onnx.cpp 30.1 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
18
19
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>

namespace migraphx {
Paul's avatar
Paul committed
20
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
struct unknown
{
    std::string op;
    std::string name() const { return "unknown:" + op; }
    shape compute_shape(std::vector<shape> input) const
    {
        if(input.empty())
            return {};
        else
            return input.front();
    }
    friend std::ostream& operator<<(std::ostream& os, const unknown& x)
    {
        os << x.name();
        return os;
    }
};

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
43
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
44
45
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
46
    program prog    = program();
47
    bool is_pytorch = false;
Paul's avatar
Paul committed
48
49
50
51
52

    std::unordered_map<std::string, op_func> ops;

    onnx_parser()
    {
Shucai Xiao's avatar
Shucai Xiao committed
53
        add_generic_op("MatMul", op::dot{});
Khalique's avatar
Khalique committed
54
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
55
56
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Khalique's avatar
Khalique committed
57
58
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
59
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
60
61
62
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
63
64
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
65
        add_generic_op("Tanh", op::tanh{});
66
67
68
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
69

Khalique's avatar
Khalique committed
70
71
72
73
74
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
75
76
77
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
78

Khalique's avatar
Khalique committed
79
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
80
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
81
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
82
83
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
84
85
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
86
87
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
88
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
89
90
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
91
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
92
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
93
94
95
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
96
        add_mem_op("Concat", &onnx_parser::parse_concat);
Khalique's avatar
Khalique committed
97
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Paul's avatar
Paul committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    }

    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
113

114
    template <class T>
Khalique's avatar
Khalique committed
115
    void add_binary_op(std::string name, T x)
116
117
    {
        ops.emplace(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
118
            if(args.size() != 2)
Paul's avatar
Paul committed
119
                MIGRAPHX_THROW("binary operators should have 2 operands");
120
121
122
123
124
125
126
127
128
129
130
131
            if(contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
                    return prog.add_instruction(x, args[0], l);
                }
132
                return prog.add_instruction(x, args);
133
            }
Khalique's avatar
Khalique committed
134
            else
135
            {
Khalique's avatar
Khalique committed
136
137
138
139
140
141
142
143
144
145
                return add_broadcastable_binary_op(args[0], args[1], x);
            }
        });
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
        if(arg0->get_shape() != arg1->get_shape())
        {
Khalique's avatar
Khalique committed
146
147
148
149
150
151
152
153
154
155
156
157
158
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
Khalique's avatar
Khalique committed
159
160
161
162
163
164
165
166
167
168
169
            // Get lengths for both arguments
            const std::vector<std::size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<std::size_t>* s1 = &arg1->get_shape().lens();

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

            std::vector<std::size_t> output_lens(s1->size());
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
Khalique's avatar
Khalique committed
170
171
172
173
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });
Khalique's avatar
Khalique committed
174
175
176
177
178
179
180
181
182

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
183
184
    }

Paul's avatar
Paul committed
185
    template <class T>
Paul's avatar
Paul committed
186
187
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
188
        ops.emplace(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
189
190
191
192
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
193
194
195
    template <class T>
    void
    add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
196
    {
Khalique's avatar
Khalique committed
197
198
199
200
201
202
203
204
        ops.emplace(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
            return std::accumulate(std::next(args.begin()),
                                    args.end(),
                                    args.front(),
                                    [this, x](instruction_ref a, instruction_ref b) {
                                        return add_broadcastable_binary_op(a, b, x);
                                    });
        });
Khalique's avatar
Khalique committed
205
206
    }

Paul's avatar
Paul committed
207
    instruction_ref
Paul's avatar
Paul committed
208
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
209
210
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
211
212
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
213
214
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
215
216
    }

Paul's avatar
Paul committed
217
    instruction_ref
Paul's avatar
Paul committed
218
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
219
    {
220
        op::convolution op;
Paul's avatar
Paul committed
221
222
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
223
            if(contains(attributes, "auto_pad"))
224
            {
Paul's avatar
Paul committed
225
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
226
227
228
            }
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
229
            if(padding.size() != 4)
230
            {
Paul's avatar
Paul committed
231
                MIGRAPHX_THROW("padding should have 4 values");
232
            }
Scott Thornton's avatar
Scott Thornton committed
233
            if(padding[0] != padding[2] || padding[1] != padding[3])
234
            {
Paul's avatar
Paul committed
235
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
236
237
238
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
239
        }
Paul's avatar
Paul committed
240
241
242
243
244
245
246
247
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
248
        if(contains(attributes, "auto_pad"))
249
250
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
251
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
252
            {
Paul's avatar
Paul committed
253
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
254
255
            }

wsttiger's avatar
fixes  
wsttiger committed
256
            if(s.find("SAME") != std::string::npos)
257
258
259
260
            {
                op.padding_mode = op::convolution::same;
            }
        }
Paul's avatar
Paul committed
261
262
263
264
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
265
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
266
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
267
        }
Paul's avatar
Paul committed
268
269
        return prog.add_instruction(op, args);
    }
Paul's avatar
Paul committed
270

Paul's avatar
Paul committed
271
272
273
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
274
    {
Khalique's avatar
Khalique committed
275
276
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
        if(starts_with(name, "Global"))
277
        {
Khalique's avatar
Khalique committed
278
279
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
280
        }
Paul's avatar
Paul committed
281
282
        if(contains(attributes, "pads"))
        {
283
284
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
285
            if(padding.size() != 4)
286
            {
Paul's avatar
Paul committed
287
                MIGRAPHX_THROW("padding should have 4 values");
288
            }
Scott Thornton's avatar
Scott Thornton committed
289
            if(padding[0] != padding[2] || padding[1] != padding[3])
290
            {
Paul's avatar
Paul committed
291
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
292
293
294
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
295
296
297
298
299
300
301
302
303
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
304
        if(contains(attributes, "auto_pad"))
305
306
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
307
            if(to_upper(s) != "NOTSET")
308
            {
Paul's avatar
Paul committed
309
                MIGRAPHX_THROW("auto_pad is not supported for pooling");
310
311
312
            }
        }

Paul's avatar
Paul committed
313
        return prog.add_instruction(op, std::move(args));
Paul's avatar
Paul committed
314
315
    }

Paul's avatar
Paul committed
316
    instruction_ref
Paul's avatar
Paul committed
317
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
318
    {
319
        op::reshape op;
Paul's avatar
Paul committed
320
321
322
323
324
325
326
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
327
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
328
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
329
        }
Paul's avatar
Paul committed
330
331
332
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
333
    instruction_ref
Paul's avatar
Paul committed
334
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
335
336
    {
        uint64_t axis = 0;
Paul's avatar
Paul committed
337
338
339
340
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
341
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
342
343
    }

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
362
363
364
365
366
367
368
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389

    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
390
391
392
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
393
394
395
396
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
397

Paul's avatar
Paul committed
398
    instruction_ref
Paul's avatar
Paul committed
399
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
    {
        float alpha = 1.0f;
        float beta  = 0.0f;
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
            alpha = parse_value(attributes.at("beta")).at<float>();
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
422
423
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
424
425
426
        if(args.size() == 3)
        {
            uint64_t axis = 1;
Shucai Xiao's avatar
Shucai Xiao committed
427
            auto l3       = prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Scott Thornton's avatar
Scott Thornton committed
428
            auto l4       = prog.add_instruction(op::broadcast{axis, l3->get_shape()}, args[2]);
429
            return prog.add_instruction(op::add{}, l3, l4);
Paul's avatar
Paul committed
430
        }
Shucai Xiao's avatar
Shucai Xiao committed
431
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
432
433
    }

434
    instruction_ref
Paul's avatar
Paul committed
435
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
436
    {
Scott Thornton's avatar
Scott Thornton committed
437
438
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
439
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
440
        bool is_test                                      = false;
441
442
443
444
445
446
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
447
            momentum = parse_value(attributes.at("momentum")).at<float>();
448
449
450
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
451
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
452
453
454
        }
        if(contains(attributes, "spatial"))
        {
455
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
456
457
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
458
        }
Paul's avatar
Paul committed
459
        (void)is_test;
Paul's avatar
Paul committed
460
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
461
        return prog.add_instruction(op, std::move(args));
462
463
    }

464
465
466
467
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
468
        float alpha = 0.01; // default alpha val for leaky relu
469
470
471
472
473
474
475
476
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
477
478
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
479
480
481
482
483
484
485
486
487
488
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
        auto input_shape = args.front()->get_shape();
Khalique's avatar
Khalique committed
506

Khalique's avatar
Khalique committed
507
508
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
509
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
510

Paul's avatar
Paul committed
511
512
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_shape}, scale_val);
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Paul's avatar
Paul committed
513
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_shape}, bias_vals);
Paul's avatar
Paul committed
514
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
515
    }
Khalique's avatar
Khalique committed
516

Khalique's avatar
Khalique committed
517
518
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
519
520
521
522
523
524
525
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
526
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
527
528
    }

Paul's avatar
Paul committed
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            throw std::runtime_error("Failed reading");
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
548
549
550
551
552
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
553
554
555
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
556
557
558
559
560
561
562
563
564
565
566
567
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
568
569
570
        }
        for(auto&& p : nodes)
        {
571
            this->parse_node(get_name(p.second));
Paul's avatar
Paul committed
572
573
574
        }
    }

Paul's avatar
Paul committed
575
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
576
    {
Paul's avatar
Paul committed
577
        if(name.empty())
Paul's avatar
Paul committed
578
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
579
580
581
582
583
584
585
586
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
587
                    auto&& iname = get_name(nodes.at(input));
Paul's avatar
Paul committed
588
                    assert(name != iname);
Paul's avatar
Paul committed
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op_type()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op_type()}, args);
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

618
619
620
621
    static std::string get_name(const onnx::NodeProto& node)
    {
        if(node.name().empty())
        {
Paul's avatar
Paul committed
622
            std::string generated = "migraphx_unnamed_node";
Paul's avatar
Paul committed
623
624
625
626
            return std::accumulate(node.output().begin(),
                                   node.output().end(),
                                   generated,
                                   [](auto x, auto y) { return x + "_" + y; });
627
628
629
630
        }
        return node.name();
    }

Paul's avatar
Paul committed
631
632
633
634
635
    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
        for(auto&& node : graph.node())
        {
636
            result[get_name(node)] = node;
Paul's avatar
Paul committed
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
662
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
663
664
665
666
667
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
668
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
669
670
671
672
673
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
Khalique's avatar
Khalique committed
674
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
675
        if(dims.empty())
Khalique's avatar
Khalique committed
676
677
678
        {
            dims = {1};
        }
679
680
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
681
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
682
683
684
685
686
687
688
689
690
691
692
693
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
Paul's avatar
Paul committed
694
            case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
Scott Thornton's avatar
Scott Thornton committed
695
696
697
698
699
700
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
701
            MIGRAPHX_THROW("Invalid tensor type");
702
        }
Paul's avatar
Paul committed
703
704
705
706
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
707
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
708
709
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
710
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
711
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
712
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
713
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
714
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
715
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
716
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
717
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
718
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
719
720
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
721
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
722
723
        case onnx::TensorProto::FLOAT16:
            return literal{{shape::half_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
724
725
726
727
728
729
730
731
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
732
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
754
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
755
756
757
758
759
760
761
762
763
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
764
        auto&& tensor_dims = t.tensor_type().shape().dim();
765
766
767
768
769
770
771
772
773
774
775
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
        return {shape_type, dims};
    }
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
801
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
802
} // namespace migraphx