onnx.cpp 42.9 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Shucai Xiao's avatar
Shucai Xiao committed
39
        add_generic_op("MatMul", op::dot{});
Khalique's avatar
Khalique committed
40
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
41
42
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
43
44
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
45
46
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
47
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
48
49
50
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
51
52
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
53
        add_generic_op("Tanh", op::tanh{});
54
55
56
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
57

Khalique's avatar
Khalique committed
58
59
60
61
62
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
63
64
65
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
66

Khalique's avatar
Khalique committed
67
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
68
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
69
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
70
71
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
72
73
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
74
75
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
76
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
77
78
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
79
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
80
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
81
82
83
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
84
        add_mem_op("Concat", &onnx_parser::parse_concat);
85
86
87
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
88
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
89
        add_mem_op("RNN", &onnx_parser::parse_rnn);
90
        add_mem_op("GRU", &onnx_parser::parse_gru);
91
92
93
94
95
96
97

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
98
99
100
101
102
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
103
104
105
106
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
107
108
109
110
111
112
113
114
115
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
116
117
118
119
120
121
122
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
123
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
124
125
126
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
127

128
    template <class T>
Khalique's avatar
Khalique committed
129
    void add_binary_op(std::string name, T x)
130
    {
Paul's avatar
Paul committed
131
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
132
            if(args.size() != 2)
Paul's avatar
Paul committed
133
                MIGRAPHX_THROW("binary operators should have 2 operands");
134
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
135
136
137
138
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
139
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
140
141
142
143
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
                    return prog.add_instruction(x, args[0], l);
                }
144
                return prog.add_instruction(x, args);
145
            }
Paul's avatar
Paul committed
146
            else
147
            {
Khalique's avatar
Khalique committed
148
                return add_broadcastable_binary_op(args[0], args[1], x);
149
150
151
152
            }
        });
    }

Khalique's avatar
Khalique committed
153
154
155
156
157
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
        if(arg0->get_shape() != arg1->get_shape())
        {
Khalique's avatar
Khalique committed
158
159
160
161
162
163
164
165
166
167
168
169
170
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
Khalique's avatar
Khalique committed
171
172
173
174
175
176
177
178
            // Get lengths for both arguments
            const std::vector<std::size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<std::size_t>* s1 = &arg1->get_shape().lens();

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

Khalique's avatar
Khalique committed
179
            std::vector<std::size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
180
181
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
Khalique's avatar
Khalique committed
182
183
184
185
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });
Khalique's avatar
Khalique committed
186
187
188
189
190
191
192
193
194

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
195
196
    }

Paul's avatar
Paul committed
197
    template <class T>
Paul's avatar
Paul committed
198
199
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
200
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
201
202
203
204
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
205
    template <class T>
Khalique's avatar
Khalique committed
206
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
207
    {
Paul's avatar
Paul committed
208
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
209
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
210
211
212
213
214
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
215
        });
Khalique's avatar
Khalique committed
216
217
    }

Paul's avatar
Paul committed
218
    instruction_ref
Paul's avatar
Paul committed
219
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
220
221
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
222
223
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
224
225
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
226
227
    }

Paul's avatar
Paul committed
228
    instruction_ref
Paul's avatar
Paul committed
229
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
230
    {
231
        op::convolution op;
Paul's avatar
Paul committed
232
233
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
234
            if(contains(attributes, "auto_pad"))
235
            {
Paul's avatar
Paul committed
236
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
237
238
239
            }
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
240
            if(padding.size() != 4)
241
            {
Paul's avatar
Paul committed
242
                MIGRAPHX_THROW("padding should have 4 values");
243
            }
Scott Thornton's avatar
Scott Thornton committed
244
            if(padding[0] != padding[2] || padding[1] != padding[3])
245
            {
Paul's avatar
Paul committed
246
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
247
248
249
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
250
        }
Paul's avatar
Paul committed
251
252
253
254
255
256
257
258
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
259
        if(contains(attributes, "auto_pad"))
260
261
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
262
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
263
            {
Paul's avatar
Paul committed
264
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
265
266
            }

wsttiger's avatar
fixes  
wsttiger committed
267
            if(s.find("SAME") != std::string::npos)
268
269
270
271
            {
                op.padding_mode = op::convolution::same;
            }
        }
Khalique's avatar
Khalique committed
272
273
274
275
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
276
277
278
279
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
280
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
281
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
282
        }
Paul's avatar
Paul committed
283
284
        return prog.add_instruction(op, args);
    }
Paul's avatar
Paul committed
285

Paul's avatar
Paul committed
286
287
288
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
289
    {
Khalique's avatar
Khalique committed
290
291
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
        if(starts_with(name, "Global"))
292
        {
Khalique's avatar
Khalique committed
293
294
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
295
        }
Paul's avatar
Paul committed
296
297
        if(contains(attributes, "pads"))
        {
298
299
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
300
            if(padding.size() != 4)
301
            {
Paul's avatar
Paul committed
302
                MIGRAPHX_THROW("padding should have 4 values");
303
            }
Scott Thornton's avatar
Scott Thornton committed
304
            if(padding[0] != padding[2] || padding[1] != padding[3])
305
            {
Paul's avatar
Paul committed
306
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
307
308
309
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
310
311
312
313
314
315
316
317
318
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
319
        if(contains(attributes, "auto_pad"))
320
321
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
322
            if(to_upper(s) != "NOTSET")
323
            {
Paul's avatar
Paul committed
324
                MIGRAPHX_THROW("auto_pad is not supported for pooling");
325
326
327
            }
        }

Paul's avatar
Paul committed
328
        return prog.add_instruction(op, std::move(args));
Paul's avatar
Paul committed
329
330
    }

Paul's avatar
Paul committed
331
    instruction_ref
Paul's avatar
Paul committed
332
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
333
    {
334
        op::reshape op;
Paul's avatar
Paul committed
335
336
337
338
339
340
341
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
342
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
343
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
344
        }
Paul's avatar
Paul committed
345
346
347
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
348
    instruction_ref
Paul's avatar
Paul committed
349
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
350
    {
351
        uint64_t axis = 1;
Paul's avatar
Paul committed
352
353
354
355
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
356
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
357
358
    }

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
377
378
379
380
381
382
383
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
384

385
386
387
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
388
        int axis = 0;
389
390
391
392
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
393
        op::gather op{axis};
394
395
396
        return prog.add_instruction(op, std::move(args));
    }

397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
417
418
419
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
420
421
422
423
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
424

Paul's avatar
Paul committed
425
    instruction_ref
Paul's avatar
Paul committed
426
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
427
428
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
429
        float beta  = 1.0f;
Paul's avatar
Paul committed
430
431
432
433
434
435
436
437
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
438
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
439
440
441
442
443
444
445
446
447
448
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
449
450
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
451
452
        if(args.size() == 3)
        {
Khalique's avatar
Khalique committed
453
            if(beta != 0.f)
454
            {
Khalique's avatar
Khalique committed
455
                auto l3 = prog.add_instruction(op::dot{alpha}, l1, l2);
Khalique's avatar
Khalique committed
456
                auto l4 = args[2];
Khalique's avatar
Khalique committed
457
                if(l4->get_shape().scalar()) // ignore args[2] (no C value added to alpha*A*B)
Khalique's avatar
Khalique committed
458
                    return l3;
Khalique's avatar
Khalique committed
459
                if(beta != 1.f)
Khalique's avatar
Khalique committed
460
461
                {
                    auto beta_val = prog.add_literal(beta);
Khalique's avatar
Khalique committed
462
463
                    auto l5 = prog.add_instruction(op::scalar{args[2]->get_shape()}, beta_val);
                    l4      = prog.add_instruction(op::mul{}, args[2], l5);
Khalique's avatar
Khalique committed
464
465
                }
                return add_broadcastable_binary_op(l3, l4, op::add{});
466
            }
Paul's avatar
Paul committed
467
        }
Shucai Xiao's avatar
Shucai Xiao committed
468
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
469
470
    }

471
    instruction_ref
Paul's avatar
Paul committed
472
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
473
    {
Scott Thornton's avatar
Scott Thornton committed
474
475
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
476
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
477
        bool is_test                                      = false;
478
479
480
481
482
483
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
484
            momentum = parse_value(attributes.at("momentum")).at<float>();
485
486
487
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
488
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
489
490
491
        }
        if(contains(attributes, "spatial"))
        {
492
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
493
494
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
495
        }
Paul's avatar
Paul committed
496
        (void)is_test;
Paul's avatar
Paul committed
497
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
498
        return prog.add_instruction(op, std::move(args));
499
500
    }

501
502
503
504
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
505
        float alpha = 0.01; // default alpha val for leaky relu
506
507
508
509
510
511
512
513
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
514
515
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
516
517
518
519
520
521
522
523
524
525
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
        auto input_shape = args.front()->get_shape();
Khalique's avatar
Khalique committed
543

Khalique's avatar
Khalique committed
544
545
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
546
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
547

Paul's avatar
Paul committed
548
549
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_shape}, scale_val);
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Paul's avatar
Paul committed
550
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_shape}, bias_vals);
Paul's avatar
Paul committed
551
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
552
    }
Khalique's avatar
Khalique committed
553

Khalique's avatar
Khalique committed
554
555
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
556
557
558
559
560
561
562
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
563
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
564
565
    }

566
567
568
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
569
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
570
571
    {
        if(args.size() != 1)
572
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
609
610
        if(contains(attributes, "extra_shape"))
        {
611
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
612
613
        }

614
615
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
616
            if(args.size() != 1)
617
            {
618
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
619
620
            }

Shucai Xiao's avatar
Shucai Xiao committed
621
622
            if(contains(attributes, "shape"))
            {
623
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
624
                               "at the same time");
625
626
            }

627
628
629
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
630
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
631
            }
632

633
634
635
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
636
637
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
638
639
640
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
641
642
            if(!contains(attributes, "shape"))
            {
643
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
644
645
646
            }

            literal ls = parse_value(attributes.at("shape"));
647
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
648
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
649
            migraphx::shape s{type, dims};
650
651
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
652
653
654
        }
        else
        {
655
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
656
657
658
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
659
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
660
661
662
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
663
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

        if(contains(attributes, "hidden_size"))
        {
            hidden_size = parse_value(attributes.at("hidden_size")).at<int>();
        }
        else
        {
            MIGRAPHX_THROW("RNN: hidden size attribute missing");
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

        op::rnn::rnn_direction_t dirct = op::rnn::forward;
        if(direction == "bidirectional")
        {
            dirct = op::rnn::bidirectional;
        }
        else if(direction == "reverse")
        {
            dirct = op::rnn::reverse;
        }

691
692
693
694
695
        std::vector<std::string> vec_names{"tanh"};
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
696
            for_each(names.begin(), names.end(), [&](auto& fn) { vec_names.push_back(fn); });
697
698
        }

Shucai Xiao's avatar
Shucai Xiao committed
699
        for_each(vec_names.begin(), vec_names.end(), [&](auto& fn) {
700
701
702
703
704
705
706
707
708
            if(map_actv_funcs.count(fn) == 0)
            {
                MIGRAPHX_THROW("RNN: activation function " + fn + " not supported");
            }
        });

        // bidirectional should have two activation functions
        // if only one actv function is provides, we use it in both
        // forward and reverse direction
Shucai Xiao's avatar
Shucai Xiao committed
709
        if(dirct == op::rnn::bidirectional)
710
        {
Shucai Xiao's avatar
Shucai Xiao committed
711
            if(vec_names.size() == 1)
712
713
714
715
716
717
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

        std::vector<operation> vec_actv_funcs;
Shucai Xiao's avatar
Shucai Xiao committed
718
        for_each(vec_names.begin(), vec_names.end(), [&](auto& fn) {
719
720
            vec_actv_funcs.push_back(map_actv_funcs[fn]);
        });
Shucai Xiao's avatar
Shucai Xiao committed
721

Shucai Xiao's avatar
Shucai Xiao committed
722
723
724
725
726
727
728
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
729
730
731
        std::vector<instruction_ref> result;
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
732
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
733
734
735
        result.push_back(hidden_states);

        // second out for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
736
737
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
        result.push_back(last_output);
Shucai Xiao's avatar
Shucai Xiao committed
738
739

        return result;
Shucai Xiao's avatar
Shucai Xiao committed
740
741
    }

742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
    instruction_ref
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            hidden_size = parse_value(attributes.at("hidden_size")).at<int>();
        }
        else
        {
            MIGRAPHX_THROW("GRU: hidden size attribute missing");
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

        op::gru::gru_direction_t dirct = op::gru::forward;
        if(direction == "bidirectional")
        {
            dirct = op::gru::bidirectional;
        }
        else if(direction == "reverse")
        {
            dirct = op::gru::reverse;
        }

774
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
775
776
        if(contains(attributes, "activations"))
        {
777
            auto names = attributes.at("activations").strings();
778
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
779
            for(auto& fn : names)
780
            {
781
                vec_names.push_back(fn);
782
            }
783
784
        }

785
        // need 4 activation functions
Shucai Xiao's avatar
Shucai Xiao committed
786
        if(dirct == op::gru::bidirectional)
787
        {
Shucai Xiao's avatar
Shucai Xiao committed
788
            // 4 activation functions are used in the bidirectional
789
790
791
792
793
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provides,
            // repeat 1 four times. If 2 actv functins are provides,
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
794
795
796
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
797
            if(vec_names.size() == 1)
798
            {
799
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
800
            }
801
            else if(vec_names.size() == 2)
802
            {
803
804
805
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
806
            }
807
            else if(vec_names.size() == 3)
808
            {
809
                vec_names.push_back(vec_names.at(2));
810
811
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
812
        else
813
        {
814
            if(vec_names.size() == 1)
815
            {
816
                vec_names.push_back(vec_names.at(0));
817
818
819
            }
        }

820
        for_each(vec_names.begin(), vec_names.end(), [&](auto& name) {
Shucai Xiao's avatar
Shucai Xiao committed
821
822
823
824
825
            if(map_actv_funcs.count(name) == 0)
            {
                MIGRAPHX_THROW("GRU: activation function " + name + " not supported");
            }
        });
826
827

        std::vector<operation> vec_actv_funcs;
828
        for_each(vec_names.begin(), vec_names.end(), [&](auto& name) {
Shucai Xiao's avatar
Shucai Xiao committed
829
830
            vec_actv_funcs.push_back(map_actv_funcs[name]);
        });
831
832
833
834
835
836
837
838
839

        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
840
        if(contains(attributes, "linear_before_reset"))
841
842
843
844
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
845
        return prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
846
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
847
            std::move(args));
848
849
    }

Paul's avatar
Paul committed
850
851
852
853
854
855
856
857
858
859
860
861
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
862
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
863
864
865
866
867
868
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
869
870
871
872
873
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
874
875
876
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
877
878
879
880
881
882
883
884
885
886
887
888
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
889
890
891
        }
        for(auto&& p : nodes)
        {
Paul's avatar
Paul committed
892
            this->parse_node(p.first);
Paul's avatar
Paul committed
893
894
895
        }
    }

Paul's avatar
Paul committed
896
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
897
    {
Paul's avatar
Paul committed
898
        if(name.empty())
Paul's avatar
Paul committed
899
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
900
901
902
903
904
905
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
906
907
908
909
910
911
912
913
914
915
                // For RNN, LSTM, and GRU operators, one of the input arguments
                // is prim::Undefined, and it is ignored by protobuf. We use a
                // hack to ignore this argument for these three operators
                std::string op_type = node.op_type();
                if((op_type == "RNN" || op_type == "LSTM" || op_type == "GRU") &&
                   input.empty() == true)
                {
                    continue;
                }

Paul's avatar
Paul committed
916
917
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
918
919
920
                    assert(name != input);
                    this->parse_node(input);
                    args.push_back(instructions.at(input));
Paul's avatar
Paul committed
921
922
923
924
925
926
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
Paul's avatar
Paul committed
927
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
928
929
            if(ops.count(node.op_type()) == 0)
            {
Paul's avatar
Paul committed
930
                result.push_back(prog.add_instruction(unknown{node.op_type()}, args));
Paul's avatar
Paul committed
931
932
933
            }
            else
            {
Paul's avatar
Paul committed
934
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
935
            }
Paul's avatar
Paul committed
936
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
937
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
938
939
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
940
941
942
            }
            else
            {
Paul's avatar
Paul committed
943
944
945
946
947
948
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
966
        std::size_t n = 0;
Paul's avatar
Paul committed
967
968
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
969
            if(node.output().empty())
Paul's avatar
Paul committed
970
            {
Paul's avatar
Paul committed
971
                if(node.name().empty())
Paul's avatar
Paul committed
972
973
974
975
976
977
978
979
980
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1006
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1007
1008
1009
1010
1011
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1012
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1013
1014
1015
1016
1017
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
Khalique's avatar
Khalique committed
1018
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1019
        if(dims.empty())
Khalique's avatar
Khalique committed
1020
1021
1022
        {
            dims = {1};
        }
1023
1024
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1025
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
Paul's avatar
Paul committed
1038
            case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
Scott Thornton's avatar
Scott Thornton committed
1039
1040
1041
1042
1043
1044
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1045
            MIGRAPHX_THROW("Invalid tensor type");
1046
        }
Paul's avatar
Paul committed
1047
1048
1049
1050
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
1051
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
1052
1053
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
1054
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1055
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
1056
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1057
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
1058
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1059
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
1060
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1061
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
1062
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
1063
1064
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
1065
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1066
1067
        case onnx::TensorProto::FLOAT16:
            return literal{{shape::half_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
1068
1069
1070
1071
1072
1073
1074
1075
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1076
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1098
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1099
1100
1101
1102
1103
1104
1105
1106
1107
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1108
        auto&& tensor_dims = t.tensor_type().shape().dim();
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1120
1121
        return {shape_type, dims};
    }
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1167
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1168
} // namespace migraphx