
1453
        if(contains(info.attributes, "linear_before_reset"))
1454
        {
1455
            linear_before_reset = parse_value(info.attributes.at("linear_before_reset")).at<int>();
1456
1457
        }

Shucai Xiao's avatar
Shucai Xiao committed
1458
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1459
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1460
1461
1462
1463
1464
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1465
1466
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1467
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1468
            std::move(args));
1469
1470

        // second output for last gru output
1471
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1472

Shucai Xiao's avatar
Shucai Xiao committed
1473
        return {hidden_states, last_output};
1474
1475
    }

Shucai Xiao's avatar
Shucai Xiao committed
1476
    std::vector<instruction_ref>
1477
    parse_lstm(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1478
1479
1480
1481
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

1482
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
1483
        {
1484
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1485
1486
1487
1488
1489
1490
1491
1492
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1493
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
1494
        {
1495
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
1496
1497
        }

Shucai Xiao's avatar
Shucai Xiao committed
1498
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1499
1500
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1501
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1502
1503
1504
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1505
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1506
        }
Shucai Xiao's avatar
Shucai Xiao committed
1507
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1508
        {
Shucai Xiao's avatar
Shucai Xiao committed
1509
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1510
1511
1512
1513
1514
1515
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1516
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
1517
        if(contains(info.attributes, "activations"))
Shucai Xiao's avatar
Shucai Xiao committed
1518
        {
1519
            auto names = info.attributes.at("activations").strings();
Shucai Xiao's avatar
Shucai Xiao committed
1520
1521
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1522
1523
1524
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1525
1526
1527
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1528
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1529
1530
1531
1532
1533
1534
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1535
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1536
1537
1538
1539
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1540
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1541
1542
1543
1544
1545
1546
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1547
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1548
1549
1550

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1551
1552
1553
1554
1555
1556
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1557
1558
1559
1560
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1561
1562
1563
1564
1565
1566
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1567
1568
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1569
1570
1571
1572
1573
1574
1575
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1576
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1577

Shucai Xiao's avatar
Shucai Xiao committed
1578
1579
1580
1581
1582
1583
1584
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1585
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1586

Shucai Xiao's avatar
Shucai Xiao committed
1587
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1588
1589
1590
1591
1592
1593
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1594
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1595
1596
1597

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1598
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1599
1600
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1601
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1602
1603
1604
            }
        }

1605
1606
1607
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1608
        if(name_it != vec_names.end())
1609
1610
1611
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1612
1613

        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1614
1615
1616
1617
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
Shucai Xiao's avatar
Shucai Xiao committed
1618
1619

        float clip = 0.0;
1620
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
1621
        {
1622
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
1623
1624
1625
        }

        int input_forget = 0;
1626
        if(contains(info.attributes, "input_forget"))
Shucai Xiao's avatar
Shucai Xiao committed
1627
        {
1628
            input_forget = parse_value(info.attributes.at("input_forget")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1629
1630
1631
1632
1633
1634
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1635
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1636
1637
1638
1639
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1640
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1641
1642

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1643
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1644
1645
1646
1647
1648
1649

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }
1650

Shucai Xiao's avatar
Shucai Xiao committed
1651
    template <class T>
1652
1653
    instruction_ref
    parse_reduce_oper(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1654
1655
1656
1657
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
1658
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
1659
        std::iota(axes.begin(), axes.end(), 0);
1660
        if(contains(info.attributes, "axes"))
Shucai Xiao's avatar
Shucai Xiao committed
1661
1662
        {
            axes.clear();
1663
            auto&& attr_axes = info.attributes["axes"].ints();
1664
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
1665
1666
1667
        }

        int keep_dims = 1;
1668
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
1669
        {
1670
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1671
1672
1673
1674
        }

        if(keep_dims == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1675
            return prog.add_instruction(T{axes}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1676
1677
1678
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
1679
            auto ins = prog.add_instruction(T{axes}, std::move(args));
1680
            return prog.add_instruction(op::squeeze{axes}, ins);
1681
1682
        }
    }
1683

Shucai Xiao's avatar
Shucai Xiao committed
1684
    instruction_ref
1685
    parse_reduce_l1(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1686
1687
    {
        auto abs_ins = prog.add_instruction(op::abs{}, args[0]);
1688
        return parse_reduce_oper<op::reduce_sum>({}, std::move(info), {abs_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1689
1690
1691
    }

    instruction_ref
1692
    parse_reduce_l2(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1693
1694
    {
        auto square_ins = prog.add_instruction(op::mul{}, args[0], args[0]);
1695
        auto sum_ins    = parse_reduce_oper<op::reduce_sum>({}, std::move(info), {square_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1696
1697
1698
        return prog.add_instruction(op::sqrt{}, sum_ins);
    }

1699
1700
    instruction_ref
    parse_reduce_log_sum(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1701
    {
1702
        auto sum_ins = parse_reduce_oper<op::reduce_sum>({}, std::move(info), std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1703
1704
1705
        return prog.add_instruction(op::log{}, sum_ins);
    }

1706
1707
    instruction_ref
    parse_reduce_log_sum_exp(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1708
1709
    {
        auto exp_ins = prog.add_instruction(op::exp{}, args[0]);
1710
        auto sum_ins = parse_reduce_oper<op::reduce_sum>({}, std::move(info), {exp_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1711
1712
1713
        return prog.add_instruction(op::log{}, sum_ins);
    }

1714
1715
    instruction_ref
    parse_reduce_sum_square(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1716
1717
    {
        auto square_ins = prog.add_instruction(op::mul{}, args[0], args[0]);
1718
        return parse_reduce_oper<op::reduce_sum>({}, std::move(info), {square_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1719
1720
    }

Shucai Xiao's avatar
Shucai Xiao committed
1721
    instruction_ref
1722
    parse_cast(const std::string&, node_info info, std::vector<instruction_ref> args)
1723
    {
1724
        if(!contains(info.attributes, "to"))
1725
1726
1727
1728
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

1729
        int to_type        = parse_value(info.attributes.at("to")).at<int>();
1730
1731
1732
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
1733

1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
    std::vector<instruction_ref>
    parse_split(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        int64_t axis = 0;
        if(contains(info.attributes, "axis"))
        {
            axis = parse_value(info.attributes.at("axis")).at<int>();
        }

        auto lens      = args[0]->get_shape().lens();
        int64_t n_rank = static_cast<int64_t>(lens.size());
        if((axis < -n_rank) || (axis >= n_rank))
        {
            MIGRAPHX_THROW("PARSE_SPLIT: axis attribute out of rank!");
        }
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;

        std::vector<int64_t> vec_splits;
        if(contains(info.attributes, "split"))
        {
            literal s = parse_value(info.attributes.at("split"));
            s.visit([&](auto v) { vec_splits.assign(v.begin(), v.end()); });

            if(std::accumulate(vec_splits.begin(), vec_splits.end(), int64_t(0)) !=
               static_cast<int64_t>(lens[tuned_axis]))
            {
                MIGRAPHX_THROW("PARSE_SPLIT: sum of split attribute unequal to dim size of axis!");
            }
        }
        // no split attribute, input is equally divided
        else
        {
            if((lens[tuned_axis] % info.num_outputs) != 0)
            {
                MIGRAPHX_THROW("PARSE_SPLIT: input cannot be equally divided into " +
                               to_string(info.num_outputs) + " splits!");
            }
            auto dl = lens[tuned_axis] / info.num_outputs;
            vec_splits.resize(info.num_outputs, dl);
        }

        std::vector<instruction_ref> ret_ins;
        int64_t start = 0;
        for(auto sl : vec_splits)
        {
            ret_ins.push_back(
                prog.add_instruction(op::slice{{axis}, {start}, {start + sl}}, args[0]));
            start += sl;
        }

        return ret_ins;
    }

Paul's avatar
Paul committed
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1799
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1800
1801
1802
        }
    }

Paul Fultz II's avatar
Paul Fultz II committed
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
    void parse_from(const void* data, std::size_t size)
    {
        onnx::ModelProto model;
        if(model.ParseFromArray(data, size))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            MIGRAPHX_THROW("Failed reading onnx file.");
        }
    }

Paul's avatar
Paul committed
1819
1820
1821
    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1822
        for(auto&& f : graph.initializer())
1823
1824
            instructions[f.name()] = prog.add_literal(parse_tensor(f));

Paul's avatar
Paul committed
1825
1826
1827
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1828
1829
            // input not in initializer_data, so it is a real input
            if(!contains(instructions, name))
1830
1831
            {
                // TODO: Get shape of input parameter
1832
                shape s            = parse_type(input.type(), batch_size);
1833
1834
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1835
        }
Paul's avatar
Paul committed
1836
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1837
        {
Paul's avatar
Paul committed
1838
            this->parse_node(output.name());
Paul's avatar
Paul committed
1839
        }
Shucai Xiao's avatar
Shucai Xiao committed
1840

1841
        // Find instructions corresponding to the output
Shucai Xiao's avatar
Shucai Xiao committed
1842
        auto prog_output = graph.output();
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
        std::vector<std::string> all_output_names;
        std::vector<std::string> prog_output_names;
        std::transform(prog_output.begin(),
                       prog_output.end(),
                       std::back_inserter(all_output_names),
                       [](auto& node) { return node.name(); });
        std::copy_if(
            all_output_names.begin(),
            all_output_names.end(),
            std::back_inserter(prog_output_names),
            [&](const auto& name) { return !(name.empty() or instructions.count(name) == 0); });

        std::vector<instruction_ref> output_ins;
        std::transform(prog_output_names.begin(),
                       prog_output_names.end(),
                       std::back_inserter(output_ins),
                       [&](const auto& name) { return instructions[name]; });

        // add the return instuction
        prog.add_return(output_ins);
Paul's avatar
Paul committed
1863
1864
    }

Shucai Xiao's avatar
Shucai Xiao committed
1865
    void parse_undefined(const std::string& name)
1866
    {
Shucai Xiao's avatar
Shucai Xiao committed
1867
        auto ins           = prog.add_instruction(op::undefined{});
1868
1869
1870
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1871
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1872
    {
Paul's avatar
Paul committed
1873
        if(name.empty())
Paul's avatar
Paul committed
1874
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1875
1876
1877
1878
1879
1880
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1881
                if(input.empty())
Paul's avatar
Paul committed
1882
                {
Shucai Xiao's avatar
Shucai Xiao committed
1883
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1884
                }
Shucai Xiao's avatar
Shucai Xiao committed
1885
                else if(nodes.count(input) > 0)
Paul's avatar
Paul committed
1886
                {
Shucai Xiao's avatar
Shucai Xiao committed
1887
1888
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1889
                }
1890
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1891
            }
Paul's avatar
Paul committed
1892
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1893
1894
            if(ops.count(node.op_type()) == 0)
            {
1895
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1896
1897
1898
            }
            else
            {
1899
1900
                std::size_t output_num = static_cast<std::size_t>(node.output().size());
                result = ops[node.op_type()]({get_attributes(node), output_num}, args);
Paul's avatar
Paul committed
1901
            }
Paul's avatar
Paul committed
1902
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1903
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1904
1905
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1906
1907
1908
            }
            else
            {
1909
                auto output_num = std::min<std::size_t>(node.output().size(), result.size());
Shucai Xiao's avatar
Shucai Xiao committed
1910
                std::transform(node.output().begin(),
1911
                               node.output().begin() + output_num,
Shucai Xiao's avatar
Shucai Xiao committed
1912
                               result.begin(),
Paul's avatar
Paul committed
1913
                               std::inserter(instructions, instructions.end()),
Shucai Xiao's avatar
Shucai Xiao committed
1914
                               [](auto&& x, auto&& y) { return std::make_pair(x, y); });
Paul's avatar
Paul committed
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1932
        std::size_t n = 0;
Paul's avatar
Paul committed
1933
1934
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1935
            if(node.output().empty())
Paul's avatar
Paul committed
1936
            {
Paul's avatar
Paul committed
1937
                if(node.name().empty())
Paul's avatar
Paul committed
1938
1939
1940
1941
1942
1943
1944
1945
1946
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1947
1948
1949
1950
1951
1952
1953
1954
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

Paul's avatar
Paul committed
1955
1956
1957
1958
1959
1960
    static std::vector<int64_t> get_indices(const onnx::AttributeProto& attr)
    {
        std::vector<int64_t> result;
        literal s = parse_value(attr);
        s.visit([&](auto v) { copy(v, std::back_inserter(result)); });
        // Clamp large indices to -1
Paul's avatar
Paul committed
1961
1962
1963
1964
1965
        std::replace_if(
            result.begin(),
            result.end(),
            [](auto x) { return x > int64_t{std::numeric_limits<std::int32_t>::max()} / 2; },
            -1);
Paul's avatar
Paul committed
1966
1967
1968
        return result;
    }

Paul's avatar
Paul committed
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
Paul's avatar
Paul committed
1983
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1984
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
Paul's avatar
Paul committed
1985
1986
1987
1988
1989
        case onnx::AttributeProto::UNDEFINED:
        case onnx::AttributeProto::GRAPH:
        case onnx::AttributeProto::STRING:
        case onnx::AttributeProto::STRINGS:
        case onnx::AttributeProto::TENSORS:
1990
1991
        case onnx::AttributeProto::SPARSE_TENSOR:
        case onnx::AttributeProto::SPARSE_TENSORS:
Paul's avatar
Paul committed
1992
1993
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1994
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1995
1996
1997
1998
1999
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
2000
2001
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
2002
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
2003
2004
            switch(t.data_type())
            {
2005
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Khalique's avatar
Khalique committed
2006
2007
2008
2009
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
2010
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Paul's avatar
Paul committed
2011
2012
2013
2014
            case onnx::TensorProto::INT8:
            case onnx::TensorProto::UINT16:
            case onnx::TensorProto::INT16:
            case onnx::TensorProto::INT32:
2015
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Paul's avatar
Paul committed
2016
2017
2018
2019
2020
2021
            case onnx::TensorProto::UINT8:
            case onnx::TensorProto::STRING:
            case onnx::TensorProto::UNDEFINED:
            case onnx::TensorProto::UINT32:
            case onnx::TensorProto::UINT64:
            case onnx::TensorProto::COMPLEX64:
Scott Thornton's avatar
Scott Thornton committed
2022
2023
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
2024
            MIGRAPHX_THROW("Invalid tensor type");
2025
        }
Paul's avatar
Paul committed
2026
2027
2028
2029
2030
2031
        switch(t.data_type())
        {
        case onnx::TensorProto::INT8:
        case onnx::TensorProto::UINT16:
        case onnx::TensorProto::INT16:
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
2032
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
2033
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
2034
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
2035
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
2036
2037
2038
2039
        case onnx::TensorProto::DOUBLE:
            return create_literal(shape::double_type, dims, t.double_data());
        case onnx::TensorProto::FLOAT:
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
2040
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
2041
        {
Khalique's avatar
Khalique committed
2042
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
2043
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
2044
2045
2046
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
2047
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
2048
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
2049
        }
Paul's avatar
Paul committed
2050
2051
2052
2053
2054
2055
        case onnx::TensorProto::UNDEFINED:
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::UINT32:
        case onnx::TensorProto::UINT64:
        case onnx::TensorProto::COMPLEX64:
Paul's avatar
Paul committed
2056
2057
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
2058
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
2059
2060
    }

Khalique's avatar
Khalique committed
2061
    static literal
2062
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
2063
    {
Khalique's avatar
Khalique committed
2064
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
2065
        if(dims.empty())
2066
            return literal{{shape_type}, data};
2067
2068
2069
        return literal{{shape_type, dims}, data};
    }

2070
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
2071
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
2072
2073
    {
        if(dims.empty())
2074
            return literal{{shape_type}, data.begin(), data.end()};
2075
        return literal{{shape_type, dims}, data.begin(), data.end()};
2076
2077
    }

2078
    static shape parse_type(const onnx::TypeProto& t, const unsigned int batch_size)
Paul's avatar
Paul committed
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
Paul's avatar
Paul committed
2089
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
2090
2091
2092
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
Paul's avatar
Paul committed
2093
2094
2095
2096
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::BOOL:
        case onnx::TensorProto::UNDEFINED:
Paul's avatar
Paul committed
2097
2098
        case onnx::TensorProto::COMPLEX64:
        case onnx::TensorProto::COMPLEX128:
Paul's avatar
Paul committed
2099
            break; // throw std::runtime_error("Unsupported type");
Paul's avatar
Paul committed
2100
2101
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
2102
        auto&& tensor_dims = t.tensor_type().shape().dim();
2103
2104
2105
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
2106
2107
                       [&](auto&& d) -> std::size_t {
                           if(d.has_dim_value())
2108
                           {
2109
2110
2111
                               if(static_cast<int>(d.dim_value()) <= 0)
                                   return batch_size;
                               return d.dim_value();
2112
                           }
2113
                           return batch_size;
2114
                       });
2115
2116
2117
        if(dims.empty())
            return {shape_type};

Paul's avatar
Paul committed
2118
2119
        return {shape_type, dims};
    }
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
2142
2143
2144

    void check_arg_empty(const argument& arg, const std::string& msg)
    {
Shucai Xiao's avatar
Shucai Xiao committed
2145
        if(arg.empty())
Shucai Xiao's avatar
Shucai Xiao committed
2146
2147
2148
2149
        {
            MIGRAPHX_THROW(msg);
        }
    }
Paul's avatar
Paul committed
2150
2151
};

Paul Fultz II's avatar
Paul Fultz II committed
2152
2153
template <class... Ts>
program parse_onnx_from(onnx_options options, Ts&&... xs)
Paul's avatar
Paul committed
2154
2155
{
    onnx_parser parser;
2156
    parser.batch_size = options.batch_size;
Paul's avatar
Paul committed
2157
2158
2159
2160
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
Paul Fultz II's avatar
Paul Fultz II committed
2161
        parser.parse_from(std::forward<Ts>(xs)...);
Paul's avatar
Paul committed
2162
2163
2164
2165
2166
2167
2168
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
Paul Fultz II's avatar
Paul Fultz II committed
2169
    parser.parse_from(std::forward<Ts>(xs)...);
Paul's avatar
Paul committed
2170
2171
2172
2173
#endif
    return std::move(parser.prog);
}

Paul Fultz II's avatar
Paul Fultz II committed
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
program parse_onnx(const std::string& name, onnx_options options)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    return parse_onnx_from(options, input);
}

program parse_onnx_buffer(const std::string& buffer, onnx_options options)
{
    return parse_onnx_from(options, buffer.data(), buffer.size());
}

program parse_onnx_buffer(const void* data, std::size_t size, onnx_options options)
{
    return parse_onnx_from(options, data, size);
}

Paul's avatar
Paul committed
2190
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
2191
} // namespace migraphx