onnx.cpp 20 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
#include <migraph/fallthrough.hpp>
#include <migraph/program.hpp>
#include <migraph/operators.hpp>
#include <migraph/ranges.hpp>
16
#include <migraph/instruction.hpp>
Paul's avatar
Paul committed
17

Paul's avatar
Paul committed
18
namespace migraph {
Paul's avatar
Paul committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

struct unknown
{
    std::string op;
    std::string name() const { return "unknown:" + op; }
    shape compute_shape(std::vector<shape> input) const
    {
        if(input.empty())
            return {};
        else
            return input.front();
    }
    friend std::ostream& operator<<(std::ostream& os, const unknown& x)
    {
        os << x.name();
        return os;
    }
};

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
42
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
43
44
45
46
47
48
49
50
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();

    std::unordered_map<std::string, op_func> ops;

    onnx_parser()
    {
51
52
53
54
55
56
57
        add_generic_op("Add", op::add{});
        add_generic_op("Div", op::div{});
        add_generic_op("MatMul", op::gemm{});
        add_generic_op("Mul", op::mul{});
        add_generic_op("Relu", op::activation{"relu"});
        add_generic_op("Sub", op::sub{});
        add_generic_op("Sum", op::add{});
Paul's avatar
Paul committed
58

59
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Paul's avatar
Paul committed
60
61
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
62
63
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
64
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
65
66
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
67
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
68
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Paul's avatar
Paul committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    }

    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }

Paul's avatar
Paul committed
85
    template <class T>
Paul's avatar
Paul committed
86
87
88
89
90
91
92
93
94
95
96
    void add_generic_op(std::string name, T x)
    {
        ops.emplace(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
            if(args.size() == 2 and contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
Scott Thornton's avatar
Scott Thornton committed
97
98
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
Paul's avatar
Paul committed
99
100
101
102
103
104
105
                    return prog.add_instruction(x, args[0], l);
                }
            }
            return prog.add_instruction(x, args);
        });
    }

Paul's avatar
Paul committed
106
    instruction_ref
Paul's avatar
Paul committed
107
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
108
109
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
110
111
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
112
113
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
114
115
    }

Paul's avatar
Paul committed
116
    instruction_ref
Paul's avatar
Paul committed
117
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
118
    {
119
        op::convolution op;
Paul's avatar
Paul committed
120
121
122
        if(contains(attributes, "pads"))
        {
            copy(attributes["pads"].ints(), op.padding.begin());
Paul's avatar
Paul committed
123
        }
Paul's avatar
Paul committed
124
125
126
127
128
129
130
131
132
133
134
135
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
136
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
137
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
138
        }
Paul's avatar
Paul committed
139
140
        return prog.add_instruction(op, args);
    }
Paul's avatar
Paul committed
141

Paul's avatar
Paul committed
142
143
144
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
145
    {
146
        op::pooling op{name == "MaxPool" ? "max" : "average"};
Paul's avatar
Paul committed
147
148
149
150
151
152
153
154
155
156
157
158
        if(contains(attributes, "pads"))
        {
            copy(attributes["pads"].ints(), op.padding.begin());
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Paul's avatar
Paul committed
159
        return prog.add_instruction(op, std::move(args));
Paul's avatar
Paul committed
160
161
    }

Paul's avatar
Paul committed
162
    instruction_ref
Paul's avatar
Paul committed
163
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
164
    {
165
        op::reshape op;
Paul's avatar
Paul committed
166
167
168
169
170
171
172
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
173
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
174
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
175
        }
Paul's avatar
Paul committed
176
177
178
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
179
    instruction_ref
Paul's avatar
Paul committed
180
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
181
182
    {
        uint64_t axis = 0;
Paul's avatar
Paul committed
183
184
185
186
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
187
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
188
189
    }

Paul's avatar
Paul committed
190
191
192
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
193
194
195
196
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
197

Paul's avatar
Paul committed
198
    instruction_ref
Paul's avatar
Paul committed
199
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    {
        float alpha = 1.0f;
        float beta  = 0.0f;
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
            alpha = parse_value(attributes.at("beta")).at<float>();
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
222
223
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
224
225
226
        if(args.size() == 3)
        {
            uint64_t axis = 1;
227
            auto l3       = prog.add_instruction(op::gemm{alpha, beta}, l1, l2);
Scott Thornton's avatar
Scott Thornton committed
228
            auto l4       = prog.add_instruction(op::broadcast{axis, l3->get_shape()}, args[2]);
229
            return prog.add_instruction(op::add{}, l3, l4);
Paul's avatar
Paul committed
230
        }
231
        return prog.add_instruction(op::gemm{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
232
233
    }

234
    instruction_ref
Paul's avatar
Paul committed
235
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
236
    {
Scott Thornton's avatar
Scott Thornton committed
237
238
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
239
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
240
        bool is_test                                      = false;
241
242
243
244
245
246
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
247
            momentum = parse_value(attributes.at("momentum")).at<float>();
248
249
250
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
251
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
252
253
254
        }
        if(contains(attributes, "spatial"))
        {
255
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
256
257
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
258
        }
Paul's avatar
Paul committed
259
        (void)is_test;
Paul's avatar
Paul committed
260
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
261
        return prog.add_instruction(op, std::move(args));
262
263
    }

264
265
266
267
268
269
270
271
272
273
274
275
276
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
        float alpha = 0.01;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Paul's avatar
Paul committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            throw std::runtime_error("Failed reading");
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
296
297
298
299
300
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
301
302
303
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
304
305
306
307
308
309
310
311
312
313
314
315
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
316
317
318
        }
        for(auto&& p : nodes)
        {
319
            this->parse_node(get_name(p.second));
Paul's avatar
Paul committed
320
321
322
        }
    }

Paul's avatar
Paul committed
323
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
324
    {
Paul's avatar
Paul committed
325
        if(name.empty())
Paul's avatar
Paul committed
326
            MIGRAPH_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
327
328
329
330
331
332
333
334
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
335
                    auto&& iname = get_name(nodes.at(input));
Paul's avatar
Paul committed
336
                    assert(name != iname);
Paul's avatar
Paul committed
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op_type()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op_type()}, args);
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

366
367
368
369
370
    static std::string get_name(const onnx::NodeProto& node)
    {
        if(node.name().empty())
        {
            std::string generated = "migraph_unnamed_node";
Paul's avatar
Paul committed
371
372
373
374
            return std::accumulate(node.output().begin(),
                                   node.output().end(),
                                   generated,
                                   [](auto x, auto y) { return x + "_" + y; });
375
376
377
378
        }
        return node.name();
    }

Paul's avatar
Paul committed
379
380
381
382
383
    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
        for(auto&& node : graph.node())
        {
384
            result[get_name(node)] = node;
Paul's avatar
Paul committed
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
410
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
411
412
413
414
415
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
416
        MIGRAPH_THROW("Invalid attribute type");
Paul's avatar
Paul committed
417
418
419
420
421
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
422
423
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
424
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::FLOAT16: throw std::runtime_error("");
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
            MIGRAPH_THROW("Invalid tensor type");
445
        }
Paul's avatar
Paul committed
446
447
448
449
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
450
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
451
452
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
453
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
454
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
455
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
456
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
457
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
458
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
459
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
460
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
461
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
462
463
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
464
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
465
466
467
468
469
470
471
472
473
        case onnx::TensorProto::FLOAT16: throw std::runtime_error("");
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
474
        MIGRAPH_THROW("Invalid tensor type");
Paul's avatar
Paul committed
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case onnx::TensorProto::FLOAT16:
            break; // throw std::runtime_error("Unsupported type FLOAT16");
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
507
        auto&& tensor_dims = t.tensor_type().shape().dim();
Paul's avatar
Paul committed
508
509
510
511
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) { return d.dim_value(); });
Paul's avatar
Paul committed
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
        return {shape_type, dims};
    }
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
537
} // namespace migraph