onnx.cpp 15.2 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
9
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>

Paul's avatar
Paul committed
10
11
12
13
#include <migraph/fallthrough.hpp>
#include <migraph/program.hpp>
#include <migraph/operators.hpp>
#include <migraph/ranges.hpp>
14
#include <migraph/instruction.hpp>
Paul's avatar
Paul committed
15

Paul's avatar
Paul committed
16
namespace migraph {
Paul's avatar
Paul committed
17
18
19
20
21
22
23
24
25
26
27
28

struct unknown
{
    std::string op;
    std::string name() const { return "unknown:" + op; }
    shape compute_shape(std::vector<shape> input) const
    {
        if(input.empty())
            return {};
        else
            return input.front();
    }
Paul's avatar
Paul committed
29
30
31
32
    argument compute(context&, shape, std::vector<argument>) const
    {
        MIGRAPH_THROW("not computable");
    }
Paul's avatar
Paul committed
33
34
35
36
37
38
39
40
41
42
43
    friend std::ostream& operator<<(std::ostream& os, const unknown& x)
    {
        os << x.name();
        return os;
    }
};

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
44
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();

    std::unordered_map<std::string, op_func> ops;

    onnx_parser()
    {
        add_op("Conv", [this](attribute_map attributes, std::vector<instruction_ref> args) {
            convolution op;
            if(contains(attributes, "pads"))
            {
                copy(attributes["pads"].ints(), op.padding.begin());
            }
            if(contains(attributes, "strides"))
            {
                copy(attributes["strides"].ints(), op.stride.begin());
            }
            if(contains(attributes, "dilations"))
            {
                copy(attributes["dilations"].ints(), op.dilation.begin());
            }
67
68
69
70
71
72
73
            if(args.size() == 3)
            {
                uint64_t axis = 1;
                auto l1       = prog.add_instruction(op, args[0], args[1]);
                auto l2       = prog.add_instruction(broadcast{axis}, l1, args[2]);
                return prog.add_instruction(add{}, l1, l2);
            }
Paul's avatar
Paul committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
            return prog.add_instruction(op, args);
        });
        add_op("MatMul", [this](attribute_map, std::vector<instruction_ref> args) {
            return prog.add_instruction(gemm{}, args);
        });
        add_op("MaxPool", [this](attribute_map attributes, std::vector<instruction_ref> args) {
            pooling op{"max"};
            // for(auto&& p:attributes) std::cout << p.first << std::endl;
            if(contains(attributes, "pads"))
            {
                copy(attributes["pads"].ints(), op.padding.begin());
            }
            if(contains(attributes, "strides"))
            {
                copy(attributes["strides"].ints(), op.stride.begin());
            }
            if(contains(attributes, "kernel_shape"))
            {
                copy(attributes["kernel_shape"].ints(), op.lengths.begin());
            }
            return prog.add_instruction(op, args);
        });
        add_op("Relu", [this](attribute_map, std::vector<instruction_ref> args) {
            return prog.add_instruction(activation{"relu"}, args);
        });
        add_op("Reshape", [this](attribute_map attributes, std::vector<instruction_ref> args) {
            reshape op;
101
102
103
104
105
106
107
108
109
110
111
            if(args.size() == 1)
            {
                literal s = parse_value(attributes.at("shape"));
                s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
            }
            if(args.size() == 2)
            {
                literal s = args[1]->lit;
                s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
            }
            return prog.add_instruction(op, args[0]);
Paul's avatar
Paul committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
        });
        add_op("Constant", [this](attribute_map attributes, std::vector<instruction_ref>) {
            literal v = parse_value(attributes.at("value"));
            return prog.add_literal(v);
        });
        add_op("Add", [this](attribute_map attributes, std::vector<instruction_ref> args) {
            if(contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
                    auto l = prog.add_instruction(broadcast{axis}, args);
                    return prog.add_instruction(add{}, args[0], l);
                }
            }
            return prog.add_instruction(add{}, args);
        });
132
133
134
135
136
137
138
139
140
141
142
143
144
        add_op("Sub", [this](attribute_map attributes, std::vector<instruction_ref> args) {
            if(contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
                    auto l = prog.add_instruction(broadcast{axis}, args);
                    return prog.add_instruction(sub{}, args[0], l);
                }
            }
Paul's avatar
Paul committed
145
146
            return prog.add_instruction(sub{}, args);
        });
147
148
149
150
151
152
153
154
155
156
157
158
159
        add_op("Mul", [this](attribute_map attributes, std::vector<instruction_ref> args) {
            if(contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
                    auto l = prog.add_instruction(broadcast{axis}, args);
                    return prog.add_instruction(mul{}, args[0], l);
                }
            }
Paul's avatar
Paul committed
160
161
            return prog.add_instruction(mul{}, args);
        });
162
163
164
165
166
167
168
169
170
171
172
173
174
        add_op("Div", [this](attribute_map attributes, std::vector<instruction_ref> args) {
            if(contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
                    auto l = prog.add_instruction(broadcast{axis}, args);
                    return prog.add_instruction(div{}, args[0], l);
                }
            }
Paul's avatar
Paul committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
            return prog.add_instruction(div{}, args);
        });
    }

    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            throw std::runtime_error("Failed reading");
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
            // TODO: Get shape of input parameter
Paul's avatar
Paul committed
208
            shape s            = parse_type(input.type());
Paul's avatar
Paul committed
209
210
211
212
            instructions[name] = prog.add_parameter(name, s);
        }
        for(auto&& p : nodes)
        {
213
            this->parse_node(get_name(p.second));
Paul's avatar
Paul committed
214
215
216
217
218
        }
    }

    void parse_node(std::string name)
    {
Paul's avatar
Paul committed
219
        if(name.empty())
Paul's avatar
Paul committed
220
            MIGRAPH_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
221
222
223
224
225
226
227
228
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
229
                    auto&& iname = get_name(nodes.at(input));
Paul's avatar
Paul committed
230
                    assert(name != iname);
Paul's avatar
Paul committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op_type()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op_type()}, args);
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

260
261
262
263
264
265
266
267
268
269
270
271
272
273
    static std::string get_name(const onnx::NodeProto& node)
    {
        if(node.name().empty())
        {
            std::string generated = "migraph_unnamed_node";
            for(auto&& output : node.output())
            {
                generated += "_" + output;
            }
            return generated;
        }
        return node.name();
    }

Paul's avatar
Paul committed
274
275
276
277
278
    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
        for(auto&& node : graph.node())
        {
279
            result[get_name(node)] = node;
Paul's avatar
Paul committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
305
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
306
307
308
309
310
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
311
        MIGRAPH_THROW("Invalid attribute type");
Paul's avatar
Paul committed
312
313
314
315
316
317
318
319
320
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
321
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
322
323
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
324
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
325
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
326
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
327
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
328
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
329
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
330
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
331
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
332
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
333
334
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
335
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
336
337
338
339
340
341
342
343
344
        case onnx::TensorProto::FLOAT16: throw std::runtime_error("");
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
345
        MIGRAPH_THROW("Invalid tensor type");
Paul's avatar
Paul committed
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case onnx::TensorProto::FLOAT16:
            break; // throw std::runtime_error("Unsupported type FLOAT16");
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
        // TODO: USe std::transform
        for(auto&& d : t.tensor_type().shape().dim())
        {
            dims.push_back(d.dim_value());
        }
        return {shape_type, dims};
    }
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
408
} // namespace migraph