onnx.cpp 81.3 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
19
#include <migraphx/pad_calc.hpp>
Paul's avatar
Paul committed
20
21

namespace migraphx {
Paul's avatar
Paul committed
22
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
27
28
29
30
31
32
    struct node_info
    {
        attribute_map attributes{};
        std::size_t num_outputs = 1;
    };
    using node_map = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
33
    using op_func =
34
        std::function<std::vector<instruction_ref>(node_info, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
35
36
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
37
38
39
    program prog            = program();
    bool is_pytorch         = false;
    unsigned int batch_size = 1;
Paul's avatar
Paul committed
40
41

    std::unordered_map<std::string, op_func> ops;
42
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
43
44
45

    onnx_parser()
    {
46
        // sort onnx operator alphabetically through name
Khalique's avatar
Khalique committed
47
        add_generic_op("Abs", op::abs{});
48
49
50
51
52
53
54
55
56
        add_generic_op("Acos", op::acos{});
        add_generic_op("Acosh", op::acosh{});
        add_generic_op("Asin", op::asin{});
        add_generic_op("Asinh", op::asinh{});
        add_generic_op("Atan", op::atan{});
        add_generic_op("Atanh", op::atanh{});
        add_generic_op("Ceil", op::ceil{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Cosh", op::cosh{});
Shucai Xiao's avatar
Shucai Xiao committed
57
        add_generic_op("Erf", op::erf{});
58
        add_generic_op("Exp", op::exp{});
Khalique's avatar
Khalique committed
59
        add_generic_op("Dropout", op::identity{});
60
61
        add_generic_op("Log", op::log{});
        add_generic_op("Floor", op::floor{});
Khalique's avatar
Khalique committed
62
        add_generic_op("Identity", op::identity{});
63
64
65
66
        add_generic_op("Relu", op::relu{});
        add_generic_op("Round", op::round{});
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Sign", op::sign{});
Shucai Xiao's avatar
Shucai Xiao committed
67
        add_generic_op("Sin", op::sin{});
68
        add_generic_op("Sinh", op::sinh{});
69
        add_generic_op("Sqrt", op::sqrt{});
70
71
        add_generic_op("Tan", op::tan{});
        add_generic_op("Tanh", op::tanh{});
Paul's avatar
Paul committed
72

Khalique's avatar
Khalique committed
73
74
75
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
Shucai Xiao's avatar
Shucai Xiao committed
76
        add_binary_op("Pow", op::pow{});
Shucai Xiao's avatar
Shucai Xiao committed
77
        add_binary_op("PRelu", op::prelu{});
78
        add_binary_op("Sub", op::sub{});
Khalique's avatar
Khalique committed
79

Khalique's avatar
Khalique committed
80
81
82
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
83

84
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
85
86
        add_mem_op("ArgMax", &onnx_parser::parse_arg_op<op::argmax>);
        add_mem_op("ArgMin", &onnx_parser::parse_arg_op<op::argmin>);
87
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
88
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
89
        add_mem_op("Clip", &onnx_parser::parse_clip);
90
        add_mem_op("Concat", &onnx_parser::parse_concat);
Paul's avatar
Paul committed
91
        add_mem_op("Constant", &onnx_parser::parse_constant);
92
93
94
95
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
        add_mem_op("Conv", &onnx_parser::parse_conv<op::convolution>);
        add_mem_op("ConvInteger", &onnx_parser::parse_conv<op::quant_convolution>);
kahmed10's avatar
kahmed10 committed
96
        add_mem_op("ConvTranspose", &onnx_parser::parse_conv_transpose);
97
98
        add_mem_op("Elu", &onnx_parser::parse_elu);
        add_mem_op("Expand", &onnx_parser::parse_expand);
Paul's avatar
Paul committed
99
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
100
        add_mem_op("Gather", &onnx_parser::parse_gather);
Paul's avatar
Paul committed
101
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
102
103
104
105
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GRU", &onnx_parser::parse_gru);
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
kahmed10's avatar
kahmed10 committed
106
        add_mem_op("InstanceNormalization", &onnx_parser::parse_instancenorm);
107
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
108
        add_mem_op("LogSoftmax", &onnx_parser::parse_softmax<op::logsoftmax>);
109
110
111
112
        add_mem_op("LRN", &onnx_parser::parse_lrn);
        add_mem_op("MatMul", &onnx_parser::parse_matmul<op::dot>);
        add_mem_op("MatMulInteger", &onnx_parser::parse_matmul<op::quant_dot>);
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
Shucai Xiao's avatar
Shucai Xiao committed
113
114
115
116
117
        add_mem_op("ReduceL1", &onnx_parser::parse_reduce_l1);
        add_mem_op("ReduceL2", &onnx_parser::parse_reduce_l2);
        add_mem_op("ReduceLogSum", &onnx_parser::parse_reduce_log_sum);
        add_mem_op("ReduceLogSumExp", &onnx_parser::parse_reduce_log_sum_exp);
        add_mem_op("ReduceMax", &onnx_parser::parse_reduce_oper<op::reduce_max>);
Shucai Xiao's avatar
Shucai Xiao committed
118
        add_mem_op("ReduceMean", &onnx_parser::parse_reduce_oper<op::reduce_mean>);
Shucai Xiao's avatar
Shucai Xiao committed
119
        add_mem_op("ReduceMin", &onnx_parser::parse_reduce_oper<op::reduce_min>);
Shucai Xiao's avatar
Shucai Xiao committed
120
121
122
        add_mem_op("ReduceProd", &onnx_parser::parse_reduce_oper<op::reduce_prod>);
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_oper<op::reduce_sum>);
        add_mem_op("ReduceSumSquare", &onnx_parser::parse_reduce_sum_square);
123
124
125
126
127
128
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
        add_mem_op("RNN", &onnx_parser::parse_rnn);
        add_mem_op("Pad", &onnx_parser::parse_pad);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("Slice", &onnx_parser::parse_slice);
        add_mem_op("Softmax", &onnx_parser::parse_softmax<op::softmax>);
129
        add_mem_op("Split", &onnx_parser::parse_split);
130
131
132
133
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
134
135
136
137
138
139
140

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
141
142
143
144
145
146
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
147
148
149
150
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
151
152
153
154
155
156
157
158
159
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
160
161
162
163
164
165
166
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
167
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
168
169
170
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
171

172
    template <class T>
Khalique's avatar
Khalique committed
173
    void add_binary_op(std::string name, T x)
174
    {
175
        add_op(name, [this, x](node_info info, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
176
            if(args.size() != 2)
Paul's avatar
Paul committed
177
                MIGRAPHX_THROW("binary operators should have 2 operands");
178
            if(contains(info.attributes, "broadcast") and contains(info.attributes, "axis"))
179
            {
180
                uint64_t broadcasted = parse_value(info.attributes.at("broadcast")).at<uint64_t>();
181
182
                if(broadcasted != 0)
                {
183
                    uint64_t axis = parse_value(info.attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
184
185
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
186
187
                    return prog.add_instruction(x, args[0], l);
                }
188
                return prog.add_instruction(x, args);
189
            }
Paul's avatar
Paul committed
190
            else
191
            {
Khalique's avatar
Khalique committed
192
                return add_broadcastable_binary_op(args[0], args[1], x);
193
194
195
196
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
197
198
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
199
200
201
202
203
204
205
206
207
208
209
210
211
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
212
        if(s0.size() > s1.size())
213
214
215
216
217
218
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
219
220
221
222
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
223
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
224
                           if(a != b and a != 1 and b != 1)
225
                           {
Shucai Xiao's avatar
Shucai Xiao committed
226
227
228
229
230
231
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
232
233
234
235

        return out_lens;
    }

Shucai Xiao's avatar
Shucai Xiao committed
236
237
    instruction_ref make_contiguous(instruction_ref ins)
    {
Shucai Xiao's avatar
Shucai Xiao committed
238
        if(ins->get_shape().standard())
Shucai Xiao's avatar
Shucai Xiao committed
239
240
241
242
243
244
245
        {
            return ins;
        }

        return prog.add_instruction(op::contiguous{}, ins);
    }

Khalique's avatar
Khalique committed
246
247
248
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
249
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
250
251
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
252
253
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
254
            auto out_lens = compute_broadcasted_lens(s0, s1);
255
256
257
258
259
260
261
262
263

            auto l0 = arg0;
            if(arg0->get_shape().lens() != out_lens)
                l0 = prog.add_instruction(op::multibroadcast{out_lens}, arg0);

            auto l1 = arg1;
            if(arg1->get_shape().lens() != out_lens)
                l1 = prog.add_instruction(op::multibroadcast{out_lens}, arg1);

Khalique's avatar
Khalique committed
264
265
266
267
268
269
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
270
271
    }

Paul's avatar
Paul committed
272
    template <class T>
Paul's avatar
Paul committed
273
274
    void add_generic_op(std::string name, T x)
    {
275
        add_op(name, [this, x](const node_info&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
276
277
278
279
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
280
    template <class T>
Khalique's avatar
Khalique committed
281
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
282
    {
283
        add_op(name, [this, x](const node_info&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
284
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
285
286
287
288
289
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
290
        });
Khalique's avatar
Khalique committed
291
292
    }

kahmed10's avatar
kahmed10 committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
    template <class T>
    std::vector<int64_t> to_int64_vector(const std::vector<T>& input_vector)
    {
        std::vector<int64_t> output_vector(input_vector.begin(), input_vector.end());
        return output_vector;
    }

    instruction_ref
    add_bias(const std::vector<instruction_ref>& args, instruction_ref curr_ins, uint64_t axis)
    {
        if(args.size() == 3)
        {
            auto bias_bcast =
                prog.add_instruction(op::broadcast{axis, curr_ins->get_shape().lens()}, args[2]);
            return prog.add_instruction(op::add{}, curr_ins, bias_bcast);
        }
        return curr_ins;
    }

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
    template <class Op>
    void check_asym_padding(instruction_ref& ins,
                            std::vector<int64_t>& padding,
                            Op& op,
                            float pad_val = 0)
    {
        if(padding[0] != padding[2] || padding[1] != padding[3])
        {
            padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
            ins     = prog.add_instruction(op::pad{padding, pad_val}, ins);
        }
        else
        {
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
        }
    }

330
331
    instruction_ref
    parse_clip(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
332
    {
kahmed10's avatar
kahmed10 committed
333
334
335
336
337
338
339
        auto input_lens = args[0]->get_shape().lens();
        instruction_ref min_arg;
        instruction_ref max_arg;
        bool min_used = false;
        bool max_used = false;

        if(args.size() == 3)
Khalique's avatar
Khalique committed
340
        {
kahmed10's avatar
kahmed10 committed
341
342
343
344
            min_arg  = args[1];
            max_arg  = args[2];
            min_used = true;
            max_used = true;
Khalique's avatar
Khalique committed
345
        }
kahmed10's avatar
kahmed10 committed
346
        else if(args.size() == 2)
Khalique's avatar
Khalique committed
347
        {
kahmed10's avatar
kahmed10 committed
348
349
350
351
352
353
354
355
356
357
358
359
360
            min_arg  = args[1];
            min_used = true;
        }
        // if using previous opset for attributes
        else if(contains(info.attributes, "min") and contains(info.attributes, "max"))
        {

            float min_val = parse_value(info.attributes.at("min")).at<float>();
            float max_val = parse_value(info.attributes.at("max")).at<float>();
            min_arg       = prog.add_literal(min_val);
            max_arg       = prog.add_literal(max_val);
            min_used      = true;
            max_used      = true;
Khalique's avatar
Khalique committed
361
        }
kahmed10's avatar
kahmed10 committed
362
363
364
365
366
367
368
369
370
371
372
373
374

        if(min_used)
            min_arg = prog.add_instruction(op::multibroadcast{input_lens}, min_arg);

        if(max_used)
            max_arg = prog.add_instruction(op::multibroadcast{input_lens}, max_arg);

        if(min_used and max_used)
            return prog.add_instruction(op::clip{}, args[0], min_arg, max_arg);
        if(min_used)
            return prog.add_instruction(op::max{}, args[0], min_arg);

        return prog.add_instruction(op::identity{}, args[0]);
Khalique's avatar
Khalique committed
375
376
    }

Shucai Xiao's avatar
Shucai Xiao committed
377
    template <class Op>
378
379
    instruction_ref
    parse_softmax(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
380
    {
381
        int64_t axis = 1;
382
        if(contains(info.attributes, "axis"))
383
        {
384
            axis = parse_value(info.attributes.at("axis")).at<int>();
385
386
        }

387
        return prog.add_instruction(Op{axis}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
388
389
    }

Shucai Xiao's avatar
Shucai Xiao committed
390
    template <class Op>
391
392
    instruction_ref
    parse_arg_op(const std::string&, node_info info, std::vector<instruction_ref> args)
393
    {
394
        int64_t axis = 0;
395
        if(contains(info.attributes, "axis"))
396
        {
397
            axis = static_cast<int64_t>(parse_value(info.attributes.at("axis")).at<int>());
398
399
        }

Shucai Xiao's avatar
Shucai Xiao committed
400
        int keep_dims = 1;
401
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
402
        {
403
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
404
405
        }

Shucai Xiao's avatar
Shucai Xiao committed
406
        if(keep_dims == 0)
407
        {
408
            auto ins = prog.add_instruction(Op{axis}, std::move(args));
409
            return prog.add_instruction(op::squeeze{{axis}}, ins);
410
411
412
        }
        else
        {
413
            return prog.add_instruction(Op{axis}, std::move(args));
414
        }
415
416
    }

417
418
    template <class Op>
    instruction_ref process_auto_pad_attribute(instruction_ref ins,
419
                                               node_info info,
420
421
422
                                               Op& op,
                                               const std::vector<std::size_t>& in_lens)
    {
423
        if(!contains(info.attributes, "auto_pad"))
424
425
426
427
        {
            return ins;
        }

428
        auto auto_pad = info.attributes["auto_pad"].s();
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
        if(auto_pad.find("SAME") != std::string::npos)
        {
            // calculate the padding
            std::array<std::size_t, 2> out_lens;
            out_lens[0] = (in_lens[2] + op.stride[0] - 1) / op.stride[0];
            out_lens[1] = (in_lens[3] + op.stride[1] - 1) / op.stride[1];

            std::array<std::size_t, 2> explicit_pads;
            explicit_pads[0] = (out_lens[0] - 1) * op.stride[0] + op.lengths[0] - in_lens[2];
            explicit_pads[1] = (out_lens[1] - 1) * op.stride[1] + op.lengths[1] - in_lens[3];
            op.padding[0]    = explicit_pads[0] / 2;
            op.padding[1]    = explicit_pads[1] / 2;
            explicit_pads[0] -= 2 * op.padding[0];
            explicit_pads[1] -= 2 * op.padding[1];
            std::vector<std::int64_t> pads(8, 0);
            if(explicit_pads[0] != 0 or explicit_pads[1] != 0)
            {
                if(auto_pad == "SAME_UPPER")
                {
                    pads[6] = explicit_pads[0];
                    pads[7] = explicit_pads[1];
                }
                else if(auto_pad == "SAME_LOWER")
                {
                    pads[2] = explicit_pads[0];
                    pads[3] = explicit_pads[1];
                }

                // MaxPool
                if(op.mode == "max")
                {
                    ins = prog.add_instruction(op::pad{pads, std::numeric_limits<float>::lowest()},
                                               ins);
                }
                // AveragePool
                else
                {
                    ins = prog.add_instruction(op::pad{pads}, ins);
                }
            }

            op.padding_mode = op::padding_mode_t::same;
        }

        return ins;
    }

476
    template <class Op>
Paul's avatar
Paul committed
477
    instruction_ref
478
    parse_conv(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
479
    {
480
        Op op;
481
482
        auto l0      = args[0];
        auto weights = args[1];
483
        if(contains(info.attributes, "pads"))
Paul's avatar
Paul committed
484
        {
485
            if(contains(info.attributes, "auto_pad"))
486
            {
487
488
                auto s = info.attributes["auto_pad"].s();
                if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
489
490
491
                {
                    MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
                }
492
            }
493
            std::vector<std::int64_t> padding;
494
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
495
            if(padding.size() != 4)
496
            {
Paul's avatar
Paul committed
497
                MIGRAPHX_THROW("padding should have 4 values");
498
            }
499
            check_asym_padding(l0, padding, op);
Paul's avatar
Paul committed
500
        }
501
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
502
        {
503
            copy(info.attributes["strides"].ints(), op.stride.begin());
Paul's avatar
Paul committed
504
        }
505
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
506
        {
507
            copy(info.attributes["dilations"].ints(), op.dilation.begin());
Paul's avatar
Paul committed
508
        }
509
        if(contains(info.attributes, "auto_pad"))
510
        {
511
512
            auto s = info.attributes["auto_pad"].s();
            if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
513
            {
Paul's avatar
Paul committed
514
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
515
516
            }

wsttiger's avatar
fixes  
wsttiger committed
517
            if(s.find("SAME") != std::string::npos)
518
            {
519
520
521
522
523
524
525
526
527
528
529
530
531
                op.padding_mode                 = op::padding_mode_t::same;
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];

                auto input_dims = l0->get_shape().lens();
                std::vector<int64_t> padding(input_dims.size());
                calculate_padding(
                    0, padding, input_dims[2], op.stride[0], op.dilation[0], weight_h);
                calculate_padding(
                    1, padding, input_dims[3], op.stride[1], op.dilation[1], weight_w);

                check_asym_padding(l0, padding, op);
532
533
            }
        }
534
        if(contains(info.attributes, "group"))
Khalique's avatar
Khalique committed
535
        {
536
            op.group = parse_value(info.attributes.at("group")).at<int>();
Khalique's avatar
Khalique committed
537
        }
kahmed10's avatar
kahmed10 committed
538
539
540
541
542

        auto l1 = prog.add_instruction(op, l0, args[1]);
        return add_bias(args, l1, 1);
    }

543
544
    instruction_ref
    parse_conv_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
545
546
547
548
549
    {
        op::deconvolution op;
        auto l0 = args[0];
        std::vector<std::int64_t> padding;
        bool asymm_padding = false;
550
        if(contains(info.attributes, "pads"))
kahmed10's avatar
kahmed10 committed
551
        {
552
            if(contains(info.attributes, "auto_pad"))
kahmed10's avatar
kahmed10 committed
553
            {
554
555
                auto s = info.attributes["auto_pad"].s();
                if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
kahmed10's avatar
kahmed10 committed
556
557
558
559
                {
                    MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
                }
            }
560
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
kahmed10's avatar
kahmed10 committed
561
562
563
564
565
566
567
568
569
570
571
572
573
574
            if(padding.size() != 4)
            {
                MIGRAPHX_THROW("padding should have 4 values");
            }
            if(padding[0] != padding[2] || padding[1] != padding[3])
            {
                asymm_padding = true;
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
575
        if(contains(info.attributes, "strides"))
kahmed10's avatar
kahmed10 committed
576
        {
577
            copy(info.attributes["strides"].ints(), op.stride.begin());
kahmed10's avatar
kahmed10 committed
578
        }
579
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
580
        {
581
            copy(info.attributes["dilations"].ints(), op.dilation.begin());
Paul's avatar
Paul committed
582
        }
583
        if(contains(info.attributes, "auto_pad"))
kahmed10's avatar
kahmed10 committed
584
        {
585
586
            auto s = info.attributes["auto_pad"].s();
            if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
kahmed10's avatar
kahmed10 committed
587
588
589
590
591
592
593
594
595
596
            {
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
            }

            if(s.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::same;
            }
        }

597
        if(contains(info.attributes, "group"))
kahmed10's avatar
kahmed10 committed
598
        {
599
            op.group = parse_value(info.attributes.at("group")).at<int>();
kahmed10's avatar
kahmed10 committed
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
        }

        auto l1                   = prog.add_instruction(op, l0, args[1]);
        std::vector<int64_t> dims = to_int64_vector(l1->get_shape().lens());
        std::vector<int64_t> curr_shape{dims[2], dims[3]};
        if(asymm_padding)
        {
            op::slice slice_op;
            slice_op.axes   = {0, 1, 2, 3};
            slice_op.starts = {0, 0, 0 + padding[0], 0 + padding[1]};
            slice_op.ends   = {
                dims[0], dims[1], curr_shape[0] - padding[2], curr_shape[1] - padding[3]};

            l1 = prog.add_instruction(slice_op, l1);
        }

616
        if(contains(info.attributes, "output_padding"))
kahmed10's avatar
kahmed10 committed
617
618
        {
            std::vector<int64_t> output_padding;
619
            copy(info.attributes["output_padding"].ints(), std::back_inserter(output_padding));
kahmed10's avatar
kahmed10 committed
620
621
622
623
            output_padding = {0, 0, 0, 0, 0, 0, output_padding[0], output_padding[1]};
            l1             = prog.add_instruction(op::pad{output_padding}, l1);
        }

624
        if(contains(info.attributes, "output_shape"))
kahmed10's avatar
kahmed10 committed
625
626
        {
            std::vector<int64_t> output_shape;
627
            copy(info.attributes["output_shape"].ints(), std::back_inserter(output_shape));
kahmed10's avatar
kahmed10 committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
            dims       = to_int64_vector(l1->get_shape().lens());
            curr_shape = {dims[2], dims[3]};
            if(curr_shape != output_shape)
            {
                std::vector<int64_t> target_padding = {0,
                                                       0,
                                                       0,
                                                       0,
                                                       0,
                                                       0,
                                                       output_shape[0] - curr_shape[0],
                                                       output_shape[1] - curr_shape[1]};
                l1 = prog.add_instruction(op::pad{target_padding}, l1);
            }
        }

        return add_bias(args, l1, 1);
Paul's avatar
Paul committed
645
    }
Paul's avatar
Paul committed
646

647
648
    instruction_ref
    parse_pooling(const std::string& name, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
649
    {
Khalique's avatar
Khalique committed
650
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
651
        auto l0 = args[0];
Khalique's avatar
Khalique committed
652
        if(starts_with(name, "Global"))
653
        {
Khalique's avatar
Khalique committed
654
655
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
656
        }
657

658
        if(contains(info.attributes, "pads"))
Paul's avatar
Paul committed
659
        {
660
            if(contains(info.attributes, "auto_pad"))
661
            {
662
                auto s = info.attributes["auto_pad"].s();
663
664
665
666
667
668
669
                if(to_upper(s) != "NOTSET")
                {
                    MIGRAPHX_THROW(
                        "PARSE_POOLING: auto_pad and padding cannot be specified simultaneously");
                }
            }

670
            std::vector<std::int64_t> padding;
671
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
672
            if(padding.size() != 4)
673
            {
674
                MIGRAPHX_THROW("PARSE_POOLING: padding should have 4 values");
675
            }
676
677
678
679
            float pad_val = 0;
            if(op.mode == "max")
                pad_val = std::numeric_limits<float>::lowest();
            check_asym_padding(l0, padding, op, pad_val);
Paul's avatar
Paul committed
680
        }
681

682
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
683
        {
684
            copy(info.attributes["strides"].ints(), op.stride.begin());
Paul's avatar
Paul committed
685
        }
686
        if(contains(info.attributes, "kernel_shape"))
Paul's avatar
Paul committed
687
        {
688
            copy(info.attributes["kernel_shape"].ints(), op.lengths.begin());
Paul's avatar
Paul committed
689
        }
690

691
        if(contains(info.attributes, "auto_pad"))
692
        {
693
            auto in_lens = args[0]->get_shape().lens();
694
            l0           = process_auto_pad_attribute(l0, info, op, in_lens);
695
696
        }

697
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
698
699
    }

Paul's avatar
Paul committed
700
    instruction_ref
701
    parse_reshape(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
702
    {
703
        op::reshape op;
Paul's avatar
Paul committed
704
705
        if(args.size() == 1)
        {
706
            literal s = parse_value(info.attributes.at("shape"));
707
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
708
709
710
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
711
            auto s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
712
            check_arg_empty(s, "Reshape: dynamic shape is not supported");
Paul's avatar
Paul committed
713
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
714
        }
715

Shucai Xiao's avatar
Shucai Xiao committed
716
        return prog.add_instruction(op, make_contiguous(args[0]));
Paul's avatar
Paul committed
717
718
    }

Paul's avatar
Paul committed
719
    instruction_ref
720
    parse_flatten(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
721
    {
722
        int64_t axis = 1;
723
        if(contains(info.attributes, "axis"))
Paul's avatar
Paul committed
724
        {
725
            axis = parse_value(info.attributes.at("axis")).at<int>();
Paul's avatar
Paul committed
726
        }
727
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
728
729
    }

730
    instruction_ref
731
    parse_squeeze(const std::string&, node_info info, std::vector<instruction_ref> args)
732
733
    {
        op::squeeze op;
734
        literal s = parse_value(info.attributes.at("axes"));
735
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
736
        return prog.add_instruction(op, make_contiguous(args[0]));
737
738
739
    }

    instruction_ref
740
    parse_unsqueeze(const std::string&, node_info info, std::vector<instruction_ref> args)
741
742
    {
        op::unsqueeze op;
743
        literal s = parse_value(info.attributes.at("axes"));
744
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
745
        return prog.add_instruction(op, make_contiguous(args[0]));
746
747
    }

Scott Thornton's avatar
Scott Thornton committed
748
    instruction_ref
749
    parse_concat(const std::string&, node_info info, std::vector<instruction_ref> args)
Scott Thornton's avatar
Scott Thornton committed
750
    {
Shucai Xiao's avatar
Shucai Xiao committed
751
        // change to hande axis to be negative values
752
        if(!contains(info.attributes, "axis"))
Shucai Xiao's avatar
Shucai Xiao committed
753
754
755
756
        {
            MIGRAPHX_THROW("PARSE_CONCAT: attribute axis is required!");
        }

757
        int axis = parse_value(info.attributes.at("axis")).at<int>();
Scott Thornton's avatar
Scott Thornton committed
758
759
760
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
761

762
    instruction_ref
763
    parse_gather(const std::string&, node_info info, std::vector<instruction_ref> args)
764
    {
765
        int axis = 0;
766
        if(contains(info.attributes, "axis"))
767
        {
768
            axis = parse_value(info.attributes.at("axis")).at<int>();
769
        }
770

771
        op::gather op{axis};
Shucai Xiao's avatar
Shucai Xiao committed
772
        return prog.add_instruction(op, make_contiguous(args[0]), make_contiguous(args[1]));
773
774
    }

775
    instruction_ref
776
    parse_slice(const std::string&, node_info info, std::vector<instruction_ref> args)
777
778
    {
        op::slice op;
Shucai Xiao's avatar
Shucai Xiao committed
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800

        // slice can have up to 5 inputs, we first check the 5th one
        // to decide whether MIGRAPHX can handle this slice
        if(args.size() == 5)
        {
            migraphx::argument step_arg = args.back()->eval();
            check_arg_empty(step_arg, "PARSE_SLICE: cannot handle variable steps for slice");
            std::vector<int> steps;
            step_arg.visit([&](auto s) { steps.assign(s.begin(), s.end()); });
            if(!std::all_of(steps.begin(), steps.end(), [](auto s) { return s == 1; }))
            {
                MIGRAPHX_THROW("PARSE_SLICE: cannot handle step other than 1");
            }
        }

        if(args.size() >= 4)
        {
            migraphx::argument axes_arg = args.at(3)->eval();
            check_arg_empty(axes_arg, "PARSE_SLICE: cannot handle variable axes for slice");
            axes_arg.visit([&](auto s) { op.axes.assign(s.begin(), s.end()); });
        }
        else if(contains(info.attributes, "axes"))
801
        {
802
            literal s = parse_value(info.attributes.at("axes"));
803
804
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
Shucai Xiao's avatar
Shucai Xiao committed
805
806

        if(args.size() >= 3)
Khalique's avatar
Khalique committed
807
        {
Shucai Xiao's avatar
Shucai Xiao committed
808
809
810
            migraphx::argument end_arg = args.at(2)->eval();
            check_arg_empty(end_arg, "PARSE_SLICE: cannot handle variable ends for slice");
            end_arg.visit([&](auto s) { op.ends.assign(s.begin(), s.end()); });
Khalique's avatar
Khalique committed
811
        }
Shucai Xiao's avatar
Shucai Xiao committed
812
        else if(contains(info.attributes, "ends"))
813
        {
814
            op.ends = get_indices(info.attributes.at("ends"));
815
        }
Shucai Xiao's avatar
Shucai Xiao committed
816
817
818
819
820
821
822
823

        if(args.size() >= 2)
        {
            migraphx::argument start_arg = args.at(1)->eval();
            check_arg_empty(start_arg, "PARSE_SLICE: cannot handle variable starts for slice");
            start_arg.visit([&](auto s) { op.starts.assign(s.begin(), s.end()); });
        }
        else if(contains(info.attributes, "starts"))
824
        {
825
            literal s = parse_value(info.attributes.at("starts"));
826
827
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
Shucai Xiao's avatar
Shucai Xiao committed
828

829
830
831
        return prog.add_instruction(op, args[0]);
    }

832
833
    instruction_ref
    parse_constant(const std::string&, node_info info, const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
834
    {
835
        literal v = parse_value(info.attributes.at("value"));
836
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
837
        if(v.get_shape().elements() == 0)
838
839
840
841
        {
            return prog.add_literal(literal{});
        }

842
        auto dim_size = info.attributes.at("value").t().dims_size();
843
844
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
845
        {
846
            migraphx::shape scalar_shape{v.get_shape().type()};
847
848
849
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
850
851
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
852

Paul's avatar
Paul committed
853
    instruction_ref
854
    parse_gemm(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
855
856
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
857
        float beta  = 1.0f;
Paul's avatar
Paul committed
858
859
        bool transa = false;
        bool transb = false;
860
        if(contains(info.attributes, "alpha"))
Paul's avatar
Paul committed
861
        {
862
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Paul's avatar
Paul committed
863
        }
864
        if(contains(info.attributes, "beta"))
Paul's avatar
Paul committed
865
        {
866
            beta = parse_value(info.attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
867
        }
868
        if(contains(info.attributes, "transA"))
Paul's avatar
Paul committed
869
        {
870
            transa = parse_value(info.attributes.at("transA")).at<bool>();
Paul's avatar
Paul committed
871
        }
872
        if(contains(info.attributes, "transB"))
Paul's avatar
Paul committed
873
        {
874
            transb = parse_value(info.attributes.at("transB")).at<bool>();
Paul's avatar
Paul committed
875
        }
876
877
878
879
880
881

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

882
883
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
884
885
        if(args.size() == 3)
        {
886
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
887
            {
Shucai Xiao's avatar
Shucai Xiao committed
888
                auto out_lens   = l1->get_shape().lens();
889
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
890
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
891
892
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
893
                {
894
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
895
                }
896
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
897
            }
Paul's avatar
Paul committed
898
        }
899
900

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
901
902
    }

903
    template <class Op>
904
    instruction_ref
905
    parse_matmul(const std::string&, const node_info&, std::vector<instruction_ref> args)
906
    {
Shucai Xiao's avatar
Shucai Xiao committed
907
908
        auto l0      = args[0];
        auto l1      = args[1];
909
910
911
912
913
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
914
        if(l0_lens.size() == 1)
915
916
917
918
919
920
921
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
922
        if(l1_lens.size() == 1)
923
924
925
926
927
928
929
930
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
931
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
932
933
934
935
936
937
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
938
            l0_broadcasted_lens = output_lens;
939
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
940
            l1_broadcasted_lens = output_lens;
941
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
942
            if(l0_lens != l0_broadcasted_lens)
943
944
945
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
946
            if(l1_lens != l1_broadcasted_lens)
947
948
949
950
951
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

952
        auto dot_res     = prog.add_instruction(Op{1, 0}, bl0, bl1);
953
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
954
        if(is_a_prepended)
955
956
957
958
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
959
        if(is_b_appended)
960
961
962
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
963

964
965
966
        return dot_res;
    }

967
    instruction_ref
968
    parse_batchnorm(const std::string&, node_info info, std::vector<instruction_ref> args)
969
    {
Scott Thornton's avatar
Scott Thornton committed
970
971
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
972
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
973
        if(contains(info.attributes, "epsilon"))
974
        {
975
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
976
        }
977
        if(contains(info.attributes, "momentum"))
978
        {
979
            momentum = parse_value(info.attributes.at("momentum")).at<float>();
980
        }
981
        if(contains(info.attributes, "spatial"))
982
        {
983
            bn_mode = (parse_value(info.attributes.at("spatial")).at<uint64_t>() > 0)
984
985
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
986
        }
Paul's avatar
Paul committed
987
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
988
        return prog.add_instruction(op, std::move(args));
989
990
    }

991
992
    instruction_ref
    parse_instancenorm(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
993
994
995
996
997
998
    {
        // y = scale * ( x - mean ) / sqrt ( variance + epsilon ) + bias
        // mean = reduce_mean({H, W}, x)
        // variance = reduce_mean({H, W}, (x - mean)^2)

        float epsilon = 1e-5f;
999
        if(contains(info.attributes, "epsilon"))
kahmed10's avatar
kahmed10 committed
1000
        {
1001
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
kahmed10's avatar
kahmed10 committed
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
        }
        auto x     = args[0];
        auto scale = args[1];
        auto bias  = args[2];
        auto dims  = x->get_shape().lens();

        auto mean            = prog.add_instruction(op::reduce_mean{{2, 3}}, x);
        auto mean_bcast      = prog.add_instruction(op::multibroadcast{dims}, mean);
        auto l0              = prog.add_instruction(op::sqdiff{}, x, mean_bcast);
        auto variance        = prog.add_instruction(op::reduce_mean{{2, 3}}, l0);
        auto l1              = prog.add_instruction(op::sub{}, x, mean_bcast);
        auto epsilon_literal = prog.add_literal(epsilon);
        auto epsilon_bcast   = prog.add_instruction(op::multibroadcast{dims}, epsilon_literal);
        auto variance_bcast  = prog.add_instruction(op::multibroadcast{dims}, variance);
        auto l2              = prog.add_instruction(op::add{}, variance_bcast, epsilon_bcast);
        auto l3              = prog.add_instruction(op::rsqrt{}, l2);
        auto l4              = prog.add_instruction(op::mul{}, l1, l3);
        auto scale_bcast     = prog.add_instruction(op::broadcast{1, dims}, scale);
        ;
        auto bias_bcast = prog.add_instruction(op::broadcast{1, dims}, bias);
        auto l5         = prog.add_instruction(op::mul{}, l4, scale_bcast);
        return prog.add_instruction(op::add{}, l5, bias_bcast);
    }

1026
1027
    instruction_ref
    parse_leaky_relu(const std::string&, node_info info, std::vector<instruction_ref> args)
1028
    {
Khalique's avatar
Khalique committed
1029
        float alpha = 0.01; // default alpha val for leaky relu
1030
        if(contains(info.attributes, "alpha"))
1031
        {
1032
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
1033
1034
1035
1036
1037
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

1038
    instruction_ref parse_elu(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1039
1040
    {
        float alpha = 1.0; // default alpha val for elu
1041
        if(contains(info.attributes, "alpha"))
Khalique's avatar
Khalique committed
1042
        {
1043
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Khalique's avatar
Khalique committed
1044
1045
1046
1047
1048
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

1049
    instruction_ref parse_lrn(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1050
1051
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
1052
1053
1054
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
1055
1056
1057
1058
1059
1060
1061
1062
        if(contains(info.attributes, "alpha"))
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
        if(contains(info.attributes, "beta"))
            beta = parse_value(info.attributes.at("beta")).at<float>();
        if(contains(info.attributes, "bias"))
            bias = parse_value(info.attributes.at("bias")).at<float>();
        if(contains(info.attributes, "size"))
            size = parse_value(info.attributes.at("size")).at<int>();
Khalique's avatar
Khalique committed
1063
1064
1065
1066
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

1067
1068
    instruction_ref
    parse_imagescaler(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1069
1070
1071
    {
        float scale = 1.0;
        std::vector<float> bias{};
1072
        if(contains(info.attributes, "scale"))
Khalique's avatar
Khalique committed
1073
        {
1074
            scale = parse_value(info.attributes.at("scale")).at<float>();
Khalique's avatar
Khalique committed
1075
1076
        }

1077
        if(contains(info.attributes, "bias"))
Khalique's avatar
Khalique committed
1078
        {
1079
            auto&& bias_floats = info.attributes["bias"].floats();
Khalique's avatar
Khalique committed
1080
1081
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
Shucai Xiao's avatar
Shucai Xiao committed
1082
1083
1084
        auto input_shape       = args.front()->get_shape();
        auto const& input_lens = input_shape.lens();
        auto input_type        = input_shape.type();
Khalique's avatar
Khalique committed
1085

Shucai Xiao's avatar
Shucai Xiao committed
1086
1087
        auto scale_val = prog.add_literal(literal{shape{input_type}, {scale}});
        auto bias_vals = prog.add_literal(literal{shape{input_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
1088

1089
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
1090
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
1091
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
1092
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
1093
    }
Khalique's avatar
Khalique committed
1094

Khalique's avatar
Khalique committed
1095
    instruction_ref
1096
    parse_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1097
1098
    {
        std::vector<int64_t> perm{};
1099
        if(contains(info.attributes, "perm"))
Khalique's avatar
Khalique committed
1100
        {
1101
            auto&& perm_vals = info.attributes["perm"].ints();
Khalique's avatar
Khalique committed
1102
1103
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
1104
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
1105
1106
    }

1107
    instruction_ref parse_pad(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1108
1109
1110
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
1111
        if(contains(info.attributes, "pads"))
Khalique's avatar
Khalique committed
1112
        {
1113
            auto&& pad_vals = info.attributes["pads"].ints();
Khalique's avatar
Khalique committed
1114
1115
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
1116
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
1117
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
1118
1119
1120
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
1121
        if(contains(info.attributes, "value"))
Khalique's avatar
Khalique committed
1122
        {
1123
            value = parse_value(info.attributes.at("value")).at<float>();
Khalique's avatar
Khalique committed
1124
        }
1125
        if(contains(info.attributes, "mode"))
Khalique's avatar
Khalique committed
1126
        {
1127
            auto mode = info.attributes.at("mode").s();
Khalique's avatar
Khalique committed
1128
1129
1130
1131
1132
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
1133
1134
1135
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
1136
    parse_shape(const std::string&, const node_info&, std::vector<instruction_ref> args)
1137
1138
    {
        if(args.size() != 1)
1139
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
1152
1153
    instruction_ref
    parse_constant_fill(const std::string&, node_info info, std::vector<instruction_ref> args)
1154
1155
1156
1157
1158
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

1159
        if(contains(info.attributes, "dtype"))
1160
        {
1161
            dtype = parse_value(info.attributes.at("dtype")).at<int>();
1162
        }
Shucai Xiao's avatar
Shucai Xiao committed
1163
        shape::type_t type = get_type(dtype);
1164

1165
        if(contains(info.attributes, "input_as_shape"))
1166
        {
1167
            input_as_shape = parse_value(info.attributes.at("input_as_shape")).at<int>();
1168
1169
        }

1170
        if(contains(info.attributes, "value"))
1171
        {
1172
            value = parse_value(info.attributes.at("value")).at<float>();
1173
1174
        }

1175
        if(contains(info.attributes, "extra_shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1176
        {
1177
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
1178
1179
        }

1180
1181
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1182
            if(args.size() != 1)
1183
            {
1184
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
1185
1186
            }

1187
            if(contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1188
            {
1189
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
1190
                               "at the same time");
1191
1192
            }

1193
            migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1194
            check_arg_empty(in, "ConstantFill: dynamic shape is not supported");
1195

1196
1197
1198
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
1199
1200
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1201
1202
1203
        }
        else if(input_as_shape == 0)
        {
1204
            if(!contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1205
            {
1206
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
1207
1208
            }

1209
            literal ls = parse_value(info.attributes.at("shape"));
1210
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
1211
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
1212
            migraphx::shape s{type, dims};
1213
1214
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1215
1216
1217
        }
        else
        {
1218
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
1219
1220
1221
        }
    }

1222
1223
    instruction_ref
    parse_constant_of_shape(const std::string&, node_info info, std::vector<instruction_ref> args)
1224
1225
    {
        literal l_val{};
1226
        if(contains(info.attributes, "value"))
1227
        {
1228
            l_val = parse_value(info.attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
1229
            if(l_val.get_shape().elements() != 1)
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
1241

Shucai Xiao's avatar
Shucai Xiao committed
1242
        if(args.empty())
1243
        {
Shucai Xiao's avatar
Shucai Xiao committed
1244
            MIGRAPHX_THROW("ConstantOfShape : must have 1 input!");
1245
1246
1247
        }
        else
        {
1248
1249
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
1250
            if(args[0]->get_shape().elements() == 0)
1251
            {
1252
                s = migraphx::shape{type, {1}, {0}};
1253
            }
1254
1255
1256
            else
            {
                migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1257
                check_arg_empty(in, "ConstantOfShape: dynamic shape is not supported");
1258

1259
1260
1261
1262
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
1263

Shucai Xiao's avatar
Shucai Xiao committed
1264
            literal l_out{};
1265
            l_val.visit([&](auto val) {
Shucai Xiao's avatar
Shucai Xiao committed
1266
                using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
1267
                // l_val contains only one element
1268
                std::vector<val_type> out_vec(s.elements(), val.front());
1269
1270
1271
1272
1273
1274
1275
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1276
    instruction_ref
1277
    parse_expand(const std::string&, const node_info&, std::vector<instruction_ref> args)
1278
    {
Shucai Xiao's avatar
Shucai Xiao committed
1279
        auto in_lens             = args[0]->get_shape().lens();
1280
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1281
        check_arg_empty(arg_s, "Expand: dynamic shape is not supported");
1282
1283
1284
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
Shucai Xiao's avatar
Shucai Xiao committed
1285
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
1286
1287
    }

Shucai Xiao's avatar
Shucai Xiao committed
1288
    std::vector<instruction_ref>
1289
    parse_rnn(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1290
1291
    {
        migraphx::shape input_shape = args[0]->get_shape();
1292
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
1293

1294
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
1295
        {
1296
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1297
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1298
1299
1300
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
1301
1302
1303
1304
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1305
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
1306
        {
1307
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
1308
1309
        }

1310
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1311
1312
        if(direction == "bidirectional")
        {
1313
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1314
1315
1316
        }
        else if(direction == "reverse")
        {
1317
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1318
1319
        }

1320
        std::vector<std::string> vec_names{"tanh"};
1321
        if(contains(info.attributes, "activations"))
1322
        {
1323
            auto names = info.attributes.at("activations").strings();
1324
            vec_names.clear();
1325
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1326
1327
1328
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1329
1330
        }

1331
1332
1333
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1334
        if(name_it != vec_names.end())
1335
1336
1337
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1338

Shucai Xiao's avatar
Shucai Xiao committed
1339
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1340
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1341
        // if only one actv function is provided, we use it in both
1342
        // forward and reverse direction
1343
        if(dirct == op::rnn_direction::bidirectional)
1344
        {
Shucai Xiao's avatar
Shucai Xiao committed
1345
            if(vec_names.size() == 1)
1346
1347
1348
1349
1350
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1351
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1352
1353
1354
1355
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& fn) { return map_actv_funcs[fn]; });
Shucai Xiao's avatar
Shucai Xiao committed
1356

Shucai Xiao's avatar
Shucai Xiao committed
1357
1358
        // To be added later
        float clip = 0.0;
1359
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
1360
        {
1361
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
1362
1363
        }

1364
1365
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1366
        if(args.size() < 6)
1367
1368
1369
1370
1371
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1372
1373
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1374
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1375

1376
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1377
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1378

Shucai Xiao's avatar
Shucai Xiao committed
1379
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1380
1381
    }

1382
    std::vector<instruction_ref>
1383
    parse_gru(const std::string&, node_info info, std::vector<instruction_ref> args)
1384
1385
1386
1387
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

1388
        if(contains(info.attributes, "hidden_size"))
1389
        {
1390
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1391
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1392
1393
1394
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1395
1396
1397
1398
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1399
        if(contains(info.attributes, "direction"))
1400
        {
1401
            direction = info.attributes.at("direction").s();
1402
1403
        }

1404
        op::rnn_direction dirct = op::rnn_direction::forward;
1405
1406
        if(direction == "bidirectional")
        {
1407
            dirct = op::rnn_direction::bidirectional;
1408
1409
1410
        }
        else if(direction == "reverse")
        {
1411
            dirct = op::rnn_direction::reverse;
1412
1413
        }

1414
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1415
        if(contains(info.attributes, "activations"))
1416
        {
1417
            auto names = info.attributes.at("activations").strings();
1418
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1419
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1420
1421
1422
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1423
1424
        }

1425
        // need 4 activation functions
1426
        if(dirct == op::rnn_direction::bidirectional)
1427
        {
Shucai Xiao's avatar
Shucai Xiao committed
1428
            // 4 activation functions are used in the bidirectional
1429
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1430
1431
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1432
1433
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1434
1435
1436
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1437
            if(vec_names.size() == 1)
1438
            {
1439
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1440
            }
1441
            else if(vec_names.size() == 2)
1442
            {
1443
1444
1445
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1446
            }
1447
            else if(vec_names.size() == 3)
1448
            {
1449
                vec_names.push_back(vec_names.at(2));
1450
1451
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1452
        else
1453
        {
1454
            if(vec_names.size() == 1)
1455
            {
1456
                vec_names.push_back(vec_names.at(0));
1457
1458
1459
            }
        }

1460
1461
1462
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1463
        if(name_it != vec_names.end())
1464
1465
1466
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1467

Shucai Xiao's avatar
Shucai Xiao committed
1468
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1469
1470
1471
1472
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
1473
1474

        float clip = 0.0;
1475
        if(contains(info.attributes, "clip"))
1476
        {
1477
            clip = parse_value(info.attributes.at("clip")).at<float>();
1478
1479
1480
        }

        int linear_before_reset = 0;
1481
        if(contains(info.attributes, "linear_before_reset"))
1482
        {
1483
            linear_before_reset = parse_value(info.attributes.at("linear_before_reset")).at<int>();
1484
1485
        }

Shucai Xiao's avatar
Shucai Xiao committed
1486
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1487
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1488
1489
1490
1491
1492
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1493
1494
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1495
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1496
            std::move(args));
1497
1498

        // second output for last gru output
1499
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1500

Shucai Xiao's avatar
Shucai Xiao committed
1501
        return {hidden_states, last_output};
1502
1503
    }

Shucai Xiao's avatar
Shucai Xiao committed
1504
    std::vector<instruction_ref>
1505
    parse_lstm(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1506
1507
1508
1509
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

1510
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
1511
        {
1512
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1513
1514
1515
1516
1517
1518
1519
1520
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1521
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
1522
        {
1523
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
1524
1525
        }

Shucai Xiao's avatar
Shucai Xiao committed
1526
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1527
1528
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1529
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1530
1531
1532
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1533
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1534
        }
Shucai Xiao's avatar
Shucai Xiao committed
1535
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1536
        {
Shucai Xiao's avatar
Shucai Xiao committed
1537
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1538
1539
1540
1541
1542
1543
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1544
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
1545
        if(contains(info.attributes, "activations"))
Shucai Xiao's avatar
Shucai Xiao committed
1546
        {
1547
            auto names = info.attributes.at("activations").strings();
Shucai Xiao's avatar
Shucai Xiao committed
1548
1549
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1550
1551
1552
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1553
1554
1555
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1556
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1557
1558
1559
1560
1561
1562
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1563
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1564
1565
1566
1567
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1568
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1569
1570
1571
1572
1573
1574
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1575
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1576
1577
1578

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1579
1580
1581
1582
1583
1584
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1585
1586
1587
1588
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1589
1590
1591
1592
1593
1594
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1595
1596
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1597
1598
1599
1600
1601
1602
1603
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1604
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1605

Shucai Xiao's avatar
Shucai Xiao committed
1606
1607
1608
1609
1610
1611
1612
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1613
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1614

Shucai Xiao's avatar
Shucai Xiao committed
1615
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1616
1617
1618
1619
1620
1621
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1622
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1623
1624
1625

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1626
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1627
1628
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1629
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1630
1631
1632
            }
        }

1633
1634
1635
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1636
        if(name_it != vec_names.end())
1637
1638
1639
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1640
1641

        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1642
1643
1644
1645
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
Shucai Xiao's avatar
Shucai Xiao committed
1646
1647

        float clip = 0.0;
1648
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
1649
        {
1650
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
1651
1652
1653
        }

        int input_forget = 0;
1654
        if(contains(info.attributes, "input_forget"))
Shucai Xiao's avatar
Shucai Xiao committed
1655
        {
1656
            input_forget = parse_value(info.attributes.at("input_forget")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1657
1658
1659
1660
1661
1662
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1663
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1664
1665
1666
1667
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1668
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1669
1670

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1671
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1672
1673
1674
1675
1676
1677

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }
1678

Shucai Xiao's avatar
Shucai Xiao committed
1679
    template <class T>
1680
1681
    instruction_ref
    parse_reduce_oper(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1682
1683
1684
1685
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
1686
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
1687
        std::iota(axes.begin(), axes.end(), 0);
1688
        if(contains(info.attributes, "axes"))
Shucai Xiao's avatar
Shucai Xiao committed
1689
1690
        {
            axes.clear();
1691
            auto&& attr_axes = info.attributes["axes"].ints();
1692
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
1693
1694
1695
        }

        int keep_dims = 1;
1696
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
1697
        {
1698
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1699
1700
1701
1702
        }

        if(keep_dims == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1703
            return prog.add_instruction(T{axes}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1704
1705
1706
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
1707
            auto ins = prog.add_instruction(T{axes}, std::move(args));
1708
            return prog.add_instruction(op::squeeze{axes}, ins);
1709
1710
        }
    }
1711

Shucai Xiao's avatar
Shucai Xiao committed
1712
    instruction_ref
1713
    parse_reduce_l1(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1714
1715
    {
        auto abs_ins = prog.add_instruction(op::abs{}, args[0]);
1716
        return parse_reduce_oper<op::reduce_sum>({}, std::move(info), {abs_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1717
1718
1719
    }

    instruction_ref
1720
    parse_reduce_l2(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1721
1722
    {
        auto square_ins = prog.add_instruction(op::mul{}, args[0], args[0]);
1723
        auto sum_ins    = parse_reduce_oper<op::reduce_sum>({}, std::move(info), {square_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1724
1725
1726
        return prog.add_instruction(op::sqrt{}, sum_ins);
    }

1727
1728
    instruction_ref
    parse_reduce_log_sum(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1729
    {
1730
        auto sum_ins = parse_reduce_oper<op::reduce_sum>({}, std::move(info), std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1731
1732
1733
        return prog.add_instruction(op::log{}, sum_ins);
    }

1734
1735
    instruction_ref
    parse_reduce_log_sum_exp(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1736
1737
    {
        auto exp_ins = prog.add_instruction(op::exp{}, args[0]);
1738
        auto sum_ins = parse_reduce_oper<op::reduce_sum>({}, std::move(info), {exp_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1739
1740
1741
        return prog.add_instruction(op::log{}, sum_ins);
    }

1742
1743
    instruction_ref
    parse_reduce_sum_square(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1744
1745
    {
        auto square_ins = prog.add_instruction(op::mul{}, args[0], args[0]);
1746
        return parse_reduce_oper<op::reduce_sum>({}, std::move(info), {square_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1747
1748
    }

Shucai Xiao's avatar
Shucai Xiao committed
1749
    instruction_ref
1750
    parse_cast(const std::string&, node_info info, std::vector<instruction_ref> args)
1751
    {
1752
        if(!contains(info.attributes, "to"))
1753
1754
1755
1756
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

1757
        int to_type        = parse_value(info.attributes.at("to")).at<int>();
1758
1759
1760
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
1761

1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
    std::vector<instruction_ref>
    parse_split(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        int64_t axis = 0;
        if(contains(info.attributes, "axis"))
        {
            axis = parse_value(info.attributes.at("axis")).at<int>();
        }

        auto lens      = args[0]->get_shape().lens();
        int64_t n_rank = static_cast<int64_t>(lens.size());
        if((axis < -n_rank) || (axis >= n_rank))
        {
            MIGRAPHX_THROW("PARSE_SPLIT: axis attribute out of rank!");
        }
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;

        std::vector<int64_t> vec_splits;
        if(contains(info.attributes, "split"))
        {
            literal s = parse_value(info.attributes.at("split"));
            s.visit([&](auto v) { vec_splits.assign(v.begin(), v.end()); });

            if(std::accumulate(vec_splits.begin(), vec_splits.end(), int64_t(0)) !=
               static_cast<int64_t>(lens[tuned_axis]))
            {
                MIGRAPHX_THROW("PARSE_SPLIT: sum of split attribute unequal to dim size of axis!");
            }
        }
        // no split attribute, input is equally divided
        else
        {
            if((lens[tuned_axis] % info.num_outputs) != 0)
            {
                MIGRAPHX_THROW("PARSE_SPLIT: input cannot be equally divided into " +
                               to_string(info.num_outputs) + " splits!");
            }
            auto dl = lens[tuned_axis] / info.num_outputs;
            vec_splits.resize(info.num_outputs, dl);
        }

        std::vector<instruction_ref> ret_ins;
        int64_t start = 0;
        for(auto sl : vec_splits)
        {
            ret_ins.push_back(
                prog.add_instruction(op::slice{{axis}, {start}, {start + sl}}, args[0]));
            start += sl;
        }

        return ret_ins;
    }

Paul's avatar
Paul committed
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1827
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1828
1829
1830
        }
    }

Paul Fultz II's avatar
Paul Fultz II committed
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
    void parse_from(const void* data, std::size_t size)
    {
        onnx::ModelProto model;
        if(model.ParseFromArray(data, size))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            MIGRAPHX_THROW("Failed reading onnx file.");
        }
    }

Paul's avatar
Paul committed
1847
1848
1849
    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1850
        for(auto&& f : graph.initializer())
1851
1852
            instructions[f.name()] = prog.add_literal(parse_tensor(f));

Paul's avatar
Paul committed
1853
1854
1855
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1856
1857
            // input not in initializer_data, so it is a real input
            if(!contains(instructions, name))
1858
1859
            {
                // TODO: Get shape of input parameter
1860
                shape s            = parse_type(input.type(), batch_size);
1861
1862
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1863
        }
Paul's avatar
Paul committed
1864
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1865
        {
Paul's avatar
Paul committed
1866
            this->parse_node(output.name());
Paul's avatar
Paul committed
1867
        }
Shucai Xiao's avatar
Shucai Xiao committed
1868

1869
        // Find instructions corresponding to the output
Shucai Xiao's avatar
Shucai Xiao committed
1870
        auto prog_output = graph.output();
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
        std::vector<std::string> all_output_names;
        std::vector<std::string> prog_output_names;
        std::transform(prog_output.begin(),
                       prog_output.end(),
                       std::back_inserter(all_output_names),
                       [](auto& node) { return node.name(); });
        std::copy_if(
            all_output_names.begin(),
            all_output_names.end(),
            std::back_inserter(prog_output_names),
            [&](const auto& name) { return !(name.empty() or instructions.count(name) == 0); });

        std::vector<instruction_ref> output_ins;
        std::transform(prog_output_names.begin(),
                       prog_output_names.end(),
                       std::back_inserter(output_ins),
                       [&](const auto& name) { return instructions[name]; });

        // add the return instuction
        prog.add_return(output_ins);
Paul's avatar
Paul committed
1891
1892
    }

Shucai Xiao's avatar
Shucai Xiao committed
1893
    void parse_undefined(const std::string& name)
1894
    {
Shucai Xiao's avatar
Shucai Xiao committed
1895
        auto ins           = prog.add_instruction(op::undefined{});
1896
1897
1898
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1899
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1900
    {
Paul's avatar
Paul committed
1901
        if(name.empty())
Paul's avatar
Paul committed
1902
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1903
1904
1905
1906
1907
1908
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1909
                if(input.empty())
Paul's avatar
Paul committed
1910
                {
Shucai Xiao's avatar
Shucai Xiao committed
1911
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1912
                }
Shucai Xiao's avatar
Shucai Xiao committed
1913
                else if(nodes.count(input) > 0)
Paul's avatar
Paul committed
1914
                {
Shucai Xiao's avatar
Shucai Xiao committed
1915
1916
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1917
                }
1918
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1919
            }
Paul's avatar
Paul committed
1920
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1921
1922
            if(ops.count(node.op_type()) == 0)
            {
1923
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1924
1925
1926
            }
            else
            {
1927
1928
                std::size_t output_num = static_cast<std::size_t>(node.output().size());
                result = ops[node.op_type()]({get_attributes(node), output_num}, args);
Paul's avatar
Paul committed
1929
            }
Paul's avatar
Paul committed
1930
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1931
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1932
1933
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1934
1935
1936
            }
            else
            {
1937
                auto output_num = std::min<std::size_t>(node.output().size(), result.size());
Shucai Xiao's avatar
Shucai Xiao committed
1938
                std::transform(node.output().begin(),
1939
                               node.output().begin() + output_num,
Shucai Xiao's avatar
Shucai Xiao committed
1940
                               result.begin(),
Paul's avatar
Paul committed
1941
                               std::inserter(instructions, instructions.end()),
Shucai Xiao's avatar
Shucai Xiao committed
1942
                               [](auto&& x, auto&& y) { return std::make_pair(x, y); });
Paul's avatar
Paul committed
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1960
        std::size_t n = 0;
Paul's avatar
Paul committed
1961
1962
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1963
            if(node.output().empty())
Paul's avatar
Paul committed
1964
            {
Paul's avatar
Paul committed
1965
                if(node.name().empty())
Paul's avatar
Paul committed
1966
1967
1968
1969
1970
1971
1972
1973
1974
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1975
1976
1977
1978
1979
1980
1981
1982
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

Paul's avatar
Paul committed
1983
1984
1985
1986
1987
1988
    static std::vector<int64_t> get_indices(const onnx::AttributeProto& attr)
    {
        std::vector<int64_t> result;
        literal s = parse_value(attr);
        s.visit([&](auto v) { copy(v, std::back_inserter(result)); });
        // Clamp large indices to -1
Paul's avatar
Paul committed
1989
1990
1991
1992
1993
        std::replace_if(
            result.begin(),
            result.end(),
            [](auto x) { return x > int64_t{std::numeric_limits<std::int32_t>::max()} / 2; },
            -1);
Paul's avatar
Paul committed
1994
1995
1996
        return result;
    }

Paul's avatar
Paul committed
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
Paul's avatar
Paul committed
2011
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
2012
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
Paul's avatar
Paul committed
2013
2014
2015
2016
2017
        case onnx::AttributeProto::UNDEFINED:
        case onnx::AttributeProto::GRAPH:
        case onnx::AttributeProto::STRING:
        case onnx::AttributeProto::STRINGS:
        case onnx::AttributeProto::TENSORS:
2018
2019
        case onnx::AttributeProto::SPARSE_TENSOR:
        case onnx::AttributeProto::SPARSE_TENSORS:
Paul's avatar
Paul committed
2020
2021
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
2022
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
2023
2024
2025
2026
2027
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
2028
2029
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
2030
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
2031
2032
            switch(t.data_type())
            {
2033
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Khalique's avatar
Khalique committed
2034
2035
2036
2037
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
2038
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Paul's avatar
Paul committed
2039
2040
2041
2042
            case onnx::TensorProto::INT8:
            case onnx::TensorProto::UINT16:
            case onnx::TensorProto::INT16:
            case onnx::TensorProto::INT32:
2043
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Paul's avatar
Paul committed
2044
2045
2046
2047
2048
2049
            case onnx::TensorProto::UINT8:
            case onnx::TensorProto::STRING:
            case onnx::TensorProto::UNDEFINED:
            case onnx::TensorProto::UINT32:
            case onnx::TensorProto::UINT64:
            case onnx::TensorProto::COMPLEX64:
Scott Thornton's avatar
Scott Thornton committed
2050
2051
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
2052
            MIGRAPHX_THROW("Invalid tensor type");
2053
        }
Paul's avatar
Paul committed
2054
2055
2056
2057
2058
2059
        switch(t.data_type())
        {
        case onnx::TensorProto::INT8:
        case onnx::TensorProto::UINT16:
        case onnx::TensorProto::INT16:
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
2060
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
2061
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
2062
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
2063
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
2064
2065
2066
2067
        case onnx::TensorProto::DOUBLE:
            return create_literal(shape::double_type, dims, t.double_data());
        case onnx::TensorProto::FLOAT:
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
2068
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
2069
        {
Khalique's avatar
Khalique committed
2070
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
2071
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
2072
2073
2074
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
2075
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
2076
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
2077
        }
Paul's avatar
Paul committed
2078
2079
2080
2081
2082
2083
        case onnx::TensorProto::UNDEFINED:
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::UINT32:
        case onnx::TensorProto::UINT64:
        case onnx::TensorProto::COMPLEX64:
Paul's avatar
Paul committed
2084
2085
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
2086
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
2087
2088
    }

Khalique's avatar
Khalique committed
2089
    static literal
2090
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
2091
    {
Khalique's avatar
Khalique committed
2092
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
2093
        if(dims.empty())
2094
            return literal{{shape_type}, data};
2095
2096
2097
        return literal{{shape_type, dims}, data};
    }

2098
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
2099
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
2100
2101
    {
        if(dims.empty())
2102
            return literal{{shape_type}, data.begin(), data.end()};
2103
        return literal{{shape_type, dims}, data.begin(), data.end()};
2104
2105
    }

2106
    static shape parse_type(const onnx::TypeProto& t, const unsigned int batch_size)
Paul's avatar
Paul committed
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
Paul's avatar
Paul committed
2117
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
2118
2119
2120
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
Paul's avatar
Paul committed
2121
2122
2123
2124
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::BOOL:
        case onnx::TensorProto::UNDEFINED:
Paul's avatar
Paul committed
2125
2126
        case onnx::TensorProto::COMPLEX64:
        case onnx::TensorProto::COMPLEX128:
Paul's avatar
Paul committed
2127
            break; // throw std::runtime_error("Unsupported type");
Paul's avatar
Paul committed
2128
2129
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
2130
        auto&& tensor_dims = t.tensor_type().shape().dim();
2131
2132
2133
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
2134
2135
                       [&](auto&& d) -> std::size_t {
                           if(d.has_dim_value())
2136
                           {
2137
2138
2139
                               if(static_cast<int>(d.dim_value()) <= 0)
                                   return batch_size;
                               return d.dim_value();
2140
                           }
2141
                           return batch_size;
2142
                       });
2143
2144
2145
        if(dims.empty())
            return {shape_type};

Paul's avatar
Paul committed
2146
2147
        return {shape_type, dims};
    }
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
2170
2171
2172

    void check_arg_empty(const argument& arg, const std::string& msg)
    {
Shucai Xiao's avatar
Shucai Xiao committed
2173
        if(arg.empty())
Shucai Xiao's avatar
Shucai Xiao committed
2174
2175
2176
2177
        {
            MIGRAPHX_THROW(msg);
        }
    }
Paul's avatar
Paul committed
2178
2179
};

Paul Fultz II's avatar
Paul Fultz II committed
2180
2181
template <class... Ts>
program parse_onnx_from(onnx_options options, Ts&&... xs)
Paul's avatar
Paul committed
2182
2183
{
    onnx_parser parser;
2184
    parser.batch_size = options.batch_size;
Paul's avatar
Paul committed
2185
2186
2187
2188
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
Paul Fultz II's avatar
Paul Fultz II committed
2189
        parser.parse_from(std::forward<Ts>(xs)...);
Paul's avatar
Paul committed
2190
2191
2192
2193
2194
2195
2196
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
Paul Fultz II's avatar
Paul Fultz II committed
2197
    parser.parse_from(std::forward<Ts>(xs)...);
Paul's avatar
Paul committed
2198
2199
2200
2201
#endif
    return std::move(parser.prog);
}

Paul Fultz II's avatar
Paul Fultz II committed
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
program parse_onnx(const std::string& name, onnx_options options)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    return parse_onnx_from(options, input);
}

program parse_onnx_buffer(const std::string& buffer, onnx_options options)
{
    return parse_onnx_from(options, buffer.data(), buffer.size());
}

program parse_onnx_buffer(const void* data, std::size_t size, onnx_options options)
{
    return parse_onnx_from(options, data, size);
}

Paul's avatar
Paul committed
2218
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
2219
} // namespace migraphx