onnx.cpp 71 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
31
32
33
    program prog            = program();
    bool is_pytorch         = false;
    unsigned int batch_size = 1;
Paul's avatar
Paul committed
34
35

    std::unordered_map<std::string, op_func> ops;
36
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
37
38
39

    onnx_parser()
    {
Khalique's avatar
Khalique committed
40
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
41
42
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
43
        add_generic_op("Exp", op::exp{});
Shucai Xiao's avatar
Shucai Xiao committed
44
        add_generic_op("Erf", op::erf{});
Shucai Xiao's avatar
Shucai Xiao committed
45
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
46
47
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
48
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
49
50
51
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
52
53
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
54
        add_generic_op("Tanh", op::tanh{});
55
56
57
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
58
        add_generic_op("Sqrt", op::sqrt{});
59
        add_generic_op("Round", op::round{});
60
        add_generic_op("Sign", op::sign{});
Shucai Xiao's avatar
Shucai Xiao committed
61
62
        add_generic_op("Ceil", op::ceil{});
        add_generic_op("Floor", op::floor{});
Paul's avatar
Paul committed
63

Khalique's avatar
Khalique committed
64
65
66
67
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});
Shucai Xiao's avatar
Shucai Xiao committed
68
        add_binary_op("Pow", op::pow{});
Khalique's avatar
Khalique committed
69

Khalique's avatar
Khalique committed
70
71
72
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
73

74
75
        add_mem_op("ArgMax", &onnx_parser::parse_arg_op<op::argmax>);
        add_mem_op("ArgMin", &onnx_parser::parse_arg_op<op::argmin>);
76
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
77
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
78
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
79
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
80
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
81
        add_mem_op("Elu", &onnx_parser::parse_elu);
82
        add_mem_op("Expand", &onnx_parser::parse_expand);
Paul's avatar
Paul committed
83
84
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
85
86
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
87
88
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
89
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
90
91
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
92
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
93
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
kahmed10's avatar
kahmed10 committed
94
        add_mem_op("InstanceNormalization", &onnx_parser::parse_instancenorm);
95
96
        add_mem_op("Softmax", &onnx_parser::parse_softmax<op::softmax>);
        add_mem_op("LogSoftmax", &onnx_parser::parse_softmax<op::logsoftmax>);
97
98
99
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
100
        add_mem_op("Concat", &onnx_parser::parse_concat);
101
102
103
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
104
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
Khalique's avatar
Khalique committed
105
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
106
        add_mem_op("RNN", &onnx_parser::parse_rnn);
107
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
108
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
109
        add_mem_op("Pad", &onnx_parser::parse_pad);
Shucai Xiao's avatar
Shucai Xiao committed
110
111
112
113
114
115

        add_mem_op("ReduceL1", &onnx_parser::parse_reduce_l1);
        add_mem_op("ReduceL2", &onnx_parser::parse_reduce_l2);
        add_mem_op("ReduceLogSum", &onnx_parser::parse_reduce_log_sum);
        add_mem_op("ReduceLogSumExp", &onnx_parser::parse_reduce_log_sum_exp);
        add_mem_op("ReduceMax", &onnx_parser::parse_reduce_oper<op::reduce_max>);
Shucai Xiao's avatar
Shucai Xiao committed
116
        add_mem_op("ReduceMean", &onnx_parser::parse_reduce_oper<op::reduce_mean>);
Shucai Xiao's avatar
Shucai Xiao committed
117
        add_mem_op("ReduceMin", &onnx_parser::parse_reduce_oper<op::reduce_min>);
Shucai Xiao's avatar
Shucai Xiao committed
118
119
120
        add_mem_op("ReduceProd", &onnx_parser::parse_reduce_oper<op::reduce_prod>);
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_oper<op::reduce_sum>);
        add_mem_op("ReduceSumSquare", &onnx_parser::parse_reduce_sum_square);
121
122
123
124
125
126
127

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
128
129
130
131
132
133
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
134
135
136
137
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
138
139
140
141
142
143
144
145
146
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
147
148
149
150
151
152
153
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
154
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
155
156
157
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
158

159
    template <class T>
Khalique's avatar
Khalique committed
160
    void add_binary_op(std::string name, T x)
161
    {
Paul's avatar
Paul committed
162
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
163
            if(args.size() != 2)
Paul's avatar
Paul committed
164
                MIGRAPHX_THROW("binary operators should have 2 operands");
165
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
166
167
168
169
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
170
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
171
172
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
173
174
                    return prog.add_instruction(x, args[0], l);
                }
175
                return prog.add_instruction(x, args);
176
            }
Paul's avatar
Paul committed
177
            else
178
            {
Khalique's avatar
Khalique committed
179
                return add_broadcastable_binary_op(args[0], args[1], x);
180
181
182
183
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
184
185
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
186
187
188
189
190
191
192
193
194
195
196
197
198
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
199
        if(s0.size() > s1.size())
200
201
202
203
204
205
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
206
207
208
209
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
210
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
211
                           if(a != b and a != 1 and b != 1)
212
                           {
Shucai Xiao's avatar
Shucai Xiao committed
213
214
215
216
217
218
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
219
220
221
222

        return out_lens;
    }

Shucai Xiao's avatar
Shucai Xiao committed
223
224
    instruction_ref make_contiguous(instruction_ref ins)
    {
Shucai Xiao's avatar
Shucai Xiao committed
225
        if(ins->get_shape().standard())
Shucai Xiao's avatar
Shucai Xiao committed
226
227
228
229
230
231
232
        {
            return ins;
        }

        return prog.add_instruction(op::contiguous{}, ins);
    }

Khalique's avatar
Khalique committed
233
234
235
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
236
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
237
238
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
239
240
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
241
            auto out_lens = compute_broadcasted_lens(s0, s1);
242
243
244
245
246
247
248
249
250

            auto l0 = arg0;
            if(arg0->get_shape().lens() != out_lens)
                l0 = prog.add_instruction(op::multibroadcast{out_lens}, arg0);

            auto l1 = arg1;
            if(arg1->get_shape().lens() != out_lens)
                l1 = prog.add_instruction(op::multibroadcast{out_lens}, arg1);

Khalique's avatar
Khalique committed
251
252
253
254
255
256
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
257
258
    }

Paul's avatar
Paul committed
259
    template <class T>
Paul's avatar
Paul committed
260
261
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
262
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
263
264
265
266
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
267
    template <class T>
Khalique's avatar
Khalique committed
268
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
269
    {
Paul's avatar
Paul committed
270
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
271
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
272
273
274
275
276
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
277
        });
Khalique's avatar
Khalique committed
278
279
    }

Khalique's avatar
Khalique committed
280
281
282
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
283
284
285
286
287
288
289
290
291
292
293
294
295
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Shucai Xiao's avatar
Shucai Xiao committed
296
    template <class Op>
297
    instruction_ref parse_softmax(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
298
299
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
300
    {
301
        int64_t axis = 1;
302
303
304
305
306
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

307
        return prog.add_instruction(Op{axis}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
308
309
    }

Shucai Xiao's avatar
Shucai Xiao committed
310
    template <class Op>
311
    instruction_ref parse_arg_op(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
312
313
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
314
    {
315
        int64_t axis = 0;
316
317
        if(contains(attributes, "axis"))
        {
318
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
319
320
        }

Shucai Xiao's avatar
Shucai Xiao committed
321
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
322
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
323
324
325
326
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
327
        if(keep_dims == 0)
328
        {
329
            auto ins = prog.add_instruction(Op{axis}, std::move(args));
330
            return prog.add_instruction(op::squeeze{{axis}}, ins);
331
332
333
        }
        else
        {
334
            return prog.add_instruction(Op{axis}, std::move(args));
335
        }
336
337
    }

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
    template <class Op>
    instruction_ref process_auto_pad_attribute(instruction_ref ins,
                                               attribute_map& attributes,
                                               Op& op,
                                               const std::vector<std::size_t>& in_lens)
    {
        if(!contains(attributes, "auto_pad"))
        {
            return ins;
        }

        auto auto_pad = attributes["auto_pad"].s();
        if(auto_pad.find("SAME") != std::string::npos)
        {
            // calculate the padding
            std::array<std::size_t, 2> out_lens;
            out_lens[0] = (in_lens[2] + op.stride[0] - 1) / op.stride[0];
            out_lens[1] = (in_lens[3] + op.stride[1] - 1) / op.stride[1];

            std::array<std::size_t, 2> explicit_pads;
            explicit_pads[0] = (out_lens[0] - 1) * op.stride[0] + op.lengths[0] - in_lens[2];
            explicit_pads[1] = (out_lens[1] - 1) * op.stride[1] + op.lengths[1] - in_lens[3];
            op.padding[0]    = explicit_pads[0] / 2;
            op.padding[1]    = explicit_pads[1] / 2;
            explicit_pads[0] -= 2 * op.padding[0];
            explicit_pads[1] -= 2 * op.padding[1];
            std::vector<std::int64_t> pads(8, 0);
            if(explicit_pads[0] != 0 or explicit_pads[1] != 0)
            {
                if(auto_pad == "SAME_UPPER")
                {
                    pads[6] = explicit_pads[0];
                    pads[7] = explicit_pads[1];
                }
                else if(auto_pad == "SAME_LOWER")
                {
                    pads[2] = explicit_pads[0];
                    pads[3] = explicit_pads[1];
                }

                // MaxPool
                if(op.mode == "max")
                {
                    ins = prog.add_instruction(op::pad{pads, std::numeric_limits<float>::lowest()},
                                               ins);
                }
                // AveragePool
                else
                {
                    ins = prog.add_instruction(op::pad{pads}, ins);
                }
            }

            op.padding_mode = op::padding_mode_t::same;
        }

        return ins;
    }

Paul's avatar
Paul committed
397
    instruction_ref
Paul's avatar
Paul committed
398
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
399
    {
400
        op::convolution op;
401
        auto l0 = args[0];
Paul's avatar
Paul committed
402
403
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
404
            if(contains(attributes, "auto_pad"))
405
            {
406
407
408
409
410
                auto s = attributes["auto_pad"].s();
                if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
                {
                    MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
                }
411
            }
412
413
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
414
            if(padding.size() != 4)
415
            {
Paul's avatar
Paul committed
416
                MIGRAPHX_THROW("padding should have 4 values");
417
            }
Scott Thornton's avatar
Scott Thornton committed
418
            if(padding[0] != padding[2] || padding[1] != padding[3])
419
            {
420
421
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
422
                l0      = prog.add_instruction(op::pad{padding}, l0);
423
            }
424
425
426
427
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
428
            }
Paul's avatar
Paul committed
429
        }
Paul's avatar
Paul committed
430
431
432
433
434
435
436
437
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
438
        if(contains(attributes, "auto_pad"))
439
440
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
441
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
442
            {
Paul's avatar
Paul committed
443
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
444
445
            }

wsttiger's avatar
fixes  
wsttiger committed
446
            if(s.find("SAME") != std::string::npos)
447
            {
448
                op.padding_mode = op::padding_mode_t::same;
449
450
            }
        }
Khalique's avatar
Khalique committed
451
452
453
454
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
455
456
457
        if(args.size() == 3)
        {
            uint64_t axis = 1;
Khalique's avatar
Khalique committed
458
            auto l1       = prog.add_instruction(op, l0, args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
459
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
460
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
461
        }
462
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
463
    }
Paul's avatar
Paul committed
464

Paul's avatar
Paul committed
465
466
467
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
468
    {
Khalique's avatar
Khalique committed
469
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
470
        auto l0 = args[0];
Khalique's avatar
Khalique committed
471
        if(starts_with(name, "Global"))
472
        {
Khalique's avatar
Khalique committed
473
474
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
475
        }
476

Paul's avatar
Paul committed
477
478
        if(contains(attributes, "pads"))
        {
479
480
481
482
483
484
485
486
487
488
            if(contains(attributes, "auto_pad"))
            {
                auto s = attributes["auto_pad"].s();
                if(to_upper(s) != "NOTSET")
                {
                    MIGRAPHX_THROW(
                        "PARSE_POOLING: auto_pad and padding cannot be specified simultaneously");
                }
            }

489
490
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
491
            if(padding.size() != 4)
492
            {
493
                MIGRAPHX_THROW("PARSE_POOLING: padding should have 4 values");
494
            }
Scott Thornton's avatar
Scott Thornton committed
495
            if(padding[0] != padding[2] || padding[1] != padding[3])
496
            {
497
498
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
499
500
501
502
503
504
505
506
507
508
509
                // MaxPool
                if(op.mode == "max")
                {
                    l0 = prog.add_instruction(
                        op::pad{padding, std::numeric_limits<float>::lowest()}, l0);
                }
                // AveragePool
                else
                {
                    l0 = prog.add_instruction(op::pad{padding}, l0);
                }
510
511
512
513
514
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
515
            }
Paul's avatar
Paul committed
516
        }
517

Paul's avatar
Paul committed
518
519
520
521
522
523
524
525
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
526

Scott Thornton's avatar
Scott Thornton committed
527
        if(contains(attributes, "auto_pad"))
528
        {
529
530
            auto in_lens = args[0]->get_shape().lens();
            l0           = process_auto_pad_attribute(l0, attributes, op, in_lens);
531
532
        }

533
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
534
535
    }

Paul's avatar
Paul committed
536
    instruction_ref
Paul's avatar
Paul committed
537
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
538
    {
539
        op::reshape op;
Paul's avatar
Paul committed
540
541
        if(args.size() == 1)
        {
542
543
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
544
545
546
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
547
            auto s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
548
            check_arg_empty(s, "Reshape: dynamic shape is not supported");
Paul's avatar
Paul committed
549
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
550
        }
551

Shucai Xiao's avatar
Shucai Xiao committed
552
        return prog.add_instruction(op, make_contiguous(args[0]));
Paul's avatar
Paul committed
553
554
    }

Paul's avatar
Paul committed
555
    instruction_ref
Paul's avatar
Paul committed
556
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
557
    {
558
        int64_t axis = 1;
Paul's avatar
Paul committed
559
560
561
562
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
563
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
564
565
    }

566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
584
585
586
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Shucai Xiao's avatar
Shucai Xiao committed
587
588
589
590
591
592
593
        // change to hande axis to be negative values
        if(!contains(attributes, "axis"))
        {
            MIGRAPHX_THROW("PARSE_CONCAT: attribute axis is required!");
        }

        int axis = parse_value(attributes.at("axis")).at<int>();
Scott Thornton's avatar
Scott Thornton committed
594
595
596
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
597

598
599
600
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
601
        int axis = 0;
602
603
604
605
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
606

607
        op::gather op{axis};
Shucai Xiao's avatar
Shucai Xiao committed
608
        return prog.add_instruction(op, make_contiguous(args[0]), make_contiguous(args[1]));
609
610
    }

611
612
613
614
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
Khalique's avatar
Khalique committed
615
        std::vector<size_t> dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
616
        size_t num_dims          = dims.size();
617
618
619
620
621
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
Khalique's avatar
Khalique committed
622
623
624
625
626
        else
        {
            op.axes = std::vector<int64_t>(num_dims);
            std::iota(op.axes.begin(), op.axes.end(), 0);
        }
Khalique's avatar
Khalique committed
627

Khalique's avatar
Khalique committed
628
        if(contains(attributes, "ends"))
629
        {
Paul's avatar
Paul committed
630
            op.ends = get_indices(attributes.at("ends"));
631
        }
Khalique's avatar
Khalique committed
632
        if(contains(attributes, "starts"))
633
634
635
636
637
638
639
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
640
641
642
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
643
    {
Shucai Xiao's avatar
Shucai Xiao committed
644
        literal v = parse_value(attributes.at("value"));
645
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
646
        if(v.get_shape().elements() == 0)
647
648
649
650
        {
            return prog.add_literal(literal{});
        }

651
652
653
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
654
        {
655
            migraphx::shape scalar_shape{v.get_shape().type()};
656
657
658
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
659
660
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
661

Paul's avatar
Paul committed
662
    instruction_ref
Paul's avatar
Paul committed
663
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
664
665
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
666
        float beta  = 1.0f;
Paul's avatar
Paul committed
667
668
669
670
671
672
673
674
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
675
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
676
677
678
679
680
681
682
683
684
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
685
686
687
688
689
690

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

691
692
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
693
694
        if(args.size() == 3)
        {
695
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
696
            {
Shucai Xiao's avatar
Shucai Xiao committed
697
                auto out_lens   = l1->get_shape().lens();
698
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
699
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
700
701
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
702
                {
703
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
704
                }
705
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
706
            }
Paul's avatar
Paul committed
707
        }
708
709

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
710
711
    }

712
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
713
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
714
    {
Shucai Xiao's avatar
Shucai Xiao committed
715
716
        auto l0      = args[0];
        auto l1      = args[1];
717
718
719
720
721
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
722
        if(l0_lens.size() == 1)
723
724
725
726
727
728
729
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
730
        if(l1_lens.size() == 1)
731
732
733
734
735
736
737
738
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
739
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
740
741
742
743
744
745
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
746
            l0_broadcasted_lens = output_lens;
747
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
748
            l1_broadcasted_lens = output_lens;
749
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
750
            if(l0_lens != l0_broadcasted_lens)
751
752
753
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
754
            if(l1_lens != l1_broadcasted_lens)
755
756
757
758
759
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
760
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
761
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
762
        if(is_a_prepended)
763
764
765
766
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
767
        if(is_b_appended)
768
769
770
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
771

772
773
774
        return dot_res;
    }

775
    instruction_ref
Paul's avatar
Paul committed
776
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
777
    {
Scott Thornton's avatar
Scott Thornton committed
778
779
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
780
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
781
782
783
784
785
786
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
787
            momentum = parse_value(attributes.at("momentum")).at<float>();
788
789
790
        }
        if(contains(attributes, "spatial"))
        {
791
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
792
793
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
794
        }
Paul's avatar
Paul committed
795
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
796
        return prog.add_instruction(op, std::move(args));
797
798
    }

kahmed10's avatar
kahmed10 committed
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
    instruction_ref parse_instancenorm(const std::string&,
                                       attribute_map attributes,
                                       std::vector<instruction_ref> args)
    {
        // y = scale * ( x - mean ) / sqrt ( variance + epsilon ) + bias
        // mean = reduce_mean({H, W}, x)
        // variance = reduce_mean({H, W}, (x - mean)^2)

        float epsilon = 1e-5f;
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        auto x     = args[0];
        auto scale = args[1];
        auto bias  = args[2];
        auto dims  = x->get_shape().lens();

        auto mean            = prog.add_instruction(op::reduce_mean{{2, 3}}, x);
        auto mean_bcast      = prog.add_instruction(op::multibroadcast{dims}, mean);
        auto l0              = prog.add_instruction(op::sqdiff{}, x, mean_bcast);
        auto variance        = prog.add_instruction(op::reduce_mean{{2, 3}}, l0);
        auto l1              = prog.add_instruction(op::sub{}, x, mean_bcast);
        auto epsilon_literal = prog.add_literal(epsilon);
        auto epsilon_bcast   = prog.add_instruction(op::multibroadcast{dims}, epsilon_literal);
        auto variance_bcast  = prog.add_instruction(op::multibroadcast{dims}, variance);
        auto l2              = prog.add_instruction(op::add{}, variance_bcast, epsilon_bcast);
        auto l3              = prog.add_instruction(op::rsqrt{}, l2);
        auto l4              = prog.add_instruction(op::mul{}, l1, l3);
        auto scale_bcast     = prog.add_instruction(op::broadcast{1, dims}, scale);
        ;
        auto bias_bcast = prog.add_instruction(op::broadcast{1, dims}, bias);
        auto l5         = prog.add_instruction(op::mul{}, l4, scale_bcast);
        return prog.add_instruction(op::add{}, l5, bias_bcast);
    }

835
836
837
838
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
839
        float alpha = 0.01; // default alpha val for leaky relu
840
841
842
843
844
845
846
847
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
848
849
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
850
851
852
853
854
855
856
857
858
859
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
860
861
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
862
863
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
864
865
866
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
867
868
869
870
871
872
873
874
875
876
877
878
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
895
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
896

Khalique's avatar
Khalique committed
897
898
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
899
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
900

901
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
902
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
903
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
904
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
905
    }
Khalique's avatar
Khalique committed
906

Khalique's avatar
Khalique committed
907
908
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
909
910
911
912
913
914
915
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
916
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
917
918
    }

Khalique's avatar
Khalique committed
919
920
921
922
923
924
925
926
927
928
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
929
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
930
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
931
932
933
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
934
935
936
937
938
939
940
941
942
943
944
945
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
946
947
948
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
949
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
950
951
    {
        if(args.size() != 1)
952
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
Shucai Xiao's avatar
Shucai Xiao committed
977
        shape::type_t type = get_type(dtype);
978
979
980
981
982
983
984
985
986
987
988

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
989
990
        if(contains(attributes, "extra_shape"))
        {
991
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
992
993
        }

994
995
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
996
            if(args.size() != 1)
997
            {
998
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
999
1000
            }

Shucai Xiao's avatar
Shucai Xiao committed
1001
1002
            if(contains(attributes, "shape"))
            {
1003
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
1004
                               "at the same time");
1005
1006
            }

1007
            migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1008
            check_arg_empty(in, "ConstantFill: dynamic shape is not supported");
1009

1010
1011
1012
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
1013
1014
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1015
1016
1017
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1018
1019
            if(!contains(attributes, "shape"))
            {
1020
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
1021
1022
1023
            }

            literal ls = parse_value(attributes.at("shape"));
1024
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
1025
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
1026
            migraphx::shape s{type, dims};
1027
1028
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1029
1030
1031
        }
        else
        {
1032
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
1033
1034
1035
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1036
1037
1038
    instruction_ref parse_constant_of_shape(const std::string&,
                                            attribute_map attributes,
                                            std::vector<instruction_ref> args)
1039
1040
    {
        literal l_val{};
Shucai Xiao's avatar
Shucai Xiao committed
1041
        if(contains(attributes, "value"))
1042
1043
        {
            l_val = parse_value(attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
1044
            if(l_val.get_shape().elements() != 1)
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
1056

Shucai Xiao's avatar
Shucai Xiao committed
1057
        if(args.empty())
1058
        {
Shucai Xiao's avatar
Shucai Xiao committed
1059
            MIGRAPHX_THROW("ConstantOfShape : must have 1 input!");
1060
1061
1062
        }
        else
        {
1063
1064
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
1065
            if(args[0]->get_shape().elements() == 0)
1066
            {
1067
                s = migraphx::shape{type, {1}, {0}};
1068
            }
1069
1070
1071
            else
            {
                migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1072
                check_arg_empty(in, "ConstantOfShape: dynamic shape is not supported");
1073

1074
1075
1076
1077
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
1078

Shucai Xiao's avatar
Shucai Xiao committed
1079
            literal l_out{};
1080
            l_val.visit([&](auto val) {
Shucai Xiao's avatar
Shucai Xiao committed
1081
                using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
1082
                // l_val contains only one element
1083
                std::vector<val_type> out_vec(s.elements(), val.front());
1084
1085
1086
1087
1088
1089
1090
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1091
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
1092
    parse_expand(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
1093
    {
Shucai Xiao's avatar
Shucai Xiao committed
1094
        auto in_lens             = args[0]->get_shape().lens();
1095
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1096
        check_arg_empty(arg_s, "Expand: dynamic shape is not supported");
1097
1098
1099
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
Shucai Xiao's avatar
Shucai Xiao committed
1100
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
1101
1102
    }

Shucai Xiao's avatar
Shucai Xiao committed
1103
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
1104
1105
1106
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
1107
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
1108
1109
1110

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1111
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1112
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1113
1114
1115
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
1116
1117
1118
1119
1120
1121
1122
1123
1124
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1125
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1126
1127
        if(direction == "bidirectional")
        {
1128
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1129
1130
1131
        }
        else if(direction == "reverse")
        {
1132
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1133
1134
        }

1135
        std::vector<std::string> vec_names{"tanh"};
1136
1137
1138
1139
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
1140
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1141
1142
1143
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1144
1145
        }

1146
1147
1148
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1149
        if(name_it != vec_names.end())
1150
1151
1152
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1153

Shucai Xiao's avatar
Shucai Xiao committed
1154
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1155
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1156
        // if only one actv function is provided, we use it in both
1157
        // forward and reverse direction
1158
        if(dirct == op::rnn_direction::bidirectional)
1159
        {
Shucai Xiao's avatar
Shucai Xiao committed
1160
            if(vec_names.size() == 1)
1161
1162
1163
1164
1165
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1166
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1167
1168
1169
1170
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& fn) { return map_actv_funcs[fn]; });
Shucai Xiao's avatar
Shucai Xiao committed
1171

Shucai Xiao's avatar
Shucai Xiao committed
1172
1173
1174
1175
1176
1177
1178
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

1179
1180
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1181
        if(args.size() < 6)
1182
1183
1184
1185
1186
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1187
1188
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1189
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1190

1191
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1192
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1193

Shucai Xiao's avatar
Shucai Xiao committed
1194
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1195
1196
    }

1197
    std::vector<instruction_ref>
1198
1199
1200
1201
1202
1203
1204
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1205
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1206
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1207
1208
1209
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1210
1211
1212
1213
1214
1215
1216
1217
1218
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1219
        op::rnn_direction dirct = op::rnn_direction::forward;
1220
1221
        if(direction == "bidirectional")
        {
1222
            dirct = op::rnn_direction::bidirectional;
1223
1224
1225
        }
        else if(direction == "reverse")
        {
1226
            dirct = op::rnn_direction::reverse;
1227
1228
        }

1229
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1230
1231
        if(contains(attributes, "activations"))
        {
1232
            auto names = attributes.at("activations").strings();
1233
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1234
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1235
1236
1237
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1238
1239
        }

1240
        // need 4 activation functions
1241
        if(dirct == op::rnn_direction::bidirectional)
1242
        {
Shucai Xiao's avatar
Shucai Xiao committed
1243
            // 4 activation functions are used in the bidirectional
1244
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1245
1246
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1247
1248
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1249
1250
1251
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1252
            if(vec_names.size() == 1)
1253
            {
1254
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1255
            }
1256
            else if(vec_names.size() == 2)
1257
            {
1258
1259
1260
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1261
            }
1262
            else if(vec_names.size() == 3)
1263
            {
1264
                vec_names.push_back(vec_names.at(2));
1265
1266
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1267
        else
1268
        {
1269
            if(vec_names.size() == 1)
1270
            {
1271
                vec_names.push_back(vec_names.at(0));
1272
1273
1274
            }
        }

1275
1276
1277
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1278
        if(name_it != vec_names.end())
1279
1280
1281
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1282

Shucai Xiao's avatar
Shucai Xiao committed
1283
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1284
1285
1286
1287
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
1288
1289
1290
1291
1292
1293
1294
1295

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1296
        if(contains(attributes, "linear_before_reset"))
1297
1298
1299
1300
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1301
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1302
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1303
1304
1305
1306
1307
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1308
1309
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1310
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1311
            std::move(args));
1312
1313

        // second output for last gru output
1314
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1315

Shucai Xiao's avatar
Shucai Xiao committed
1316
        return {hidden_states, last_output};
1317
1318
    }

Shucai Xiao's avatar
Shucai Xiao committed
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1341
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1342
1343
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1344
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1345
1346
1347
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1348
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1349
        }
Shucai Xiao's avatar
Shucai Xiao committed
1350
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1351
        {
Shucai Xiao's avatar
Shucai Xiao committed
1352
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1353
1354
1355
1356
1357
1358
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1359
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1360
1361
1362
1363
1364
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1365
1366
1367
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1368
1369
1370
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1371
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1372
1373
1374
1375
1376
1377
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1378
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1379
1380
1381
1382
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1383
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1384
1385
1386
1387
1388
1389
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1390
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1391
1392
1393

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1394
1395
1396
1397
1398
1399
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1400
1401
1402
1403
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1404
1405
1406
1407
1408
1409
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1410
1411
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1412
1413
1414
1415
1416
1417
1418
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1419
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1420

Shucai Xiao's avatar
Shucai Xiao committed
1421
1422
1423
1424
1425
1426
1427
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1428
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1429

Shucai Xiao's avatar
Shucai Xiao committed
1430
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1431
1432
1433
1434
1435
1436
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1437
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1438
1439
1440

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1441
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1442
1443
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1444
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1445
1446
1447
            }
        }

1448
1449
1450
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1451
        if(name_it != vec_names.end())
1452
1453
1454
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1455
1456

        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1457
1458
1459
1460
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
Shucai Xiao's avatar
Shucai Xiao committed
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1478
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1479
1480
1481
1482
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1483
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1484
1485

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1486
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1487
1488
1489
1490
1491
1492

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }
1493

Shucai Xiao's avatar
Shucai Xiao committed
1494
    template <class T>
Shucai Xiao's avatar
Shucai Xiao committed
1495
    instruction_ref parse_reduce_oper(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
1496
1497
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1498
1499
1500
1501
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
1502
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
1503
1504
1505
1506
1507
        std::iota(axes.begin(), axes.end(), 0);
        if(contains(attributes, "axes"))
        {
            axes.clear();
            auto&& attr_axes = attributes["axes"].ints();
1508
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
        }

        int keep_dims = 1;
        if(contains(attributes, "keepdims"))
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

        if(keep_dims == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1519
            return prog.add_instruction(T{axes}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1520
1521
1522
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
1523
            auto ins = prog.add_instruction(T{axes}, std::move(args));
1524
            return prog.add_instruction(op::squeeze{axes}, ins);
1525
1526
        }
    }
1527

Shucai Xiao's avatar
Shucai Xiao committed
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
    instruction_ref
    parse_reduce_l1(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        auto abs_ins = prog.add_instruction(op::abs{}, args[0]);
        return parse_reduce_oper<op::reduce_sum>({}, std::move(attributes), {abs_ins});
    }

    instruction_ref
    parse_reduce_l2(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        auto square_ins = prog.add_instruction(op::mul{}, args[0], args[0]);
        auto sum_ins = parse_reduce_oper<op::reduce_sum>({}, std::move(attributes), {square_ins});
        return prog.add_instruction(op::sqrt{}, sum_ins);
    }

    instruction_ref parse_reduce_log_sum(const std::string&,
                                         attribute_map attributes,
                                         std::vector<instruction_ref> args)
    {
        auto sum_ins =
            parse_reduce_oper<op::reduce_sum>({}, std::move(attributes), std::move(args));
        return prog.add_instruction(op::log{}, sum_ins);
    }

    instruction_ref parse_reduce_log_sum_exp(const std::string&,
                                             attribute_map attributes,
                                             std::vector<instruction_ref> args)
    {
        auto exp_ins = prog.add_instruction(op::exp{}, args[0]);
        auto sum_ins = parse_reduce_oper<op::reduce_sum>({}, std::move(attributes), {exp_ins});
        return prog.add_instruction(op::log{}, sum_ins);
    }

    instruction_ref parse_reduce_sum_square(const std::string&,
                                            attribute_map attributes,
                                            std::vector<instruction_ref> args)
    {
        auto square_ins = prog.add_instruction(op::mul{}, args[0], args[0]);
        return parse_reduce_oper<op::reduce_sum>({}, std::move(attributes), {square_ins});
    }

Shucai Xiao's avatar
Shucai Xiao committed
1569
1570
    instruction_ref
    parse_cast(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
1571
    {
Shucai Xiao's avatar
Shucai Xiao committed
1572
        if(!contains(attributes, "to"))
1573
1574
1575
1576
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

Shucai Xiao's avatar
Shucai Xiao committed
1577
        int to_type        = parse_value(attributes.at("to")).at<int>();
1578
1579
1580
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
1581

Paul's avatar
Paul committed
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1594
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1595
1596
1597
1598
1599
1600
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1601
        for(auto&& f : graph.initializer())
1602
1603
            instructions[f.name()] = prog.add_literal(parse_tensor(f));

Paul's avatar
Paul committed
1604
1605
1606
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1607
1608
            // input not in initializer_data, so it is a real input
            if(!contains(instructions, name))
1609
1610
            {
                // TODO: Get shape of input parameter
1611
                shape s            = parse_type(input.type(), batch_size);
1612
1613
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1614
        }
Paul's avatar
Paul committed
1615
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1616
        {
Paul's avatar
Paul committed
1617
            this->parse_node(output.name());
Paul's avatar
Paul committed
1618
        }
Shucai Xiao's avatar
Shucai Xiao committed
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631

        // For now, the last output with a valid name is considered
        // as the program output, and add an identity instruction at
        // the program end
        auto prog_output = graph.output();
        auto oit         = std::find_if(prog_output.rbegin(), prog_output.rend(), [](auto& node) {
            return !node.name().empty();
        });

        if(instructions.count(oit->name()) > 0)
        {
            prog.add_instruction(op::identity{}, instructions[oit->name()]);
        }
Paul's avatar
Paul committed
1632
1633
    }

Shucai Xiao's avatar
Shucai Xiao committed
1634
    void parse_undefined(const std::string& name)
1635
    {
Shucai Xiao's avatar
Shucai Xiao committed
1636
        auto ins           = prog.add_instruction(op::undefined{});
1637
1638
1639
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1640
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1641
    {
Paul's avatar
Paul committed
1642
        if(name.empty())
Paul's avatar
Paul committed
1643
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1644
1645
1646
1647
1648
1649
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1650
                if(input.empty())
Paul's avatar
Paul committed
1651
                {
Shucai Xiao's avatar
Shucai Xiao committed
1652
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1653
                }
Shucai Xiao's avatar
Shucai Xiao committed
1654
                else if(nodes.count(input) > 0)
Paul's avatar
Paul committed
1655
                {
Shucai Xiao's avatar
Shucai Xiao committed
1656
1657
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1658
                }
1659
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1660
            }
Paul's avatar
Paul committed
1661
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1662
1663
            if(ops.count(node.op_type()) == 0)
            {
1664
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1665
1666
1667
            }
            else
            {
Paul's avatar
Paul committed
1668
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1669
            }
Paul's avatar
Paul committed
1670
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1671
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1672
1673
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1674
1675
1676
            }
            else
            {
Shucai Xiao's avatar
Shucai Xiao committed
1677
1678
1679
1680
                assert(node.output().size() <= result.size());
                std::transform(node.output().begin(),
                               node.output().end(),
                               result.begin(),
Paul's avatar
Paul committed
1681
                               std::inserter(instructions, instructions.end()),
Shucai Xiao's avatar
Shucai Xiao committed
1682
                               [](auto&& x, auto&& y) { return std::make_pair(x, y); });
Paul's avatar
Paul committed
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1700
        std::size_t n = 0;
Paul's avatar
Paul committed
1701
1702
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1703
            if(node.output().empty())
Paul's avatar
Paul committed
1704
            {
Paul's avatar
Paul committed
1705
                if(node.name().empty())
Paul's avatar
Paul committed
1706
1707
1708
1709
1710
1711
1712
1713
1714
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1715
1716
1717
1718
1719
1720
1721
1722
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

Paul's avatar
Paul committed
1723
1724
1725
1726
1727
1728
    static std::vector<int64_t> get_indices(const onnx::AttributeProto& attr)
    {
        std::vector<int64_t> result;
        literal s = parse_value(attr);
        s.visit([&](auto v) { copy(v, std::back_inserter(result)); });
        // Clamp large indices to -1
Paul's avatar
Paul committed
1729
1730
1731
1732
1733
        std::replace_if(
            result.begin(),
            result.end(),
            [](auto x) { return x > int64_t{std::numeric_limits<std::int32_t>::max()} / 2; },
            -1);
Paul's avatar
Paul committed
1734
1735
1736
        return result;
    }

Paul's avatar
Paul committed
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
Paul's avatar
Paul committed
1751
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1752
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
Paul's avatar
Paul committed
1753
1754
1755
1756
1757
        case onnx::AttributeProto::UNDEFINED:
        case onnx::AttributeProto::GRAPH:
        case onnx::AttributeProto::STRING:
        case onnx::AttributeProto::STRINGS:
        case onnx::AttributeProto::TENSORS:
Paul's avatar
Paul committed
1758
1759
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1760
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1761
1762
1763
1764
1765
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1766
1767
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1768
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1769
1770
            switch(t.data_type())
            {
1771
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Khalique's avatar
Khalique committed
1772
1773
1774
1775
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
1776
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Paul's avatar
Paul committed
1777
1778
1779
1780
            case onnx::TensorProto::INT8:
            case onnx::TensorProto::UINT16:
            case onnx::TensorProto::INT16:
            case onnx::TensorProto::INT32:
1781
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Paul's avatar
Paul committed
1782
1783
1784
1785
1786
1787
            case onnx::TensorProto::UINT8:
            case onnx::TensorProto::STRING:
            case onnx::TensorProto::UNDEFINED:
            case onnx::TensorProto::UINT32:
            case onnx::TensorProto::UINT64:
            case onnx::TensorProto::COMPLEX64:
Scott Thornton's avatar
Scott Thornton committed
1788
1789
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1790
            MIGRAPHX_THROW("Invalid tensor type");
1791
        }
Paul's avatar
Paul committed
1792
1793
1794
1795
1796
1797
        switch(t.data_type())
        {
        case onnx::TensorProto::INT8:
        case onnx::TensorProto::UINT16:
        case onnx::TensorProto::INT16:
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
1798
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1799
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1800
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1801
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1802
1803
1804
1805
        case onnx::TensorProto::DOUBLE:
            return create_literal(shape::double_type, dims, t.double_data());
        case onnx::TensorProto::FLOAT:
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1806
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1807
        {
Khalique's avatar
Khalique committed
1808
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1809
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1810
1811
1812
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1813
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1814
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1815
        }
Paul's avatar
Paul committed
1816
1817
1818
1819
1820
1821
        case onnx::TensorProto::UNDEFINED:
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::UINT32:
        case onnx::TensorProto::UINT64:
        case onnx::TensorProto::COMPLEX64:
Paul's avatar
Paul committed
1822
1823
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1824
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1825
1826
    }

Khalique's avatar
Khalique committed
1827
    static literal
1828
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1829
    {
Khalique's avatar
Khalique committed
1830
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1831
        if(dims.empty())
1832
            return literal{{shape_type}, data};
1833
1834
1835
        return literal{{shape_type, dims}, data};
    }

1836
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1837
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1838
1839
    {
        if(dims.empty())
1840
            return literal{{shape_type}, data.begin(), data.end()};
1841
        return literal{{shape_type, dims}, data.begin(), data.end()};
1842
1843
    }

1844
    static shape parse_type(const onnx::TypeProto& t, const unsigned int batch_size)
Paul's avatar
Paul committed
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
Paul's avatar
Paul committed
1855
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1856
1857
1858
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
Paul's avatar
Paul committed
1859
1860
1861
1862
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::BOOL:
        case onnx::TensorProto::UNDEFINED:
Paul's avatar
Paul committed
1863
1864
        case onnx::TensorProto::COMPLEX64:
        case onnx::TensorProto::COMPLEX128:
Paul's avatar
Paul committed
1865
            break; // throw std::runtime_error("Unsupported type");
Paul's avatar
Paul committed
1866
1867
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1868
        auto&& tensor_dims = t.tensor_type().shape().dim();
1869
1870
1871
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
1872
1873
                       [&](auto&& d) -> std::size_t {
                           if(d.has_dim_value())
1874
                           {
1875
1876
1877
                               if(static_cast<int>(d.dim_value()) <= 0)
                                   return batch_size;
                               return d.dim_value();
1878
                           }
1879
                           return batch_size;
1880
                       });
1881
1882
1883
        if(dims.empty())
            return {shape_type};

Paul's avatar
Paul committed
1884
1885
        return {shape_type, dims};
    }
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
1908
1909
1910

    void check_arg_empty(const argument& arg, const std::string& msg)
    {
Shucai Xiao's avatar
Shucai Xiao committed
1911
        if(arg.empty())
Shucai Xiao's avatar
Shucai Xiao committed
1912
1913
1914
1915
        {
            MIGRAPHX_THROW(msg);
        }
    }
Paul's avatar
Paul committed
1916
1917
};

1918
program parse_onnx(const std::string& name, onnx_options options)
Paul's avatar
Paul committed
1919
1920
1921
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
1922
    parser.batch_size = options.batch_size;
Paul's avatar
Paul committed
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1940
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1941
} // namespace migraphx