onnx.cpp 57.7 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
43
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
44
45
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
46
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
47
48
49
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
50
51
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
52
        add_generic_op("Tanh", op::tanh{});
53
54
55
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
56

Khalique's avatar
Khalique committed
57
58
59
60
61
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
62
63
64
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
65

Khalique's avatar
Khalique committed
66
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
67
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
68
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
69
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
70
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
71
72
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
73
74
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
75
76
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
77
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
78
79
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
80
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
81
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
82
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
83
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
84
85
86
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
87
        add_mem_op("Concat", &onnx_parser::parse_concat);
88
89
90
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
91
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
92
        add_mem_op("RNN", &onnx_parser::parse_rnn);
93
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
94
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
95
        add_mem_op("Pad", &onnx_parser::parse_pad);
96
97
98
99
100
101
102

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
103
104
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
105
        map_actv_funcs.insert(std::make_pair("Tanh", op::tanh{}));
106
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
107
        map_actv_funcs.insert(std::make_pair("Relu", op::relu{}));
108
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
109
        map_actv_funcs.insert(std::make_pair("Sigmoid", op::sigmoid{}));
110
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
111
        map_actv_funcs.insert(std::make_pair("LeakyRelu", op::leaky_relu{}));
112
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
113
        map_actv_funcs.insert(std::make_pair("Elu", op::elu{}));
Paul's avatar
Paul committed
114
115
116
117
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
118
119
120
121
122
123
124
125
126
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
127
128
129
130
131
132
133
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
134
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
135
136
137
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
138

139
    template <class T>
Khalique's avatar
Khalique committed
140
    void add_binary_op(std::string name, T x)
141
    {
Paul's avatar
Paul committed
142
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
143
            if(args.size() != 2)
Paul's avatar
Paul committed
144
                MIGRAPHX_THROW("binary operators should have 2 operands");
145
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
146
147
148
149
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
150
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
151
152
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
153
154
                    return prog.add_instruction(x, args[0], l);
                }
155
                return prog.add_instruction(x, args);
156
            }
Paul's avatar
Paul committed
157
            else
158
            {
Khalique's avatar
Khalique committed
159
                return add_broadcastable_binary_op(args[0], args[1], x);
160
161
162
163
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
164
165
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
166
167
168
169
170
171
172
173
174
175
176
177
178
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
179
        if(s0.size() > s1.size())
180
181
182
183
184
185
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
186
187
188
189
190
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
                       [](auto a, auto b) { return std::max(a, b); });
191
192
193
194

        return out_lens;
    }

Khalique's avatar
Khalique committed
195
196
197
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
198
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
199
200
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
201
202
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
203
            auto out_lens = compute_broadcasted_lens(s0, s1);
Shucai Xiao's avatar
Shucai Xiao committed
204
205
            auto l0       = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1       = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
206
207
208
209
210
211
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
212
213
    }

Paul's avatar
Paul committed
214
    template <class T>
Paul's avatar
Paul committed
215
216
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
217
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
218
219
220
221
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
222
    template <class T>
Khalique's avatar
Khalique committed
223
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
224
    {
Paul's avatar
Paul committed
225
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
226
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
227
228
229
230
231
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
232
        });
Khalique's avatar
Khalique committed
233
234
    }

Khalique's avatar
Khalique committed
235
236
237
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
238
239
240
241
242
243
244
245
246
247
248
249
250
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Paul's avatar
Paul committed
251
    instruction_ref
Paul's avatar
Paul committed
252
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
253
254
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
255
256
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
257
258
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
259
260
    }

Shucai Xiao's avatar
Shucai Xiao committed
261
262
263
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
264
265
266
267
268
269
270
271
272
273
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

Paul's avatar
Paul committed
274
    instruction_ref
Paul's avatar
Paul committed
275
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
276
    {
277
        op::convolution op;
278
        auto l0 = args[0];
Paul's avatar
Paul committed
279
280
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
281
            if(contains(attributes, "auto_pad"))
282
            {
Paul's avatar
Paul committed
283
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
284
            }
285
286
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
287
            if(padding.size() != 4)
288
            {
Paul's avatar
Paul committed
289
                MIGRAPHX_THROW("padding should have 4 values");
290
            }
Scott Thornton's avatar
Scott Thornton committed
291
            if(padding[0] != padding[2] || padding[1] != padding[3])
292
            {
293
294
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
295
                l0      = prog.add_instruction(op::pad{padding}, l0);
296
            }
297
298
299
300
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
301
            }
Paul's avatar
Paul committed
302
        }
Paul's avatar
Paul committed
303
304
305
306
307
308
309
310
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
311
        if(contains(attributes, "auto_pad"))
312
313
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
314
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
315
            {
Paul's avatar
Paul committed
316
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
317
318
            }

wsttiger's avatar
fixes  
wsttiger committed
319
            if(s.find("SAME") != std::string::npos)
320
            {
321
                op.padding_mode = op::padding_mode_t::same;
322
323
            }
        }
Khalique's avatar
Khalique committed
324
325
326
327
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
328
329
330
331
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
332
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
333
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
334
        }
335
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
336
    }
Paul's avatar
Paul committed
337

Paul's avatar
Paul committed
338
339
340
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
341
    {
Khalique's avatar
Khalique committed
342
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
343
        auto l0 = args[0];
Khalique's avatar
Khalique committed
344
        if(starts_with(name, "Global"))
345
        {
Khalique's avatar
Khalique committed
346
347
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
348
        }
Paul's avatar
Paul committed
349
350
        if(contains(attributes, "pads"))
        {
351
352
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
353
            if(padding.size() != 4)
354
            {
Paul's avatar
Paul committed
355
                MIGRAPHX_THROW("padding should have 4 values");
356
            }
Scott Thornton's avatar
Scott Thornton committed
357
            if(padding[0] != padding[2] || padding[1] != padding[3])
358
            {
359
360
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
361
                l0      = prog.add_instruction(op::pad{padding}, l0);
362
363
364
365
366
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
367
            }
Paul's avatar
Paul committed
368
369
370
371
372
373
374
375
376
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
377
        if(contains(attributes, "auto_pad"))
378
379
        {
            auto s = attributes["auto_pad"].s();
380
            if(s.find("SAME_UPPER") == std::string::npos)
381
            {
382
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
383
            }
384
            op.padding_mode = op::padding_mode_t::same;
385
386
        }

387
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
388
389
    }

Paul's avatar
Paul committed
390
    instruction_ref
Paul's avatar
Paul committed
391
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
392
    {
393
        op::reshape op;
Paul's avatar
Paul committed
394
395
396
397
398
399
400
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
401
            auto s = args[1]->eval();
Paul's avatar
Paul committed
402
            if(s.empty())
Paul's avatar
Paul committed
403
                MIGRAPHX_THROW("Dynamic shape is not supported.");
Paul's avatar
Paul committed
404
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
405
        }
Paul's avatar
Paul committed
406
407
408
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
409
    instruction_ref
Paul's avatar
Paul committed
410
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
411
    {
412
        uint64_t axis = 1;
Paul's avatar
Paul committed
413
414
415
416
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
417
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
418
419
    }

420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
438
439
440
441
442
443
444
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
445

446
447
448
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
449
        int axis = 0;
450
451
452
453
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
454
        op::gather op{axis};
455
456
457
        return prog.add_instruction(op, std::move(args));
    }

458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
478
479
480
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
481
    {
Shucai Xiao's avatar
Shucai Xiao committed
482
        literal v     = parse_value(attributes.at("value"));
483
484
485
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
486
        {
487
            migraphx::shape scalar_shape{v.get_shape().type()};
488
489
490
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
491
492
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
493

Paul's avatar
Paul committed
494
    instruction_ref
Paul's avatar
Paul committed
495
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
496
497
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
498
        float beta  = 1.0f;
Paul's avatar
Paul committed
499
500
501
502
503
504
505
506
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
507
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
508
509
510
511
512
513
514
515
516
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
517
518
519
520
521
522

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

523
524
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
525
526
        if(args.size() == 3)
        {
527
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
528
            {
Shucai Xiao's avatar
Shucai Xiao committed
529
                auto out_lens   = l1->get_shape().lens();
530
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
531
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
532
533
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
534
                {
535
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
536
                }
537
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
538
            }
Paul's avatar
Paul committed
539
        }
540
        return prog.add_instruction(op::dot{alpha}, l1, l2);
Paul's avatar
Paul committed
541
542
    }

543
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
544
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
545
    {
Shucai Xiao's avatar
Shucai Xiao committed
546
547
        auto l0      = args[0];
        auto l1      = args[1];
548
549
550
551
552
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
553
        if(l0_lens.size() == 1)
554
555
556
557
558
559
560
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
561
        if(l1_lens.size() == 1)
562
563
564
565
566
567
568
569
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
570
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
571
572
573
574
575
576
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
577
            l0_broadcasted_lens = output_lens;
578
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
579
            l1_broadcasted_lens = output_lens;
580
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
581
            if(l0_lens != l0_broadcasted_lens)
582
583
584
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
585
            if(l1_lens != l1_broadcasted_lens)
586
587
588
589
590
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
591
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
592
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
593
        if(is_a_prepended)
594
595
596
597
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
598
        if(is_b_appended)
599
600
601
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
602

603
604
605
        return dot_res;
    }

606
    instruction_ref
Paul's avatar
Paul committed
607
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
608
    {
Scott Thornton's avatar
Scott Thornton committed
609
610
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
611
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
612
        bool is_test                                      = false;
613
614
615
616
617
618
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
619
            momentum = parse_value(attributes.at("momentum")).at<float>();
620
621
622
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
623
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
624
625
626
        }
        if(contains(attributes, "spatial"))
        {
627
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
628
629
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
630
        }
Paul's avatar
Paul committed
631
        (void)is_test;
Paul's avatar
Paul committed
632
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
633
        return prog.add_instruction(op, std::move(args));
634
635
    }

636
637
638
639
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
640
        float alpha = 0.01; // default alpha val for leaky relu
641
642
643
644
645
646
647
648
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
649
650
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
651
652
653
654
655
656
657
658
659
660
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
661
662
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
663
664
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
665
666
667
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
668
669
670
671
672
673
674
675
676
677
678
679
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
696
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
697

Khalique's avatar
Khalique committed
698
699
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
700
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
701

702
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
703
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
704
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
705
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
706
    }
Khalique's avatar
Khalique committed
707

Khalique's avatar
Khalique committed
708
709
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
710
711
712
713
714
715
716
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
717
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
718
719
    }

Khalique's avatar
Khalique committed
720
721
722
723
724
725
726
727
728
729
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
730
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
731
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
732
733
734
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
735
736
737
738
739
740
741
742
743
744
745
746
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
747
748
749
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
750
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
751
752
    {
        if(args.size() != 1)
753
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
790
791
        if(contains(attributes, "extra_shape"))
        {
792
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
793
794
        }

795
796
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
797
            if(args.size() != 1)
798
            {
799
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
800
801
            }

Shucai Xiao's avatar
Shucai Xiao committed
802
803
            if(contains(attributes, "shape"))
            {
804
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
805
                               "at the same time");
806
807
            }

808
809
810
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
811
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
812
            }
813

814
815
816
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
817
818
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
819
820
821
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
822
823
            if(!contains(attributes, "shape"))
            {
824
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
825
826
827
            }

            literal ls = parse_value(attributes.at("shape"));
828
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
829
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
830
            migraphx::shape s{type, dims};
831
832
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
833
834
835
        }
        else
        {
836
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
837
838
839
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
840
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
841
842
843
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
844
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
845
846
847

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
848
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
849
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
850
851
852
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
853
854
855
856
857
858
859
860
861
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

862
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
863
864
        if(direction == "bidirectional")
        {
865
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
866
867
868
        }
        else if(direction == "reverse")
        {
869
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
870
871
        }

872
        std::vector<std::string> vec_names{"Tanh"};
873
874
875
876
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
877
            vec_names.resize(names.size());
878
            std::copy(names.begin(), names.end(), vec_names.begin());
879
880
        }

881
882
883
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
884
        if(name_it != vec_names.end())
885
886
887
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
888

Shucai Xiao's avatar
Shucai Xiao committed
889
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
890
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
891
        // if only one actv function is provided, we use it in both
892
        // forward and reverse direction
893
        if(dirct == op::rnn_direction::bidirectional)
894
        {
Shucai Xiao's avatar
Shucai Xiao committed
895
            if(vec_names.size() == 1)
896
897
898
899
900
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
901
902
903
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
904
        });
Shucai Xiao's avatar
Shucai Xiao committed
905

Shucai Xiao's avatar
Shucai Xiao committed
906
907
908
909
910
911
912
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

913
914
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
915
        if(args.size() < 6)
916
917
918
919
920
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
921
922
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
923
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
924

925
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
926
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
927

Shucai Xiao's avatar
Shucai Xiao committed
928
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
929
930
    }

931
    std::vector<instruction_ref>
932
933
934
935
936
937
938
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
939
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
940
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
941
942
943
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
944
945
946
947
948
949
950
951
952
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

953
        op::rnn_direction dirct = op::rnn_direction::forward;
954
955
        if(direction == "bidirectional")
        {
956
            dirct = op::rnn_direction::bidirectional;
957
958
959
        }
        else if(direction == "reverse")
        {
960
            dirct = op::rnn_direction::reverse;
961
962
        }

963
        std::vector<std::string> vec_names = {"Sigmoid", "Tanh"};
964
965
        if(contains(attributes, "activations"))
        {
966
            auto names = attributes.at("activations").strings();
967
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
968
            vec_names.resize(names.size());
969
            std::copy(names.begin(), names.end(), vec_names.begin());
970
971
        }

972
        // need 4 activation functions
973
        if(dirct == op::rnn_direction::bidirectional)
974
        {
Shucai Xiao's avatar
Shucai Xiao committed
975
            // 4 activation functions are used in the bidirectional
976
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
977
978
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
979
980
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
981
982
983
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
984
            if(vec_names.size() == 1)
985
            {
986
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
987
            }
988
            else if(vec_names.size() == 2)
989
            {
990
991
992
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
993
            }
994
            else if(vec_names.size() == 3)
995
            {
996
                vec_names.push_back(vec_names.at(2));
997
998
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
999
        else
1000
        {
1001
            if(vec_names.size() == 1)
1002
            {
1003
                vec_names.push_back(vec_names.at(0));
1004
1005
1006
            }
        }

1007
1008
1009
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1010
        if(name_it != vec_names.end())
1011
1012
1013
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1014

Shucai Xiao's avatar
Shucai Xiao committed
1015
1016
1017
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
1018
        });
1019
1020
1021
1022
1023
1024
1025
1026

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1027
        if(contains(attributes, "linear_before_reset"))
1028
1029
1030
1031
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1032
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1033
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1034
1035
1036
1037
1038
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1039
1040
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1041
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1042
            std::move(args));
1043
1044

        // second output for last gru output
1045
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1046

Shucai Xiao's avatar
Shucai Xiao committed
1047
        return {hidden_states, last_output};
1048
1049
    }

Shucai Xiao's avatar
Shucai Xiao committed
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1072
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1073
1074
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1075
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1076
1077
1078
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1079
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1080
        }
Shucai Xiao's avatar
Shucai Xiao committed
1081
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1082
        {
Shucai Xiao's avatar
Shucai Xiao committed
1083
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1084
1085
1086
1087
1088
1089
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1090
        std::vector<std::string> vec_names = {"Sigmoid", "Tanh", "Tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1091
1092
1093
1094
1095
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
1096
            std::copy(names.begin(), names.end(), vec_names.begin());
Shucai Xiao's avatar
Shucai Xiao committed
1097
1098
1099
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1100
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1101
1102
1103
1104
1105
1106
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1107
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1108
1109
1110
1111
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1112
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1113
1114
1115
1116
1117
1118
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1119
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1120
1121
1122

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1123
1124
1125
1126
1127
1128
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1129
1130
1131
1132
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1133
1134
1135
1136
1137
1138
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1139
1140
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1141
1142
1143
1144
1145
1146
1147
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1148
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1149

Shucai Xiao's avatar
Shucai Xiao committed
1150
1151
1152
1153
1154
1155
1156
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1157
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1158

Shucai Xiao's avatar
Shucai Xiao committed
1159
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1160
1161
1162
1163
1164
1165
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1166
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1167
1168
1169

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1170
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1171
1172
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1173
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1174
1175
1176
            }
        }

1177
1178
1179
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1180
        if(name_it != vec_names.end())
1181
1182
1183
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1206
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1207
1208
1209
1210
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1211
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1212
1213

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1214
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1215
1216
1217
1218
1219
1220
1221

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }

Paul's avatar
Paul committed
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1234
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1235
1236
1237
1238
1239
1240
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1241
1242
1243
1244
1245
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1246
1247
1248
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1261
        }
Paul's avatar
Paul committed
1262
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1263
        {
Paul's avatar
Paul committed
1264
            this->parse_node(output.name());
Paul's avatar
Paul committed
1265
1266
1267
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1268
    void parse_undefined(const std::string& name)
1269
    {
Shucai Xiao's avatar
Shucai Xiao committed
1270
        auto ins           = prog.add_instruction(op::undefined{});
1271
1272
1273
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1274
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1275
    {
Paul's avatar
Paul committed
1276
        if(name.empty())
Paul's avatar
Paul committed
1277
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1278
1279
1280
1281
1282
1283
1284
1285
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1286
1287
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1288
                }
Shucai Xiao's avatar
Shucai Xiao committed
1289
                else if(input.empty())
Paul's avatar
Paul committed
1290
                {
1291
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1292
                }
1293
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1294
            }
Paul's avatar
Paul committed
1295
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1296
1297
            if(ops.count(node.op_type()) == 0)
            {
1298
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1299
1300
1301
            }
            else
            {
Paul's avatar
Paul committed
1302
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1303
            }
Paul's avatar
Paul committed
1304
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1305
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1306
1307
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1308
1309
1310
            }
            else
            {
Paul's avatar
Paul committed
1311
1312
1313
1314
1315
1316
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1334
        std::size_t n = 0;
Paul's avatar
Paul committed
1335
1336
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1337
            if(node.output().empty())
Paul's avatar
Paul committed
1338
            {
Paul's avatar
Paul committed
1339
                if(node.name().empty())
Paul's avatar
Paul committed
1340
1341
1342
1343
1344
1345
1346
1347
1348
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1374
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1375
1376
1377
1378
1379
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1380
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1381
1382
1383
1384
1385
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1386
1387
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1388
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1389
1390
1391
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
1392
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1393
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
1394
            case onnx::TensorProto::INT8: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1395
1396
            case onnx::TensorProto::UINT16:
                return create_literal(shape::int32_type, dims, s.data());
1397
1398
1399
            case onnx::TensorProto::INT16: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1400
            case onnx::TensorProto::STRING: throw std::runtime_error("");
1401
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1402
1403
1404
1405
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1406
1407
1408
1409
1410
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1411
            MIGRAPHX_THROW("Invalid tensor type");
1412
        }
Paul's avatar
Paul committed
1413
1414
1415
1416
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Khalique's avatar
Khalique committed
1417
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1418
1419
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Khalique's avatar
Khalique committed
1420
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1421
        case onnx::TensorProto::UINT16:
Khalique's avatar
Khalique committed
1422
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1423
        case onnx::TensorProto::INT16:
Khalique's avatar
Khalique committed
1424
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1425
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
1426
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1427
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1428
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1429
1430
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1431
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1432
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1433
        {
Khalique's avatar
Khalique committed
1434
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1435
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1436
1437
1438
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1439
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1440
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1441
        }
Paul's avatar
Paul committed
1442
        case onnx::TensorProto::DOUBLE:
Khalique's avatar
Khalique committed
1443
            return create_literal(shape::double_type, dims, t.double_data());
Paul's avatar
Paul committed
1444
1445
1446
1447
1448
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1449
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1450
1451
    }

Khalique's avatar
Khalique committed
1452
    static literal
1453
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1454
    {
Khalique's avatar
Khalique committed
1455
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1456
        if(dims.empty())
1457
            return literal{{shape_type}, data};
1458
1459
1460
        return literal{{shape_type, dims}, data};
    }

1461
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1462
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1463
1464
    {
        if(dims.empty())
1465
            return literal{{shape_type}, data.begin(), data.end()};
1466
        return literal{{shape_type, dims}, data.begin(), data.end()};
1467
1468
    }

Paul's avatar
Paul committed
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1488
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1489
1490
1491
1492
1493
1494
1495
1496
1497
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1498
        auto&& tensor_dims = t.tensor_type().shape().dim();
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1510
1511
        return {shape_type, dims};
    }
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1557
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1558
} // namespace migraphx