onnx.cpp 35.5 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
    using op_func = std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
28
29
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
30
    program prog    = program();
31
    bool is_pytorch = false;
Paul's avatar
Paul committed
32
33
34
35
36

    std::unordered_map<std::string, op_func> ops;

    onnx_parser()
    {
Shucai Xiao's avatar
Shucai Xiao committed
37
        add_generic_op("MatMul", op::dot{});
Khalique's avatar
Khalique committed
38
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
39
40
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
41
42
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
43
44
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
45
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
46
47
48
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
49
50
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
51
        add_generic_op("Tanh", op::tanh{});
52
53
54
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
55

Khalique's avatar
Khalique committed
56
57
58
59
60
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
61
62
63
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
64

Khalique's avatar
Khalique committed
65
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
66
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
67
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
68
69
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
70
71
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
72
73
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
74
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
75
76
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
77
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
78
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
79
80
81
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
82
        add_mem_op("Concat", &onnx_parser::parse_concat);
83
84
85
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
86
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Paul's avatar
Paul committed
87
88
89
90
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
91
92
93
94
95
96
97
98
99
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
100
101
102
103
104
105
106
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
107
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
108
109
110
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
111

112
    template <class T>
Khalique's avatar
Khalique committed
113
    void add_binary_op(std::string name, T x)
114
    {
Paul's avatar
Paul committed
115
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
116
            if(args.size() != 2)
Paul's avatar
Paul committed
117
                MIGRAPHX_THROW("binary operators should have 2 operands");
118
119
120
121
122
123
124
125
126
127
128
129
            if(contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
                    return prog.add_instruction(x, args[0], l);
                }
130
                return prog.add_instruction(x, args);
131
            }
Paul's avatar
Paul committed
132
            else
133
            {
Khalique's avatar
Khalique committed
134
                return add_broadcastable_binary_op(args[0], args[1], x);
135
136
137
138
            }
        });
    }

Khalique's avatar
Khalique committed
139
140
141
142
143
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
        if(arg0->get_shape() != arg1->get_shape())
        {
Khalique's avatar
Khalique committed
144
145
146
147
148
149
150
151
152
153
154
155
156
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
Khalique's avatar
Khalique committed
157
158
159
160
161
162
163
164
            // Get lengths for both arguments
            const std::vector<std::size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<std::size_t>* s1 = &arg1->get_shape().lens();

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

Khalique's avatar
Khalique committed
165
            std::vector<std::size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
166
167
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
Khalique's avatar
Khalique committed
168
169
170
171
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });
Khalique's avatar
Khalique committed
172
173
174
175
176
177
178
179
180

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
181
182
    }

Paul's avatar
Paul committed
183
    template <class T>
Paul's avatar
Paul committed
184
185
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
186
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
187
188
189
190
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
191
    template <class T>
Khalique's avatar
Khalique committed
192
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
193
    {
Paul's avatar
Paul committed
194
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
195
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
196
197
198
199
200
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
201
        });
Khalique's avatar
Khalique committed
202
203
    }

Paul's avatar
Paul committed
204
    instruction_ref
Paul's avatar
Paul committed
205
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
206
207
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
208
209
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
210
211
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
212
213
    }

Paul's avatar
Paul committed
214
    instruction_ref
Paul's avatar
Paul committed
215
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
216
    {
217
        op::convolution op;
Paul's avatar
Paul committed
218
219
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
220
            if(contains(attributes, "auto_pad"))
221
            {
Paul's avatar
Paul committed
222
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
223
224
225
            }
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
226
            if(padding.size() != 4)
227
            {
Paul's avatar
Paul committed
228
                MIGRAPHX_THROW("padding should have 4 values");
229
            }
Scott Thornton's avatar
Scott Thornton committed
230
            if(padding[0] != padding[2] || padding[1] != padding[3])
231
            {
Paul's avatar
Paul committed
232
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
233
234
235
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
236
        }
Paul's avatar
Paul committed
237
238
239
240
241
242
243
244
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
245
        if(contains(attributes, "auto_pad"))
246
247
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
248
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
249
            {
Paul's avatar
Paul committed
250
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
251
252
            }

wsttiger's avatar
fixes  
wsttiger committed
253
            if(s.find("SAME") != std::string::npos)
254
255
256
257
            {
                op.padding_mode = op::convolution::same;
            }
        }
Khalique's avatar
Khalique committed
258
259
260
261
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
262
263
264
265
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
266
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
267
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
268
        }
Paul's avatar
Paul committed
269
270
        return prog.add_instruction(op, args);
    }
Paul's avatar
Paul committed
271

Paul's avatar
Paul committed
272
273
274
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
275
    {
Khalique's avatar
Khalique committed
276
277
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
        if(starts_with(name, "Global"))
278
        {
Khalique's avatar
Khalique committed
279
280
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
281
        }
Paul's avatar
Paul committed
282
283
        if(contains(attributes, "pads"))
        {
284
285
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
286
            if(padding.size() != 4)
287
            {
Paul's avatar
Paul committed
288
                MIGRAPHX_THROW("padding should have 4 values");
289
            }
Scott Thornton's avatar
Scott Thornton committed
290
            if(padding[0] != padding[2] || padding[1] != padding[3])
291
            {
Paul's avatar
Paul committed
292
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
293
294
295
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
296
297
298
299
300
301
302
303
304
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
305
        if(contains(attributes, "auto_pad"))
306
307
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
308
            if(to_upper(s) != "NOTSET")
309
            {
Paul's avatar
Paul committed
310
                MIGRAPHX_THROW("auto_pad is not supported for pooling");
311
312
313
            }
        }

Paul's avatar
Paul committed
314
        return prog.add_instruction(op, std::move(args));
Paul's avatar
Paul committed
315
316
    }

Paul's avatar
Paul committed
317
    instruction_ref
Paul's avatar
Paul committed
318
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
319
    {
320
        op::reshape op;
Paul's avatar
Paul committed
321
322
323
324
325
326
327
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
328
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
329
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
330
        }
Paul's avatar
Paul committed
331
332
333
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
334
    instruction_ref
Paul's avatar
Paul committed
335
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
336
    {
337
        uint64_t axis = 1;
Paul's avatar
Paul committed
338
339
340
341
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
342
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
343
344
    }

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
363
364
365
366
367
368
369
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
370

371
372
373
374
375
376
377
378
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = 0;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
379
        op::gather op{axis};
380
381
382
        return prog.add_instruction(op, std::move(args));
    }

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
403
404
405
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
406
407
408
409
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
410

Paul's avatar
Paul committed
411
    instruction_ref
Paul's avatar
Paul committed
412
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
413
414
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
415
        float beta  = 1.0f;
Paul's avatar
Paul committed
416
417
418
419
420
421
422
423
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
424
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
425
426
427
428
429
430
431
432
433
434
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
435
436
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
437
438
        if(args.size() == 3)
        {
Khalique's avatar
Khalique committed
439
            if(beta != 0.f)
440
            {
Khalique's avatar
Khalique committed
441
                auto l3 = prog.add_instruction(op::dot{alpha}, l1, l2);
Khalique's avatar
Khalique committed
442
                auto l4 = args[2];
Khalique's avatar
Khalique committed
443
                if(l4->get_shape().scalar()) // ignore args[2] (no C value added to alpha*A*B)
Khalique's avatar
Khalique committed
444
                    return l3;
Khalique's avatar
Khalique committed
445
                if(beta != 1.f)
Khalique's avatar
Khalique committed
446
447
                {
                    auto beta_val = prog.add_literal(beta);
Khalique's avatar
Khalique committed
448
449
                    auto l5 = prog.add_instruction(op::scalar{args[2]->get_shape()}, beta_val);
                    l4      = prog.add_instruction(op::mul{}, args[2], l5);
Khalique's avatar
Khalique committed
450
451
                }
                return add_broadcastable_binary_op(l3, l4, op::add{});
452
            }
Paul's avatar
Paul committed
453
        }
Shucai Xiao's avatar
Shucai Xiao committed
454
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
455
456
    }

457
    instruction_ref
Paul's avatar
Paul committed
458
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
459
    {
Scott Thornton's avatar
Scott Thornton committed
460
461
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
462
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
463
        bool is_test                                      = false;
464
465
466
467
468
469
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
470
            momentum = parse_value(attributes.at("momentum")).at<float>();
471
472
473
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
474
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
475
476
477
        }
        if(contains(attributes, "spatial"))
        {
478
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
479
480
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
481
        }
Paul's avatar
Paul committed
482
        (void)is_test;
Paul's avatar
Paul committed
483
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
484
        return prog.add_instruction(op, std::move(args));
485
486
    }

487
488
489
490
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
491
        float alpha = 0.01; // default alpha val for leaky relu
492
493
494
495
496
497
498
499
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
500
501
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
502
503
504
505
506
507
508
509
510
511
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
        auto input_shape = args.front()->get_shape();
Khalique's avatar
Khalique committed
529

Khalique's avatar
Khalique committed
530
531
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
532
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
533

Paul's avatar
Paul committed
534
535
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_shape}, scale_val);
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Paul's avatar
Paul committed
536
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_shape}, bias_vals);
Paul's avatar
Paul committed
537
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
538
    }
Khalique's avatar
Khalique committed
539

Khalique's avatar
Khalique committed
540
541
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
542
543
544
545
546
547
548
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
549
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
550
551
    }

552
553
554
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
555
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
556
557
    {
        if(args.size() != 1)
558
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
595
596
        if(contains(attributes, "extra_shape"))
        {
597
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
598
599
        }

600
601
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
602
            if(args.size() != 1)
603
            {
604
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
605
606
            }

Shucai Xiao's avatar
Shucai Xiao committed
607
608
            if(contains(attributes, "shape"))
            {
609
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
610
                               "at the same time");
611
612
            }

613
614
615
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
616
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
617
            }
618

619
620
621
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
622
623
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
624
625
626
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
627
628
            if(!contains(attributes, "shape"))
            {
629
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
630
631
632
            }

            literal ls = parse_value(attributes.at("shape"));
633
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
634
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
635
            migraphx::shape s{type, dims};
636
637
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
638
639
640
        }
        else
        {
641
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
642
643
644
        }
    }

Paul's avatar
Paul committed
645
646
647
648
649
650
651
652
653
654
655
656
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
657
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
658
659
660
661
662
663
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
664
665
666
667
668
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
669
670
671
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
672
673
674
675
676
677
678
679
680
681
682
683
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
684
685
686
        }
        for(auto&& p : nodes)
        {
687
            this->parse_node(get_name(p.second));
Paul's avatar
Paul committed
688
689
690
        }
    }

Paul's avatar
Paul committed
691
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
692
    {
Paul's avatar
Paul committed
693
        if(name.empty())
Paul's avatar
Paul committed
694
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
695
696
697
698
699
700
701
702
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
703
704
705
706
                    // auto&& iname = get_name(nodes.at(input));
                    assert(name != input);
                    this->parse_node(input);
                    args.push_back(instructions.at(input));
Paul's avatar
Paul committed
707
708
709
710
711
712
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
Paul's avatar
Paul committed
713
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
714
715
            if(ops.count(node.op_type()) == 0)
            {
Paul's avatar
Paul committed
716
                result.push_back(prog.add_instruction(unknown{node.op_type()}, args));
Paul's avatar
Paul committed
717
718
719
            }
            else
            {
Paul's avatar
Paul committed
720
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
721
            }
Paul's avatar
Paul committed
722
723
724
            std::transform(node.output().begin(), node.output().end(), result.begin(), std::inserter(instructions, instructions.end()), [](auto&& onnx_out, auto&& parse_out) {
                return std::make_pair(onnx_out, parse_out);
            });
Paul's avatar
Paul committed
725
726
727
728
729
730
731
732
733
734
735
736
737
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

738
739
740
741
    static std::string get_name(const onnx::NodeProto& node)
    {
        if(node.name().empty())
        {
Paul's avatar
Paul committed
742
            std::string generated = "migraphx_unnamed_node";
Paul's avatar
Paul committed
743
744
745
746
            return std::accumulate(node.output().begin(),
                                   node.output().end(),
                                   generated,
                                   [](auto x, auto y) { return x + "_" + y; });
747
748
749
750
        }
        return node.name();
    }

Paul's avatar
Paul committed
751
752
753
754
755
    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
        for(auto&& node : graph.node())
        {
756
            result[get_name(node)] = node;
Paul's avatar
Paul committed
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
782
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
783
784
785
786
787
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
788
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
789
790
791
792
793
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
Khalique's avatar
Khalique committed
794
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
795
        if(dims.empty())
Khalique's avatar
Khalique committed
796
797
798
        {
            dims = {1};
        }
799
800
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
801
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
802
803
804
805
806
807
808
809
810
811
812
813
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
Paul's avatar
Paul committed
814
            case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
Scott Thornton's avatar
Scott Thornton committed
815
816
817
818
819
820
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
821
            MIGRAPHX_THROW("Invalid tensor type");
822
        }
Paul's avatar
Paul committed
823
824
825
826
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
827
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
828
829
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
830
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
831
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
832
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
833
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
834
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
835
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
836
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
837
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
838
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
839
840
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
841
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
842
843
        case onnx::TensorProto::FLOAT16:
            return literal{{shape::half_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
844
845
846
847
848
849
850
851
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
852
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
874
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
875
876
877
878
879
880
881
882
883
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
884
        auto&& tensor_dims = t.tensor_type().shape().dim();
885
886
887
888
889
890
891
892
893
894
895
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
896
897
        return {shape_type, dims};
    }
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
943
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
944
} // namespace migraphx