"vscode:/vscode.git/clone" did not exist on "c4b6469ab8dfc7bb2d341650faa527da3023ab6a"
onnx.cpp 79 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
19
#include <migraphx/pad_calc.hpp>
Paul's avatar
Paul committed
20
21

namespace migraphx {
Paul's avatar
Paul committed
22
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
27
28
29
30
31
32
    struct node_info
    {
        attribute_map attributes{};
        std::size_t num_outputs = 1;
    };
    using node_map = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
33
    using op_func =
34
        std::function<std::vector<instruction_ref>(node_info, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
35
36
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
37
38
39
    program prog            = program();
    bool is_pytorch         = false;
    unsigned int batch_size = 1;
Paul's avatar
Paul committed
40
41

    std::unordered_map<std::string, op_func> ops;
42
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
43
44
45

    onnx_parser()
    {
46
        // sort onnx operator alphabetically through name
Khalique's avatar
Khalique committed
47
        add_generic_op("Abs", op::abs{});
48
49
50
51
52
53
54
55
56
        add_generic_op("Acos", op::acos{});
        add_generic_op("Acosh", op::acosh{});
        add_generic_op("Asin", op::asin{});
        add_generic_op("Asinh", op::asinh{});
        add_generic_op("Atan", op::atan{});
        add_generic_op("Atanh", op::atanh{});
        add_generic_op("Ceil", op::ceil{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Cosh", op::cosh{});
Shucai Xiao's avatar
Shucai Xiao committed
57
        add_generic_op("Erf", op::erf{});
58
        add_generic_op("Exp", op::exp{});
Khalique's avatar
Khalique committed
59
        add_generic_op("Dropout", op::identity{});
60
61
        add_generic_op("Log", op::log{});
        add_generic_op("Floor", op::floor{});
Khalique's avatar
Khalique committed
62
        add_generic_op("Identity", op::identity{});
63
64
65
66
        add_generic_op("Relu", op::relu{});
        add_generic_op("Round", op::round{});
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Sign", op::sign{});
Shucai Xiao's avatar
Shucai Xiao committed
67
        add_generic_op("Sin", op::sin{});
68
        add_generic_op("Sinh", op::sinh{});
69
        add_generic_op("Sqrt", op::sqrt{});
70
71
        add_generic_op("Tan", op::tan{});
        add_generic_op("Tanh", op::tanh{});
Paul's avatar
Paul committed
72

Khalique's avatar
Khalique committed
73
74
75
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
Shucai Xiao's avatar
Shucai Xiao committed
76
        add_binary_op("Pow", op::pow{});
Shucai Xiao's avatar
Shucai Xiao committed
77
        add_binary_op("PRelu", op::prelu{});
78
        add_binary_op("Sub", op::sub{});
Khalique's avatar
Khalique committed
79

Khalique's avatar
Khalique committed
80
81
82
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
83

84
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
85
86
        add_mem_op("ArgMax", &onnx_parser::parse_arg_op<op::argmax>);
        add_mem_op("ArgMin", &onnx_parser::parse_arg_op<op::argmin>);
87
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
88
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
89
        add_mem_op("Clip", &onnx_parser::parse_clip);
90
        add_mem_op("Concat", &onnx_parser::parse_concat);
Paul's avatar
Paul committed
91
        add_mem_op("Constant", &onnx_parser::parse_constant);
92
93
94
95
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
        add_mem_op("Conv", &onnx_parser::parse_conv<op::convolution>);
        add_mem_op("ConvInteger", &onnx_parser::parse_conv<op::quant_convolution>);
kahmed10's avatar
kahmed10 committed
96
        add_mem_op("ConvTranspose", &onnx_parser::parse_conv_transpose);
97
98
        add_mem_op("Elu", &onnx_parser::parse_elu);
        add_mem_op("Expand", &onnx_parser::parse_expand);
Paul's avatar
Paul committed
99
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
100
        add_mem_op("Gather", &onnx_parser::parse_gather);
Paul's avatar
Paul committed
101
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
102
103
104
105
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GRU", &onnx_parser::parse_gru);
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
kahmed10's avatar
kahmed10 committed
106
        add_mem_op("InstanceNormalization", &onnx_parser::parse_instancenorm);
107
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
108
        add_mem_op("LogSoftmax", &onnx_parser::parse_softmax<op::logsoftmax>);
109
110
111
112
        add_mem_op("LRN", &onnx_parser::parse_lrn);
        add_mem_op("MatMul", &onnx_parser::parse_matmul<op::dot>);
        add_mem_op("MatMulInteger", &onnx_parser::parse_matmul<op::quant_dot>);
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
Shucai Xiao's avatar
Shucai Xiao committed
113
114
115
116
117
        add_mem_op("ReduceL1", &onnx_parser::parse_reduce_l1);
        add_mem_op("ReduceL2", &onnx_parser::parse_reduce_l2);
        add_mem_op("ReduceLogSum", &onnx_parser::parse_reduce_log_sum);
        add_mem_op("ReduceLogSumExp", &onnx_parser::parse_reduce_log_sum_exp);
        add_mem_op("ReduceMax", &onnx_parser::parse_reduce_oper<op::reduce_max>);
Shucai Xiao's avatar
Shucai Xiao committed
118
        add_mem_op("ReduceMean", &onnx_parser::parse_reduce_oper<op::reduce_mean>);
Shucai Xiao's avatar
Shucai Xiao committed
119
        add_mem_op("ReduceMin", &onnx_parser::parse_reduce_oper<op::reduce_min>);
Shucai Xiao's avatar
Shucai Xiao committed
120
121
122
        add_mem_op("ReduceProd", &onnx_parser::parse_reduce_oper<op::reduce_prod>);
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_oper<op::reduce_sum>);
        add_mem_op("ReduceSumSquare", &onnx_parser::parse_reduce_sum_square);
123
124
125
126
127
128
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
        add_mem_op("RNN", &onnx_parser::parse_rnn);
        add_mem_op("Pad", &onnx_parser::parse_pad);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("Slice", &onnx_parser::parse_slice);
        add_mem_op("Softmax", &onnx_parser::parse_softmax<op::softmax>);
129
        add_mem_op("Split", &onnx_parser::parse_split);
130
131
132
133
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
134
135
136
137
138
139
140

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
141
142
143
144
145
146
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
147
148
149
150
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
151
152
153
154
155
156
157
158
159
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
160
161
162
163
164
165
166
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
167
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
168
169
170
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
171

172
    template <class T>
Khalique's avatar
Khalique committed
173
    void add_binary_op(std::string name, T x)
174
    {
175
        add_op(name, [this, x](node_info info, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
176
            if(args.size() != 2)
Paul's avatar
Paul committed
177
                MIGRAPHX_THROW("binary operators should have 2 operands");
178
            if(contains(info.attributes, "broadcast") and contains(info.attributes, "axis"))
179
            {
180
                uint64_t broadcasted = parse_value(info.attributes.at("broadcast")).at<uint64_t>();
181
182
                if(broadcasted != 0)
                {
183
                    uint64_t axis = parse_value(info.attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
184
185
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
186
187
                    return prog.add_instruction(x, args[0], l);
                }
188
                return prog.add_instruction(x, args);
189
            }
Paul's avatar
Paul committed
190
            else
191
            {
Khalique's avatar
Khalique committed
192
                return add_broadcastable_binary_op(args[0], args[1], x);
193
194
195
196
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
197
198
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
199
200
201
202
203
204
205
206
207
208
209
210
211
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
212
        if(s0.size() > s1.size())
213
214
215
216
217
218
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
219
220
221
222
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
223
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
224
                           if(a != b and a != 1 and b != 1)
225
                           {
Shucai Xiao's avatar
Shucai Xiao committed
226
227
228
229
230
231
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
232
233
234
235

        return out_lens;
    }

Shucai Xiao's avatar
Shucai Xiao committed
236
237
    instruction_ref make_contiguous(instruction_ref ins)
    {
Shucai Xiao's avatar
Shucai Xiao committed
238
        if(ins->get_shape().standard())
Shucai Xiao's avatar
Shucai Xiao committed
239
240
241
242
243
244
245
        {
            return ins;
        }

        return prog.add_instruction(op::contiguous{}, ins);
    }

Khalique's avatar
Khalique committed
246
247
248
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
249
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
250
251
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
252
253
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
254
            auto out_lens = compute_broadcasted_lens(s0, s1);
255
256
257
258
259
260
261
262
263

            auto l0 = arg0;
            if(arg0->get_shape().lens() != out_lens)
                l0 = prog.add_instruction(op::multibroadcast{out_lens}, arg0);

            auto l1 = arg1;
            if(arg1->get_shape().lens() != out_lens)
                l1 = prog.add_instruction(op::multibroadcast{out_lens}, arg1);

Khalique's avatar
Khalique committed
264
265
266
267
268
269
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
270
271
    }

Paul's avatar
Paul committed
272
    template <class T>
Paul's avatar
Paul committed
273
274
    void add_generic_op(std::string name, T x)
    {
275
        add_op(name, [this, x](const node_info&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
276
277
278
279
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
280
    template <class T>
Khalique's avatar
Khalique committed
281
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
282
    {
283
        add_op(name, [this, x](const node_info&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
284
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
285
286
287
288
289
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
290
        });
Khalique's avatar
Khalique committed
291
292
    }

kahmed10's avatar
kahmed10 committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
    template <class T>
    std::vector<int64_t> to_int64_vector(const std::vector<T>& input_vector)
    {
        std::vector<int64_t> output_vector(input_vector.begin(), input_vector.end());
        return output_vector;
    }

    instruction_ref
    add_bias(const std::vector<instruction_ref>& args, instruction_ref curr_ins, uint64_t axis)
    {
        if(args.size() == 3)
        {
            auto bias_bcast =
                prog.add_instruction(op::broadcast{axis, curr_ins->get_shape().lens()}, args[2]);
            return prog.add_instruction(op::add{}, curr_ins, bias_bcast);
        }
        return curr_ins;
    }

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
    template <class Op>
    void check_asym_padding(instruction_ref& ins,
                            std::vector<int64_t>& padding,
                            Op& op,
                            float pad_val = 0)
    {
        if(padding[0] != padding[2] || padding[1] != padding[3])
        {
            padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
            ins     = prog.add_instruction(op::pad{padding, pad_val}, ins);
        }
        else
        {
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
        }
    }

330
331
    instruction_ref
    parse_clip(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
332
333
    {
        op::clip op;
334
        if(contains(info.attributes, "max"))
Khalique's avatar
Khalique committed
335
        {
336
            op.max_val = parse_value(info.attributes.at("max")).at<float>();
Khalique's avatar
Khalique committed
337
        }
338
        if(contains(info.attributes, "min"))
Khalique's avatar
Khalique committed
339
        {
340
            op.min_val = parse_value(info.attributes.at("min")).at<float>();
Khalique's avatar
Khalique committed
341
342
343
344
        }
        return prog.add_instruction(op, std::move(args));
    }

Shucai Xiao's avatar
Shucai Xiao committed
345
    template <class Op>
346
347
    instruction_ref
    parse_softmax(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
348
    {
349
        int64_t axis = 1;
350
        if(contains(info.attributes, "axis"))
351
        {
352
            axis = parse_value(info.attributes.at("axis")).at<int>();
353
354
        }

355
        return prog.add_instruction(Op{axis}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
356
357
    }

Shucai Xiao's avatar
Shucai Xiao committed
358
    template <class Op>
359
360
    instruction_ref
    parse_arg_op(const std::string&, node_info info, std::vector<instruction_ref> args)
361
    {
362
        int64_t axis = 0;
363
        if(contains(info.attributes, "axis"))
364
        {
365
            axis = static_cast<int64_t>(parse_value(info.attributes.at("axis")).at<int>());
366
367
        }

Shucai Xiao's avatar
Shucai Xiao committed
368
        int keep_dims = 1;
369
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
370
        {
371
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
372
373
        }

Shucai Xiao's avatar
Shucai Xiao committed
374
        if(keep_dims == 0)
375
        {
376
            auto ins = prog.add_instruction(Op{axis}, std::move(args));
377
            return prog.add_instruction(op::squeeze{{axis}}, ins);
378
379
380
        }
        else
        {
381
            return prog.add_instruction(Op{axis}, std::move(args));
382
        }
383
384
    }

385
386
    template <class Op>
    instruction_ref process_auto_pad_attribute(instruction_ref ins,
387
                                               node_info info,
388
389
390
                                               Op& op,
                                               const std::vector<std::size_t>& in_lens)
    {
391
        if(!contains(info.attributes, "auto_pad"))
392
393
394
395
        {
            return ins;
        }

396
        auto auto_pad = info.attributes["auto_pad"].s();
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
        if(auto_pad.find("SAME") != std::string::npos)
        {
            // calculate the padding
            std::array<std::size_t, 2> out_lens;
            out_lens[0] = (in_lens[2] + op.stride[0] - 1) / op.stride[0];
            out_lens[1] = (in_lens[3] + op.stride[1] - 1) / op.stride[1];

            std::array<std::size_t, 2> explicit_pads;
            explicit_pads[0] = (out_lens[0] - 1) * op.stride[0] + op.lengths[0] - in_lens[2];
            explicit_pads[1] = (out_lens[1] - 1) * op.stride[1] + op.lengths[1] - in_lens[3];
            op.padding[0]    = explicit_pads[0] / 2;
            op.padding[1]    = explicit_pads[1] / 2;
            explicit_pads[0] -= 2 * op.padding[0];
            explicit_pads[1] -= 2 * op.padding[1];
            std::vector<std::int64_t> pads(8, 0);
            if(explicit_pads[0] != 0 or explicit_pads[1] != 0)
            {
                if(auto_pad == "SAME_UPPER")
                {
                    pads[6] = explicit_pads[0];
                    pads[7] = explicit_pads[1];
                }
                else if(auto_pad == "SAME_LOWER")
                {
                    pads[2] = explicit_pads[0];
                    pads[3] = explicit_pads[1];
                }

                // MaxPool
                if(op.mode == "max")
                {
                    ins = prog.add_instruction(op::pad{pads, std::numeric_limits<float>::lowest()},
                                               ins);
                }
                // AveragePool
                else
                {
                    ins = prog.add_instruction(op::pad{pads}, ins);
                }
            }

            op.padding_mode = op::padding_mode_t::same;
        }

        return ins;
    }

444
    template <class Op>
Paul's avatar
Paul committed
445
    instruction_ref
446
    parse_conv(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
447
    {
448
        Op op;
449
450
        auto l0      = args[0];
        auto weights = args[1];
451
        if(contains(info.attributes, "pads"))
Paul's avatar
Paul committed
452
        {
453
            if(contains(info.attributes, "auto_pad"))
454
            {
455
456
                auto s = info.attributes["auto_pad"].s();
                if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
457
458
459
                {
                    MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
                }
460
            }
461
            std::vector<std::int64_t> padding;
462
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
463
            if(padding.size() != 4)
464
            {
Paul's avatar
Paul committed
465
                MIGRAPHX_THROW("padding should have 4 values");
466
            }
467
            check_asym_padding(l0, padding, op);
Paul's avatar
Paul committed
468
        }
469
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
470
        {
471
            copy(info.attributes["strides"].ints(), op.stride.begin());
Paul's avatar
Paul committed
472
        }
473
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
474
        {
475
            copy(info.attributes["dilations"].ints(), op.dilation.begin());
Paul's avatar
Paul committed
476
        }
477
        if(contains(info.attributes, "auto_pad"))
478
        {
479
480
            auto s = info.attributes["auto_pad"].s();
            if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
481
            {
Paul's avatar
Paul committed
482
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
483
484
            }

wsttiger's avatar
fixes  
wsttiger committed
485
            if(s.find("SAME") != std::string::npos)
486
            {
487
488
489
490
491
492
493
494
495
496
497
498
499
                op.padding_mode                 = op::padding_mode_t::same;
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];

                auto input_dims = l0->get_shape().lens();
                std::vector<int64_t> padding(input_dims.size());
                calculate_padding(
                    0, padding, input_dims[2], op.stride[0], op.dilation[0], weight_h);
                calculate_padding(
                    1, padding, input_dims[3], op.stride[1], op.dilation[1], weight_w);

                check_asym_padding(l0, padding, op);
500
501
            }
        }
502
        if(contains(info.attributes, "group"))
Khalique's avatar
Khalique committed
503
        {
504
            op.group = parse_value(info.attributes.at("group")).at<int>();
Khalique's avatar
Khalique committed
505
        }
kahmed10's avatar
kahmed10 committed
506
507
508
509
510

        auto l1 = prog.add_instruction(op, l0, args[1]);
        return add_bias(args, l1, 1);
    }

511
512
    instruction_ref
    parse_conv_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
513
514
515
516
517
    {
        op::deconvolution op;
        auto l0 = args[0];
        std::vector<std::int64_t> padding;
        bool asymm_padding = false;
518
        if(contains(info.attributes, "pads"))
kahmed10's avatar
kahmed10 committed
519
        {
520
            if(contains(info.attributes, "auto_pad"))
kahmed10's avatar
kahmed10 committed
521
            {
522
523
                auto s = info.attributes["auto_pad"].s();
                if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
kahmed10's avatar
kahmed10 committed
524
525
526
527
                {
                    MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
                }
            }
528
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
kahmed10's avatar
kahmed10 committed
529
530
531
532
533
534
535
536
537
538
539
540
541
542
            if(padding.size() != 4)
            {
                MIGRAPHX_THROW("padding should have 4 values");
            }
            if(padding[0] != padding[2] || padding[1] != padding[3])
            {
                asymm_padding = true;
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
543
        if(contains(info.attributes, "strides"))
kahmed10's avatar
kahmed10 committed
544
        {
545
            copy(info.attributes["strides"].ints(), op.stride.begin());
kahmed10's avatar
kahmed10 committed
546
        }
547
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
548
        {
549
            copy(info.attributes["dilations"].ints(), op.dilation.begin());
Paul's avatar
Paul committed
550
        }
551
        if(contains(info.attributes, "auto_pad"))
kahmed10's avatar
kahmed10 committed
552
        {
553
554
            auto s = info.attributes["auto_pad"].s();
            if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
kahmed10's avatar
kahmed10 committed
555
556
557
558
559
560
561
562
563
564
            {
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
            }

            if(s.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::same;
            }
        }

565
        if(contains(info.attributes, "group"))
kahmed10's avatar
kahmed10 committed
566
        {
567
            op.group = parse_value(info.attributes.at("group")).at<int>();
kahmed10's avatar
kahmed10 committed
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
        }

        auto l1                   = prog.add_instruction(op, l0, args[1]);
        std::vector<int64_t> dims = to_int64_vector(l1->get_shape().lens());
        std::vector<int64_t> curr_shape{dims[2], dims[3]};
        if(asymm_padding)
        {
            op::slice slice_op;
            slice_op.axes   = {0, 1, 2, 3};
            slice_op.starts = {0, 0, 0 + padding[0], 0 + padding[1]};
            slice_op.ends   = {
                dims[0], dims[1], curr_shape[0] - padding[2], curr_shape[1] - padding[3]};

            l1 = prog.add_instruction(slice_op, l1);
        }

584
        if(contains(info.attributes, "output_padding"))
kahmed10's avatar
kahmed10 committed
585
586
        {
            std::vector<int64_t> output_padding;
587
            copy(info.attributes["output_padding"].ints(), std::back_inserter(output_padding));
kahmed10's avatar
kahmed10 committed
588
589
590
591
            output_padding = {0, 0, 0, 0, 0, 0, output_padding[0], output_padding[1]};
            l1             = prog.add_instruction(op::pad{output_padding}, l1);
        }

592
        if(contains(info.attributes, "output_shape"))
kahmed10's avatar
kahmed10 committed
593
594
        {
            std::vector<int64_t> output_shape;
595
            copy(info.attributes["output_shape"].ints(), std::back_inserter(output_shape));
kahmed10's avatar
kahmed10 committed
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
            dims       = to_int64_vector(l1->get_shape().lens());
            curr_shape = {dims[2], dims[3]};
            if(curr_shape != output_shape)
            {
                std::vector<int64_t> target_padding = {0,
                                                       0,
                                                       0,
                                                       0,
                                                       0,
                                                       0,
                                                       output_shape[0] - curr_shape[0],
                                                       output_shape[1] - curr_shape[1]};
                l1 = prog.add_instruction(op::pad{target_padding}, l1);
            }
        }

        return add_bias(args, l1, 1);
Paul's avatar
Paul committed
613
    }
Paul's avatar
Paul committed
614

615
616
    instruction_ref
    parse_pooling(const std::string& name, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
617
    {
Khalique's avatar
Khalique committed
618
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
619
        auto l0 = args[0];
Khalique's avatar
Khalique committed
620
        if(starts_with(name, "Global"))
621
        {
Khalique's avatar
Khalique committed
622
623
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
624
        }
625

626
        if(contains(info.attributes, "pads"))
Paul's avatar
Paul committed
627
        {
628
            if(contains(info.attributes, "auto_pad"))
629
            {
630
                auto s = info.attributes["auto_pad"].s();
631
632
633
634
635
636
637
                if(to_upper(s) != "NOTSET")
                {
                    MIGRAPHX_THROW(
                        "PARSE_POOLING: auto_pad and padding cannot be specified simultaneously");
                }
            }

638
            std::vector<std::int64_t> padding;
639
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
640
            if(padding.size() != 4)
641
            {
642
                MIGRAPHX_THROW("PARSE_POOLING: padding should have 4 values");
643
            }
644
645
646
647
            float pad_val = 0;
            if(op.mode == "max")
                pad_val = std::numeric_limits<float>::lowest();
            check_asym_padding(l0, padding, op, pad_val);
Paul's avatar
Paul committed
648
        }
649

650
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
651
        {
652
            copy(info.attributes["strides"].ints(), op.stride.begin());
Paul's avatar
Paul committed
653
        }
654
        if(contains(info.attributes, "kernel_shape"))
Paul's avatar
Paul committed
655
        {
656
            copy(info.attributes["kernel_shape"].ints(), op.lengths.begin());
Paul's avatar
Paul committed
657
        }
658

659
        if(contains(info.attributes, "auto_pad"))
660
        {
661
            auto in_lens = args[0]->get_shape().lens();
662
            l0           = process_auto_pad_attribute(l0, info, op, in_lens);
663
664
        }

665
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
666
667
    }

Paul's avatar
Paul committed
668
    instruction_ref
669
    parse_reshape(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
670
    {
671
        op::reshape op;
Paul's avatar
Paul committed
672
673
        if(args.size() == 1)
        {
674
            literal s = parse_value(info.attributes.at("shape"));
675
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
676
677
678
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
679
            auto s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
680
            check_arg_empty(s, "Reshape: dynamic shape is not supported");
Paul's avatar
Paul committed
681
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
682
        }
683

Shucai Xiao's avatar
Shucai Xiao committed
684
        return prog.add_instruction(op, make_contiguous(args[0]));
Paul's avatar
Paul committed
685
686
    }

Paul's avatar
Paul committed
687
    instruction_ref
688
    parse_flatten(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
689
    {
690
        int64_t axis = 1;
691
        if(contains(info.attributes, "axis"))
Paul's avatar
Paul committed
692
        {
693
            axis = parse_value(info.attributes.at("axis")).at<int>();
Paul's avatar
Paul committed
694
        }
695
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
696
697
    }

698
    instruction_ref
699
    parse_squeeze(const std::string&, node_info info, std::vector<instruction_ref> args)
700
701
    {
        op::squeeze op;
702
        literal s = parse_value(info.attributes.at("axes"));
703
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
704
        return prog.add_instruction(op, make_contiguous(args[0]));
705
706
707
    }

    instruction_ref
708
    parse_unsqueeze(const std::string&, node_info info, std::vector<instruction_ref> args)
709
710
    {
        op::unsqueeze op;
711
        literal s = parse_value(info.attributes.at("axes"));
712
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
713
        return prog.add_instruction(op, make_contiguous(args[0]));
714
715
    }

Scott Thornton's avatar
Scott Thornton committed
716
    instruction_ref
717
    parse_concat(const std::string&, node_info info, std::vector<instruction_ref> args)
Scott Thornton's avatar
Scott Thornton committed
718
    {
Shucai Xiao's avatar
Shucai Xiao committed
719
        // change to hande axis to be negative values
720
        if(!contains(info.attributes, "axis"))
Shucai Xiao's avatar
Shucai Xiao committed
721
722
723
724
        {
            MIGRAPHX_THROW("PARSE_CONCAT: attribute axis is required!");
        }

725
        int axis = parse_value(info.attributes.at("axis")).at<int>();
Scott Thornton's avatar
Scott Thornton committed
726
727
728
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
729

730
    instruction_ref
731
    parse_gather(const std::string&, node_info info, std::vector<instruction_ref> args)
732
    {
733
        int axis = 0;
734
        if(contains(info.attributes, "axis"))
735
        {
736
            axis = parse_value(info.attributes.at("axis")).at<int>();
737
        }
738

739
        op::gather op{axis};
Shucai Xiao's avatar
Shucai Xiao committed
740
        return prog.add_instruction(op, make_contiguous(args[0]), make_contiguous(args[1]));
741
742
    }

743
    instruction_ref
744
    parse_slice(const std::string&, node_info info, std::vector<instruction_ref> args)
745
746
    {
        op::slice op;
Khalique's avatar
Khalique committed
747
        std::vector<size_t> dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
748
        size_t num_dims          = dims.size();
749
        if(contains(info.attributes, "axes"))
750
        {
751
            literal s = parse_value(info.attributes.at("axes"));
752
753
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
Khalique's avatar
Khalique committed
754
755
756
757
758
        else
        {
            op.axes = std::vector<int64_t>(num_dims);
            std::iota(op.axes.begin(), op.axes.end(), 0);
        }
Khalique's avatar
Khalique committed
759

760
        if(contains(info.attributes, "ends"))
761
        {
762
            op.ends = get_indices(info.attributes.at("ends"));
763
        }
764
        if(contains(info.attributes, "starts"))
765
        {
766
            literal s = parse_value(info.attributes.at("starts"));
767
768
769
770
771
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

772
773
    instruction_ref
    parse_constant(const std::string&, node_info info, const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
774
    {
775
        literal v = parse_value(info.attributes.at("value"));
776
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
777
        if(v.get_shape().elements() == 0)
778
779
780
781
        {
            return prog.add_literal(literal{});
        }

782
        auto dim_size = info.attributes.at("value").t().dims_size();
783
784
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
785
        {
786
            migraphx::shape scalar_shape{v.get_shape().type()};
787
788
789
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
790
791
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
792

Paul's avatar
Paul committed
793
    instruction_ref
794
    parse_gemm(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
795
796
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
797
        float beta  = 1.0f;
Paul's avatar
Paul committed
798
799
        bool transa = false;
        bool transb = false;
800
        if(contains(info.attributes, "alpha"))
Paul's avatar
Paul committed
801
        {
802
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Paul's avatar
Paul committed
803
        }
804
        if(contains(info.attributes, "beta"))
Paul's avatar
Paul committed
805
        {
806
            beta = parse_value(info.attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
807
        }
808
        if(contains(info.attributes, "transA"))
Paul's avatar
Paul committed
809
        {
810
            transa = parse_value(info.attributes.at("transA")).at<bool>();
Paul's avatar
Paul committed
811
        }
812
        if(contains(info.attributes, "transB"))
Paul's avatar
Paul committed
813
        {
814
            transb = parse_value(info.attributes.at("transB")).at<bool>();
Paul's avatar
Paul committed
815
        }
816
817
818
819
820
821

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

822
823
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
824
825
        if(args.size() == 3)
        {
826
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
827
            {
Shucai Xiao's avatar
Shucai Xiao committed
828
                auto out_lens   = l1->get_shape().lens();
829
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
830
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
831
832
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
833
                {
834
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
835
                }
836
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
837
            }
Paul's avatar
Paul committed
838
        }
839
840

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
841
842
    }

843
    template <class Op>
844
    instruction_ref
845
    parse_matmul(const std::string&, const node_info&, std::vector<instruction_ref> args)
846
    {
Shucai Xiao's avatar
Shucai Xiao committed
847
848
        auto l0      = args[0];
        auto l1      = args[1];
849
850
851
852
853
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
854
        if(l0_lens.size() == 1)
855
856
857
858
859
860
861
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
862
        if(l1_lens.size() == 1)
863
864
865
866
867
868
869
870
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
871
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
872
873
874
875
876
877
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
878
            l0_broadcasted_lens = output_lens;
879
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
880
            l1_broadcasted_lens = output_lens;
881
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
882
            if(l0_lens != l0_broadcasted_lens)
883
884
885
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
886
            if(l1_lens != l1_broadcasted_lens)
887
888
889
890
891
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

892
        auto dot_res     = prog.add_instruction(Op{1, 0}, bl0, bl1);
893
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
894
        if(is_a_prepended)
895
896
897
898
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
899
        if(is_b_appended)
900
901
902
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
903

904
905
906
        return dot_res;
    }

907
    instruction_ref
908
    parse_batchnorm(const std::string&, node_info info, std::vector<instruction_ref> args)
909
    {
Scott Thornton's avatar
Scott Thornton committed
910
911
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
912
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
913
        if(contains(info.attributes, "epsilon"))
914
        {
915
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
916
        }
917
        if(contains(info.attributes, "momentum"))
918
        {
919
            momentum = parse_value(info.attributes.at("momentum")).at<float>();
920
        }
921
        if(contains(info.attributes, "spatial"))
922
        {
923
            bn_mode = (parse_value(info.attributes.at("spatial")).at<uint64_t>() > 0)
924
925
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
926
        }
Paul's avatar
Paul committed
927
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
928
        return prog.add_instruction(op, std::move(args));
929
930
    }

931
932
    instruction_ref
    parse_instancenorm(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
933
934
935
936
937
938
    {
        // y = scale * ( x - mean ) / sqrt ( variance + epsilon ) + bias
        // mean = reduce_mean({H, W}, x)
        // variance = reduce_mean({H, W}, (x - mean)^2)

        float epsilon = 1e-5f;
939
        if(contains(info.attributes, "epsilon"))
kahmed10's avatar
kahmed10 committed
940
        {
941
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
kahmed10's avatar
kahmed10 committed
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
        }
        auto x     = args[0];
        auto scale = args[1];
        auto bias  = args[2];
        auto dims  = x->get_shape().lens();

        auto mean            = prog.add_instruction(op::reduce_mean{{2, 3}}, x);
        auto mean_bcast      = prog.add_instruction(op::multibroadcast{dims}, mean);
        auto l0              = prog.add_instruction(op::sqdiff{}, x, mean_bcast);
        auto variance        = prog.add_instruction(op::reduce_mean{{2, 3}}, l0);
        auto l1              = prog.add_instruction(op::sub{}, x, mean_bcast);
        auto epsilon_literal = prog.add_literal(epsilon);
        auto epsilon_bcast   = prog.add_instruction(op::multibroadcast{dims}, epsilon_literal);
        auto variance_bcast  = prog.add_instruction(op::multibroadcast{dims}, variance);
        auto l2              = prog.add_instruction(op::add{}, variance_bcast, epsilon_bcast);
        auto l3              = prog.add_instruction(op::rsqrt{}, l2);
        auto l4              = prog.add_instruction(op::mul{}, l1, l3);
        auto scale_bcast     = prog.add_instruction(op::broadcast{1, dims}, scale);
        ;
        auto bias_bcast = prog.add_instruction(op::broadcast{1, dims}, bias);
        auto l5         = prog.add_instruction(op::mul{}, l4, scale_bcast);
        return prog.add_instruction(op::add{}, l5, bias_bcast);
    }

966
967
    instruction_ref
    parse_leaky_relu(const std::string&, node_info info, std::vector<instruction_ref> args)
968
    {
Khalique's avatar
Khalique committed
969
        float alpha = 0.01; // default alpha val for leaky relu
970
        if(contains(info.attributes, "alpha"))
971
        {
972
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
973
974
975
976
977
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

978
    instruction_ref parse_elu(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
979
980
    {
        float alpha = 1.0; // default alpha val for elu
981
        if(contains(info.attributes, "alpha"))
Khalique's avatar
Khalique committed
982
        {
983
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Khalique's avatar
Khalique committed
984
985
986
987
988
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

989
    instruction_ref parse_lrn(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
990
991
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
992
993
994
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
995
996
997
998
999
1000
1001
1002
        if(contains(info.attributes, "alpha"))
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
        if(contains(info.attributes, "beta"))
            beta = parse_value(info.attributes.at("beta")).at<float>();
        if(contains(info.attributes, "bias"))
            bias = parse_value(info.attributes.at("bias")).at<float>();
        if(contains(info.attributes, "size"))
            size = parse_value(info.attributes.at("size")).at<int>();
Khalique's avatar
Khalique committed
1003
1004
1005
1006
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

1007
1008
    instruction_ref
    parse_imagescaler(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1009
1010
1011
    {
        float scale = 1.0;
        std::vector<float> bias{};
1012
        if(contains(info.attributes, "scale"))
Khalique's avatar
Khalique committed
1013
        {
1014
            scale = parse_value(info.attributes.at("scale")).at<float>();
Khalique's avatar
Khalique committed
1015
1016
        }

1017
        if(contains(info.attributes, "bias"))
Khalique's avatar
Khalique committed
1018
        {
1019
            auto&& bias_floats = info.attributes["bias"].floats();
Khalique's avatar
Khalique committed
1020
1021
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
Shucai Xiao's avatar
Shucai Xiao committed
1022
1023
1024
        auto input_shape       = args.front()->get_shape();
        auto const& input_lens = input_shape.lens();
        auto input_type        = input_shape.type();
Khalique's avatar
Khalique committed
1025

Shucai Xiao's avatar
Shucai Xiao committed
1026
1027
        auto scale_val = prog.add_literal(literal{shape{input_type}, {scale}});
        auto bias_vals = prog.add_literal(literal{shape{input_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
1028

1029
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
1030
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
1031
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
1032
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
1033
    }
Khalique's avatar
Khalique committed
1034

Khalique's avatar
Khalique committed
1035
    instruction_ref
1036
    parse_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1037
1038
    {
        std::vector<int64_t> perm{};
1039
        if(contains(info.attributes, "perm"))
Khalique's avatar
Khalique committed
1040
        {
1041
            auto&& perm_vals = info.attributes["perm"].ints();
Khalique's avatar
Khalique committed
1042
1043
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
1044
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
1045
1046
    }

1047
    instruction_ref parse_pad(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1048
1049
1050
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
1051
        if(contains(info.attributes, "pads"))
Khalique's avatar
Khalique committed
1052
        {
1053
            auto&& pad_vals = info.attributes["pads"].ints();
Khalique's avatar
Khalique committed
1054
1055
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
1056
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
1057
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
1058
1059
1060
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
1061
        if(contains(info.attributes, "value"))
Khalique's avatar
Khalique committed
1062
        {
1063
            value = parse_value(info.attributes.at("value")).at<float>();
Khalique's avatar
Khalique committed
1064
        }
1065
        if(contains(info.attributes, "mode"))
Khalique's avatar
Khalique committed
1066
        {
1067
            auto mode = info.attributes.at("mode").s();
Khalique's avatar
Khalique committed
1068
1069
1070
1071
1072
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
1073
1074
1075
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
1076
    parse_shape(const std::string&, const node_info&, std::vector<instruction_ref> args)
1077
1078
    {
        if(args.size() != 1)
1079
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
1092
1093
    instruction_ref
    parse_constant_fill(const std::string&, node_info info, std::vector<instruction_ref> args)
1094
1095
1096
1097
1098
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

1099
        if(contains(info.attributes, "dtype"))
1100
        {
1101
            dtype = parse_value(info.attributes.at("dtype")).at<int>();
1102
        }
Shucai Xiao's avatar
Shucai Xiao committed
1103
        shape::type_t type = get_type(dtype);
1104

1105
        if(contains(info.attributes, "input_as_shape"))
1106
        {
1107
            input_as_shape = parse_value(info.attributes.at("input_as_shape")).at<int>();
1108
1109
        }

1110
        if(contains(info.attributes, "value"))
1111
        {
1112
            value = parse_value(info.attributes.at("value")).at<float>();
1113
1114
        }

1115
        if(contains(info.attributes, "extra_shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1116
        {
1117
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
1118
1119
        }

1120
1121
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1122
            if(args.size() != 1)
1123
            {
1124
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
1125
1126
            }

1127
            if(contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1128
            {
1129
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
1130
                               "at the same time");
1131
1132
            }

1133
            migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1134
            check_arg_empty(in, "ConstantFill: dynamic shape is not supported");
1135

1136
1137
1138
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
1139
1140
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1141
1142
1143
        }
        else if(input_as_shape == 0)
        {
1144
            if(!contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1145
            {
1146
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
1147
1148
            }

1149
            literal ls = parse_value(info.attributes.at("shape"));
1150
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
1151
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
1152
            migraphx::shape s{type, dims};
1153
1154
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1155
1156
1157
        }
        else
        {
1158
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
1159
1160
1161
        }
    }

1162
1163
    instruction_ref
    parse_constant_of_shape(const std::string&, node_info info, std::vector<instruction_ref> args)
1164
1165
    {
        literal l_val{};
1166
        if(contains(info.attributes, "value"))
1167
        {
1168
            l_val = parse_value(info.attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
1169
            if(l_val.get_shape().elements() != 1)
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
1181

Shucai Xiao's avatar
Shucai Xiao committed
1182
        if(args.empty())
1183
        {
Shucai Xiao's avatar
Shucai Xiao committed
1184
            MIGRAPHX_THROW("ConstantOfShape : must have 1 input!");
1185
1186
1187
        }
        else
        {
1188
1189
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
1190
            if(args[0]->get_shape().elements() == 0)
1191
            {
1192
                s = migraphx::shape{type, {1}, {0}};
1193
            }
1194
1195
1196
            else
            {
                migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1197
                check_arg_empty(in, "ConstantOfShape: dynamic shape is not supported");
1198

1199
1200
1201
1202
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
1203

Shucai Xiao's avatar
Shucai Xiao committed
1204
            literal l_out{};
1205
            l_val.visit([&](auto val) {
Shucai Xiao's avatar
Shucai Xiao committed
1206
                using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
1207
                // l_val contains only one element
1208
                std::vector<val_type> out_vec(s.elements(), val.front());
1209
1210
1211
1212
1213
1214
1215
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1216
    instruction_ref
1217
    parse_expand(const std::string&, const node_info&, std::vector<instruction_ref> args)
1218
    {
Shucai Xiao's avatar
Shucai Xiao committed
1219
        auto in_lens             = args[0]->get_shape().lens();
1220
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1221
        check_arg_empty(arg_s, "Expand: dynamic shape is not supported");
1222
1223
1224
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
Shucai Xiao's avatar
Shucai Xiao committed
1225
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
1226
1227
    }

Shucai Xiao's avatar
Shucai Xiao committed
1228
    std::vector<instruction_ref>
1229
    parse_rnn(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1230
1231
    {
        migraphx::shape input_shape = args[0]->get_shape();
1232
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
1233

1234
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
1235
        {
1236
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1237
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1238
1239
1240
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
1241
1242
1243
1244
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1245
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
1246
        {
1247
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
1248
1249
        }

1250
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1251
1252
        if(direction == "bidirectional")
        {
1253
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1254
1255
1256
        }
        else if(direction == "reverse")
        {
1257
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1258
1259
        }

1260
        std::vector<std::string> vec_names{"tanh"};
1261
        if(contains(info.attributes, "activations"))
1262
        {
1263
            auto names = info.attributes.at("activations").strings();
1264
            vec_names.clear();
1265
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1266
1267
1268
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1269
1270
        }

1271
1272
1273
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1274
        if(name_it != vec_names.end())
1275
1276
1277
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1278

Shucai Xiao's avatar
Shucai Xiao committed
1279
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1280
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1281
        // if only one actv function is provided, we use it in both
1282
        // forward and reverse direction
1283
        if(dirct == op::rnn_direction::bidirectional)
1284
        {
Shucai Xiao's avatar
Shucai Xiao committed
1285
            if(vec_names.size() == 1)
1286
1287
1288
1289
1290
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1291
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1292
1293
1294
1295
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& fn) { return map_actv_funcs[fn]; });
Shucai Xiao's avatar
Shucai Xiao committed
1296

Shucai Xiao's avatar
Shucai Xiao committed
1297
1298
        // To be added later
        float clip = 0.0;
1299
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
1300
        {
1301
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
1302
1303
        }

1304
1305
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1306
        if(args.size() < 6)
1307
1308
1309
1310
1311
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1312
1313
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1314
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1315

1316
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1317
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1318

Shucai Xiao's avatar
Shucai Xiao committed
1319
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1320
1321
    }

1322
    std::vector<instruction_ref>
1323
    parse_gru(const std::string&, node_info info, std::vector<instruction_ref> args)
1324
1325
1326
1327
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

1328
        if(contains(info.attributes, "hidden_size"))
1329
        {
1330
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1331
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1332
1333
1334
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1335
1336
1337
1338
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1339
        if(contains(info.attributes, "direction"))
1340
        {
1341
            direction = info.attributes.at("direction").s();
1342
1343
        }

1344
        op::rnn_direction dirct = op::rnn_direction::forward;
1345
1346
        if(direction == "bidirectional")
        {
1347
            dirct = op::rnn_direction::bidirectional;
1348
1349
1350
        }
        else if(direction == "reverse")
        {
1351
            dirct = op::rnn_direction::reverse;
1352
1353
        }

1354
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1355
        if(contains(info.attributes, "activations"))
1356
        {
1357
            auto names = info.attributes.at("activations").strings();
1358
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1359
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1360
1361
1362
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1363
1364
        }

1365
        // need 4 activation functions
1366
        if(dirct == op::rnn_direction::bidirectional)
1367
        {
Shucai Xiao's avatar
Shucai Xiao committed
1368
            // 4 activation functions are used in the bidirectional
1369
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1370
1371
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1372
1373
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1374
1375
1376
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1377
            if(vec_names.size() == 1)
1378
            {
1379
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1380
            }
1381
            else if(vec_names.size() == 2)
1382
            {
1383
1384
1385
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1386
            }
1387
            else if(vec_names.size() == 3)
1388
            {
1389
                vec_names.push_back(vec_names.at(2));
1390
1391
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1392
        else
1393
        {
1394
            if(vec_names.size() == 1)
1395
            {
1396
                vec_names.push_back(vec_names.at(0));
1397
1398
1399
            }
        }

1400
1401
1402
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1403
        if(name_it != vec_names.end())
1404
1405
1406
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1407

Shucai Xiao's avatar
Shucai Xiao committed
1408
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1409
1410
1411
1412
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
1413
1414

        float clip = 0.0;
1415
        if(contains(info.attributes, "clip"))
1416
        {
1417
            clip = parse_value(info.attributes.at("clip")).at<float>();
1418
1419
1420
        }

        int linear_before_reset = 0;
1421
        if(contains(info.attributes, "linear_before_reset"))
1422
        {
1423
            linear_before_reset = parse_value(info.attributes.at("linear_before_reset")).at<int>();
1424
1425
        }

Shucai Xiao's avatar
Shucai Xiao committed
1426
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1427
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1428
1429
1430
1431
1432
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1433
1434
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1435
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1436
            std::move(args));
1437
1438

        // second output for last gru output
1439
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1440

Shucai Xiao's avatar
Shucai Xiao committed
1441
        return {hidden_states, last_output};
1442
1443
    }

Shucai Xiao's avatar
Shucai Xiao committed
1444
    std::vector<instruction_ref>
1445
    parse_lstm(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1446
1447
1448
1449
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

1450
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
1451
        {
1452
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1453
1454
1455
1456
1457
1458
1459
1460
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1461
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
1462
        {
1463
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
1464
1465
        }

Shucai Xiao's avatar
Shucai Xiao committed
1466
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1467
1468
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1469
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1470
1471
1472
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1473
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1474
        }
Shucai Xiao's avatar
Shucai Xiao committed
1475
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1476
        {
Shucai Xiao's avatar
Shucai Xiao committed
1477
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1478
1479
1480
1481
1482
1483
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1484
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
1485
        if(contains(info.attributes, "activations"))
Shucai Xiao's avatar
Shucai Xiao committed
1486
        {
1487
            auto names = info.attributes.at("activations").strings();
Shucai Xiao's avatar
Shucai Xiao committed
1488
1489
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1490
1491
1492
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1493
1494
1495
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1496
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1497
1498
1499
1500
1501
1502
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1503
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1504
1505
1506
1507
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1508
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1509
1510
1511
1512
1513
1514
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1515
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1516
1517
1518

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1519
1520
1521
1522
1523
1524
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1525
1526
1527
1528
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1529
1530
1531
1532
1533
1534
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1535
1536
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1537
1538
1539
1540
1541
1542
1543
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1544
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1545

Shucai Xiao's avatar
Shucai Xiao committed
1546
1547
1548
1549
1550
1551
1552
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1553
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1554

Shucai Xiao's avatar
Shucai Xiao committed
1555
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1556
1557
1558
1559
1560
1561
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1562
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1563
1564
1565

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1566
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1567
1568
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1569
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1570
1571
1572
            }
        }

1573
1574
1575
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1576
        if(name_it != vec_names.end())
1577
1578
1579
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1580
1581

        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1582
1583
1584
1585
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
Shucai Xiao's avatar
Shucai Xiao committed
1586
1587

        float clip = 0.0;
1588
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
1589
        {
1590
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
1591
1592
1593
        }

        int input_forget = 0;
1594
        if(contains(info.attributes, "input_forget"))
Shucai Xiao's avatar
Shucai Xiao committed
1595
        {
1596
            input_forget = parse_value(info.attributes.at("input_forget")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1597
1598
1599
1600
1601
1602
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1603
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1604
1605
1606
1607
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1608
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1609
1610

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1611
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1612
1613
1614
1615
1616
1617

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }
1618

Shucai Xiao's avatar
Shucai Xiao committed
1619
    template <class T>
1620
1621
    instruction_ref
    parse_reduce_oper(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1622
1623
1624
1625
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
1626
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
1627
        std::iota(axes.begin(), axes.end(), 0);
1628
        if(contains(info.attributes, "axes"))
Shucai Xiao's avatar
Shucai Xiao committed
1629
1630
        {
            axes.clear();
1631
            auto&& attr_axes = info.attributes["axes"].ints();
1632
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
1633
1634
1635
        }

        int keep_dims = 1;
1636
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
1637
        {
1638
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1639
1640
1641
1642
        }

        if(keep_dims == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1643
            return prog.add_instruction(T{axes}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1644
1645
1646
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
1647
            auto ins = prog.add_instruction(T{axes}, std::move(args));
1648
            return prog.add_instruction(op::squeeze{axes}, ins);
1649
1650
        }
    }
1651

Shucai Xiao's avatar
Shucai Xiao committed
1652
    instruction_ref
1653
    parse_reduce_l1(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1654
1655
    {
        auto abs_ins = prog.add_instruction(op::abs{}, args[0]);
1656
        return parse_reduce_oper<op::reduce_sum>({}, std::move(info), {abs_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1657
1658
1659
    }

    instruction_ref
1660
    parse_reduce_l2(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1661
1662
    {
        auto square_ins = prog.add_instruction(op::mul{}, args[0], args[0]);
1663
        auto sum_ins    = parse_reduce_oper<op::reduce_sum>({}, std::move(info), {square_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1664
1665
1666
        return prog.add_instruction(op::sqrt{}, sum_ins);
    }

1667
1668
    instruction_ref
    parse_reduce_log_sum(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1669
    {
1670
        auto sum_ins = parse_reduce_oper<op::reduce_sum>({}, std::move(info), std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1671
1672
1673
        return prog.add_instruction(op::log{}, sum_ins);
    }

1674
1675
    instruction_ref
    parse_reduce_log_sum_exp(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1676
1677
    {
        auto exp_ins = prog.add_instruction(op::exp{}, args[0]);
1678
        auto sum_ins = parse_reduce_oper<op::reduce_sum>({}, std::move(info), {exp_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1679
1680
1681
        return prog.add_instruction(op::log{}, sum_ins);
    }

1682
1683
    instruction_ref
    parse_reduce_sum_square(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1684
1685
    {
        auto square_ins = prog.add_instruction(op::mul{}, args[0], args[0]);
1686
        return parse_reduce_oper<op::reduce_sum>({}, std::move(info), {square_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1687
1688
    }

Shucai Xiao's avatar
Shucai Xiao committed
1689
    instruction_ref
1690
    parse_cast(const std::string&, node_info info, std::vector<instruction_ref> args)
1691
    {
1692
        if(!contains(info.attributes, "to"))
1693
1694
1695
1696
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

1697
        int to_type        = parse_value(info.attributes.at("to")).at<int>();
1698
1699
1700
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
1701

1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
    std::vector<instruction_ref>
    parse_split(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        int64_t axis = 0;
        if(contains(info.attributes, "axis"))
        {
            axis = parse_value(info.attributes.at("axis")).at<int>();
        }

        auto lens      = args[0]->get_shape().lens();
        int64_t n_rank = static_cast<int64_t>(lens.size());
        if((axis < -n_rank) || (axis >= n_rank))
        {
            MIGRAPHX_THROW("PARSE_SPLIT: axis attribute out of rank!");
        }
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;

        std::vector<int64_t> vec_splits;
        if(contains(info.attributes, "split"))
        {
            literal s = parse_value(info.attributes.at("split"));
            s.visit([&](auto v) { vec_splits.assign(v.begin(), v.end()); });

            if(std::accumulate(vec_splits.begin(), vec_splits.end(), int64_t(0)) !=
               static_cast<int64_t>(lens[tuned_axis]))
            {
                MIGRAPHX_THROW("PARSE_SPLIT: sum of split attribute unequal to dim size of axis!");
            }
        }
        // no split attribute, input is equally divided
        else
        {
            if((lens[tuned_axis] % info.num_outputs) != 0)
            {
                MIGRAPHX_THROW("PARSE_SPLIT: input cannot be equally divided into " +
                               to_string(info.num_outputs) + " splits!");
            }
            auto dl = lens[tuned_axis] / info.num_outputs;
            vec_splits.resize(info.num_outputs, dl);
        }

        std::vector<instruction_ref> ret_ins;
        int64_t start = 0;
        for(auto sl : vec_splits)
        {
            ret_ins.push_back(
                prog.add_instruction(op::slice{{axis}, {start}, {start + sl}}, args[0]));
            start += sl;
        }

        return ret_ins;
    }

Paul's avatar
Paul committed
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1767
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1768
1769
1770
        }
    }

Paul Fultz II's avatar
Paul Fultz II committed
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
    void parse_from(const void* data, std::size_t size)
    {
        onnx::ModelProto model;
        if(model.ParseFromArray(data, size))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            MIGRAPHX_THROW("Failed reading onnx file.");
        }
    }

Paul's avatar
Paul committed
1787
1788
1789
    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1790
        for(auto&& f : graph.initializer())
1791
1792
            instructions[f.name()] = prog.add_literal(parse_tensor(f));

Paul's avatar
Paul committed
1793
1794
1795
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1796
1797
            // input not in initializer_data, so it is a real input
            if(!contains(instructions, name))
1798
1799
            {
                // TODO: Get shape of input parameter
1800
                shape s            = parse_type(input.type(), batch_size);
1801
1802
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1803
        }
Paul's avatar
Paul committed
1804
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1805
        {
Paul's avatar
Paul committed
1806
            this->parse_node(output.name());
Paul's avatar
Paul committed
1807
        }
Shucai Xiao's avatar
Shucai Xiao committed
1808

1809
        // Find instructions corresponding to the output
Shucai Xiao's avatar
Shucai Xiao committed
1810
        auto prog_output = graph.output();
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
        std::vector<std::string> all_output_names;
        std::vector<std::string> prog_output_names;
        std::transform(prog_output.begin(),
                       prog_output.end(),
                       std::back_inserter(all_output_names),
                       [](auto& node) { return node.name(); });
        std::copy_if(
            all_output_names.begin(),
            all_output_names.end(),
            std::back_inserter(prog_output_names),
            [&](const auto& name) { return !(name.empty() or instructions.count(name) == 0); });

        std::vector<instruction_ref> output_ins;
        std::transform(prog_output_names.begin(),
                       prog_output_names.end(),
                       std::back_inserter(output_ins),
                       [&](const auto& name) { return instructions[name]; });

        // add the return instuction
        prog.add_return(output_ins);
Paul's avatar
Paul committed
1831
1832
    }

Shucai Xiao's avatar
Shucai Xiao committed
1833
    void parse_undefined(const std::string& name)
1834
    {
Shucai Xiao's avatar
Shucai Xiao committed
1835
        auto ins           = prog.add_instruction(op::undefined{});
1836
1837
1838
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1839
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1840
    {
Paul's avatar
Paul committed
1841
        if(name.empty())
Paul's avatar
Paul committed
1842
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1843
1844
1845
1846
1847
1848
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1849
                if(input.empty())
Paul's avatar
Paul committed
1850
                {
Shucai Xiao's avatar
Shucai Xiao committed
1851
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1852
                }
Shucai Xiao's avatar
Shucai Xiao committed
1853
                else if(nodes.count(input) > 0)
Paul's avatar
Paul committed
1854
                {
Shucai Xiao's avatar
Shucai Xiao committed
1855
1856
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1857
                }
1858
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1859
            }
Paul's avatar
Paul committed
1860
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1861
1862
            if(ops.count(node.op_type()) == 0)
            {
1863
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1864
1865
1866
            }
            else
            {
1867
1868
                std::size_t output_num = static_cast<std::size_t>(node.output().size());
                result = ops[node.op_type()]({get_attributes(node), output_num}, args);
Paul's avatar
Paul committed
1869
            }
Paul's avatar
Paul committed
1870
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1871
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1872
1873
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1874
1875
1876
            }
            else
            {
1877
                auto output_num = std::min<std::size_t>(node.output().size(), result.size());
Shucai Xiao's avatar
Shucai Xiao committed
1878
                std::transform(node.output().begin(),
1879
                               node.output().begin() + output_num,
Shucai Xiao's avatar
Shucai Xiao committed
1880
                               result.begin(),
Paul's avatar
Paul committed
1881
                               std::inserter(instructions, instructions.end()),
Shucai Xiao's avatar
Shucai Xiao committed
1882
                               [](auto&& x, auto&& y) { return std::make_pair(x, y); });
Paul's avatar
Paul committed
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1900
        std::size_t n = 0;
Paul's avatar
Paul committed
1901
1902
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1903
            if(node.output().empty())
Paul's avatar
Paul committed
1904
            {
Paul's avatar
Paul committed
1905
                if(node.name().empty())
Paul's avatar
Paul committed
1906
1907
1908
1909
1910
1911
1912
1913
1914
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1915
1916
1917
1918
1919
1920
1921
1922
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

Paul's avatar
Paul committed
1923
1924
1925
1926
1927
1928
    static std::vector<int64_t> get_indices(const onnx::AttributeProto& attr)
    {
        std::vector<int64_t> result;
        literal s = parse_value(attr);
        s.visit([&](auto v) { copy(v, std::back_inserter(result)); });
        // Clamp large indices to -1
Paul's avatar
Paul committed
1929
1930
1931
1932
1933
        std::replace_if(
            result.begin(),
            result.end(),
            [](auto x) { return x > int64_t{std::numeric_limits<std::int32_t>::max()} / 2; },
            -1);
Paul's avatar
Paul committed
1934
1935
1936
        return result;
    }

Paul's avatar
Paul committed
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
Paul's avatar
Paul committed
1951
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1952
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
Paul's avatar
Paul committed
1953
1954
1955
1956
1957
        case onnx::AttributeProto::UNDEFINED:
        case onnx::AttributeProto::GRAPH:
        case onnx::AttributeProto::STRING:
        case onnx::AttributeProto::STRINGS:
        case onnx::AttributeProto::TENSORS:
1958
1959
        case onnx::AttributeProto::SPARSE_TENSOR:
        case onnx::AttributeProto::SPARSE_TENSORS:
Paul's avatar
Paul committed
1960
1961
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1962
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1963
1964
1965
1966
1967
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1968
1969
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1970
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1971
1972
            switch(t.data_type())
            {
1973
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Khalique's avatar
Khalique committed
1974
1975
1976
1977
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
1978
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Paul's avatar
Paul committed
1979
1980
1981
1982
            case onnx::TensorProto::INT8:
            case onnx::TensorProto::UINT16:
            case onnx::TensorProto::INT16:
            case onnx::TensorProto::INT32:
1983
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Paul's avatar
Paul committed
1984
1985
1986
1987
1988
1989
            case onnx::TensorProto::UINT8:
            case onnx::TensorProto::STRING:
            case onnx::TensorProto::UNDEFINED:
            case onnx::TensorProto::UINT32:
            case onnx::TensorProto::UINT64:
            case onnx::TensorProto::COMPLEX64:
Scott Thornton's avatar
Scott Thornton committed
1990
1991
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1992
            MIGRAPHX_THROW("Invalid tensor type");
1993
        }
Paul's avatar
Paul committed
1994
1995
1996
1997
1998
1999
        switch(t.data_type())
        {
        case onnx::TensorProto::INT8:
        case onnx::TensorProto::UINT16:
        case onnx::TensorProto::INT16:
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
2000
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
2001
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
2002
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
2003
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
2004
2005
2006
2007
        case onnx::TensorProto::DOUBLE:
            return create_literal(shape::double_type, dims, t.double_data());
        case onnx::TensorProto::FLOAT:
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
2008
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
2009
        {
Khalique's avatar
Khalique committed
2010
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
2011
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
2012
2013
2014
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
2015
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
2016
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
2017
        }
Paul's avatar
Paul committed
2018
2019
2020
2021
2022
2023
        case onnx::TensorProto::UNDEFINED:
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::UINT32:
        case onnx::TensorProto::UINT64:
        case onnx::TensorProto::COMPLEX64:
Paul's avatar
Paul committed
2024
2025
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
2026
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
2027
2028
    }

Khalique's avatar
Khalique committed
2029
    static literal
2030
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
2031
    {
Khalique's avatar
Khalique committed
2032
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
2033
        if(dims.empty())
2034
            return literal{{shape_type}, data};
2035
2036
2037
        return literal{{shape_type, dims}, data};
    }

2038
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
2039
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
2040
2041
    {
        if(dims.empty())
2042
            return literal{{shape_type}, data.begin(), data.end()};
2043
        return literal{{shape_type, dims}, data.begin(), data.end()};
2044
2045
    }

2046
    static shape parse_type(const onnx::TypeProto& t, const unsigned int batch_size)
Paul's avatar
Paul committed
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
Paul's avatar
Paul committed
2057
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
2058
2059
2060
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
Paul's avatar
Paul committed
2061
2062
2063
2064
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::BOOL:
        case onnx::TensorProto::UNDEFINED:
Paul's avatar
Paul committed
2065
2066
        case onnx::TensorProto::COMPLEX64:
        case onnx::TensorProto::COMPLEX128:
Paul's avatar
Paul committed
2067
            break; // throw std::runtime_error("Unsupported type");
Paul's avatar
Paul committed
2068
2069
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
2070
        auto&& tensor_dims = t.tensor_type().shape().dim();
2071
2072
2073
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
2074
2075
                       [&](auto&& d) -> std::size_t {
                           if(d.has_dim_value())
2076
                           {
2077
2078
2079
                               if(static_cast<int>(d.dim_value()) <= 0)
                                   return batch_size;
                               return d.dim_value();
2080
                           }
2081
                           return batch_size;
2082
                       });
2083
2084
2085
        if(dims.empty())
            return {shape_type};

Paul's avatar
Paul committed
2086
2087
        return {shape_type, dims};
    }
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
2110
2111
2112

    void check_arg_empty(const argument& arg, const std::string& msg)
    {
Shucai Xiao's avatar
Shucai Xiao committed
2113
        if(arg.empty())
Shucai Xiao's avatar
Shucai Xiao committed
2114
2115
2116
2117
        {
            MIGRAPHX_THROW(msg);
        }
    }
Paul's avatar
Paul committed
2118
2119
};

Paul Fultz II's avatar
Paul Fultz II committed
2120
2121
template <class... Ts>
program parse_onnx_from(onnx_options options, Ts&&... xs)
Paul's avatar
Paul committed
2122
2123
{
    onnx_parser parser;
2124
    parser.batch_size = options.batch_size;
Paul's avatar
Paul committed
2125
2126
2127
2128
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
Paul Fultz II's avatar
Paul Fultz II committed
2129
        parser.parse_from(std::forward<Ts>(xs)...);
Paul's avatar
Paul committed
2130
2131
2132
2133
2134
2135
2136
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
Paul Fultz II's avatar
Paul Fultz II committed
2137
    parser.parse_from(std::forward<Ts>(xs)...);
Paul's avatar
Paul committed
2138
2139
2140
2141
#endif
    return std::move(parser.prog);
}

Paul Fultz II's avatar
Paul Fultz II committed
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
program parse_onnx(const std::string& name, onnx_options options)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    return parse_onnx_from(options, input);
}

program parse_onnx_buffer(const std::string& buffer, onnx_options options)
{
    return parse_onnx_from(options, buffer.data(), buffer.size());
}

program parse_onnx_buffer(const void* data, std::size_t size, onnx_options options)
{
    return parse_onnx_from(options, data, size);
}

Paul's avatar
Paul committed
2158
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
2159
} // namespace migraphx