onnx.cpp 58 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
43
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
44
45
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
46
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
47
48
49
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
50
51
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
52
        add_generic_op("Tanh", op::tanh{});
53
54
55
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
56

Khalique's avatar
Khalique committed
57
58
59
60
61
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
62
63
64
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
65

Khalique's avatar
Khalique committed
66
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
67
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
68
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
69
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
70
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
71
72
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
73
74
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
75
76
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
77
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
78
79
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
80
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
81
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
82
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
83
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
84
85
86
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
87
        add_mem_op("Concat", &onnx_parser::parse_concat);
88
89
90
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
91
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
92
        add_mem_op("RNN", &onnx_parser::parse_rnn);
93
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
94
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
95
        add_mem_op("Pad", &onnx_parser::parse_pad);
96
97
98
99
100
101
102

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
103
104
105
106
107
108
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
109
110
111
112
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
113
114
115
116
117
118
119
120
121
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
122
123
124
125
126
127
128
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
129
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
130
131
132
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
133

134
    template <class T>
Khalique's avatar
Khalique committed
135
    void add_binary_op(std::string name, T x)
136
    {
Paul's avatar
Paul committed
137
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
138
            if(args.size() != 2)
Paul's avatar
Paul committed
139
                MIGRAPHX_THROW("binary operators should have 2 operands");
140
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
141
142
143
144
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
145
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
146
147
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
148
149
                    return prog.add_instruction(x, args[0], l);
                }
150
                return prog.add_instruction(x, args);
151
            }
Paul's avatar
Paul committed
152
            else
153
            {
Khalique's avatar
Khalique committed
154
                return add_broadcastable_binary_op(args[0], args[1], x);
155
156
157
158
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
159
160
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
161
162
163
164
165
166
167
168
169
170
171
172
173
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
174
        if(s0.size() > s1.size())
175
176
177
178
179
180
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
181
182
183
184
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
185
186
187
188
189
190
191
192
                       [&](auto a, auto b) {
                           if (a != b and a != 1 and b != 1)
                           {
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" + 
                                to_string_range(s0) + "} and {" + to_string_range(s1) + "} mismatch!");
                           } 
                           return std::max(a, b); 
        });
193
194
195
196

        return out_lens;
    }

Khalique's avatar
Khalique committed
197
198
199
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
200
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
201
202
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
203
204
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
205
            auto out_lens = compute_broadcasted_lens(s0, s1);
Shucai Xiao's avatar
Shucai Xiao committed
206
207
            auto l0       = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1       = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
208
209
210
211
212
213
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
214
215
    }

Paul's avatar
Paul committed
216
    template <class T>
Paul's avatar
Paul committed
217
218
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
219
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
220
221
222
223
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
224
    template <class T>
Khalique's avatar
Khalique committed
225
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
226
    {
Paul's avatar
Paul committed
227
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
228
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
229
230
231
232
233
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
234
        });
Khalique's avatar
Khalique committed
235
236
    }

Khalique's avatar
Khalique committed
237
238
239
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
240
241
242
243
244
245
246
247
248
249
250
251
252
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Paul's avatar
Paul committed
253
    instruction_ref
Paul's avatar
Paul committed
254
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
255
256
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
257
258
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
259
260
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
261
262
    }

Shucai Xiao's avatar
Shucai Xiao committed
263
264
265
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
266
267
268
269
270
271
272
273
274
275
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

Paul's avatar
Paul committed
276
    instruction_ref
Paul's avatar
Paul committed
277
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
278
    {
279
        op::convolution op;
280
        auto l0 = args[0];
Paul's avatar
Paul committed
281
282
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
283
            if(contains(attributes, "auto_pad"))
284
            {
Paul's avatar
Paul committed
285
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
286
            }
287
288
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
289
            if(padding.size() != 4)
290
            {
Paul's avatar
Paul committed
291
                MIGRAPHX_THROW("padding should have 4 values");
292
            }
Scott Thornton's avatar
Scott Thornton committed
293
            if(padding[0] != padding[2] || padding[1] != padding[3])
294
            {
295
296
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
297
                l0      = prog.add_instruction(op::pad{padding}, l0);
298
            }
299
300
301
302
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
303
            }
Paul's avatar
Paul committed
304
        }
Paul's avatar
Paul committed
305
306
307
308
309
310
311
312
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
313
        if(contains(attributes, "auto_pad"))
314
315
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
316
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
317
            {
Paul's avatar
Paul committed
318
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
319
320
            }

wsttiger's avatar
fixes  
wsttiger committed
321
            if(s.find("SAME") != std::string::npos)
322
            {
323
                op.padding_mode = op::padding_mode_t::same;
324
325
            }
        }
Khalique's avatar
Khalique committed
326
327
328
329
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
330
331
332
333
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
334
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
335
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
336
        }
337
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
338
    }
Paul's avatar
Paul committed
339

Paul's avatar
Paul committed
340
341
342
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
343
    {
Khalique's avatar
Khalique committed
344
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
345
        auto l0 = args[0];
Khalique's avatar
Khalique committed
346
        if(starts_with(name, "Global"))
347
        {
Khalique's avatar
Khalique committed
348
349
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
350
        }
Paul's avatar
Paul committed
351
352
        if(contains(attributes, "pads"))
        {
353
354
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
355
            if(padding.size() != 4)
356
            {
Paul's avatar
Paul committed
357
                MIGRAPHX_THROW("padding should have 4 values");
358
            }
Scott Thornton's avatar
Scott Thornton committed
359
            if(padding[0] != padding[2] || padding[1] != padding[3])
360
            {
361
362
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
363
364
                l0 = prog.add_instruction(op::pad{padding, std::numeric_limits<float>::lowest()},
                                          l0);
365
366
367
368
369
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
370
            }
Paul's avatar
Paul committed
371
372
373
374
375
376
377
378
379
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
380
        if(contains(attributes, "auto_pad"))
381
382
        {
            auto s = attributes["auto_pad"].s();
383
            if(s.find("SAME_UPPER") == std::string::npos)
384
            {
385
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
386
            }
387
            op.padding_mode = op::padding_mode_t::same;
388
389
        }

390
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
391
392
    }

Paul's avatar
Paul committed
393
    instruction_ref
Paul's avatar
Paul committed
394
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
395
    {
396
        op::reshape op;
Paul's avatar
Paul committed
397
398
399
400
401
402
403
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
404
            auto s = args[1]->eval();
Paul's avatar
Paul committed
405
            if(s.empty())
Paul's avatar
Paul committed
406
                MIGRAPHX_THROW("Dynamic shape is not supported.");
Paul's avatar
Paul committed
407
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
408
        }
Paul's avatar
Paul committed
409
410
411
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
412
    instruction_ref
Paul's avatar
Paul committed
413
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
414
    {
415
        uint64_t axis = 1;
Paul's avatar
Paul committed
416
417
418
419
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
420
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
421
422
    }

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
441
442
443
444
445
446
447
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
448

449
450
451
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
452
        int axis = 0;
453
454
455
456
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
457
        op::gather op{axis};
458
459
460
        return prog.add_instruction(op, std::move(args));
    }

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
481
482
483
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
484
    {
Shucai Xiao's avatar
Shucai Xiao committed
485
        literal v     = parse_value(attributes.at("value"));
486
487
488
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
489
        {
490
            migraphx::shape scalar_shape{v.get_shape().type()};
491
492
493
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
494
495
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
496

Paul's avatar
Paul committed
497
    instruction_ref
Paul's avatar
Paul committed
498
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
499
500
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
501
        float beta  = 1.0f;
Paul's avatar
Paul committed
502
503
504
505
506
507
508
509
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
510
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
511
512
513
514
515
516
517
518
519
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
520
521
522
523
524
525

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

526
527
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
528
529
        if(args.size() == 3)
        {
530
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
531
            {
Shucai Xiao's avatar
Shucai Xiao committed
532
                auto out_lens   = l1->get_shape().lens();
533
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
534
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
535
536
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
537
                {
538
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
539
                }
540
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
541
            }
Paul's avatar
Paul committed
542
        }
543
544

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
545
546
    }

547
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
548
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
549
    {
Shucai Xiao's avatar
Shucai Xiao committed
550
551
        auto l0      = args[0];
        auto l1      = args[1];
552
553
554
555
556
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
557
        if(l0_lens.size() == 1)
558
559
560
561
562
563
564
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
565
        if(l1_lens.size() == 1)
566
567
568
569
570
571
572
573
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
574
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
575
576
577
578
579
580
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
581
            l0_broadcasted_lens = output_lens;
582
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
583
            l1_broadcasted_lens = output_lens;
584
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
585
            if(l0_lens != l0_broadcasted_lens)
586
587
588
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
589
            if(l1_lens != l1_broadcasted_lens)
590
591
592
593
594
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
595
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
596
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
597
        if(is_a_prepended)
598
599
600
601
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
602
        if(is_b_appended)
603
604
605
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
606

607
608
609
        return dot_res;
    }

610
    instruction_ref
Paul's avatar
Paul committed
611
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
612
    {
Scott Thornton's avatar
Scott Thornton committed
613
614
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
615
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
616
        bool is_test                                      = false;
617
618
619
620
621
622
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
623
            momentum = parse_value(attributes.at("momentum")).at<float>();
624
625
626
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
627
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
628
629
630
        }
        if(contains(attributes, "spatial"))
        {
631
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
632
633
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
634
        }
Paul's avatar
Paul committed
635
        (void)is_test;
Paul's avatar
Paul committed
636
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
637
        return prog.add_instruction(op, std::move(args));
638
639
    }

640
641
642
643
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
644
        float alpha = 0.01; // default alpha val for leaky relu
645
646
647
648
649
650
651
652
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
653
654
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
655
656
657
658
659
660
661
662
663
664
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
665
666
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
667
668
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
669
670
671
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
672
673
674
675
676
677
678
679
680
681
682
683
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
700
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
701

Khalique's avatar
Khalique committed
702
703
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
704
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
705

706
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
707
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
708
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
709
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
710
    }
Khalique's avatar
Khalique committed
711

Khalique's avatar
Khalique committed
712
713
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
714
715
716
717
718
719
720
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
721
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
722
723
    }

Khalique's avatar
Khalique committed
724
725
726
727
728
729
730
731
732
733
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
734
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
735
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
736
737
738
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
739
740
741
742
743
744
745
746
747
748
749
750
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
751
752
753
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
754
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
755
756
    {
        if(args.size() != 1)
757
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
794
795
        if(contains(attributes, "extra_shape"))
        {
796
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
797
798
        }

799
800
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
801
            if(args.size() != 1)
802
            {
803
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
804
805
            }

Shucai Xiao's avatar
Shucai Xiao committed
806
807
            if(contains(attributes, "shape"))
            {
808
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
809
                               "at the same time");
810
811
            }

812
813
814
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
815
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
816
            }
817

818
819
820
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
821
822
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
823
824
825
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
826
827
            if(!contains(attributes, "shape"))
            {
828
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
829
830
831
            }

            literal ls = parse_value(attributes.at("shape"));
832
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
833
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
834
            migraphx::shape s{type, dims};
835
836
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
837
838
839
        }
        else
        {
840
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
841
842
843
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
844
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
845
846
847
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
848
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
849
850
851

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
852
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
853
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
854
855
856
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
857
858
859
860
861
862
863
864
865
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

866
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
867
868
        if(direction == "bidirectional")
        {
869
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
870
871
872
        }
        else if(direction == "reverse")
        {
873
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
874
875
        }

876
        std::vector<std::string> vec_names{"tanh"};
877
878
879
880
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
881
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
882
883
884
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
885
886
        }

887
888
889
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
890
        if(name_it != vec_names.end())
891
892
893
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
894

Shucai Xiao's avatar
Shucai Xiao committed
895
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
896
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
897
        // if only one actv function is provided, we use it in both
898
        // forward and reverse direction
899
        if(dirct == op::rnn_direction::bidirectional)
900
        {
Shucai Xiao's avatar
Shucai Xiao committed
901
            if(vec_names.size() == 1)
902
903
904
905
906
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
907
908
909
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
910
        });
Shucai Xiao's avatar
Shucai Xiao committed
911

Shucai Xiao's avatar
Shucai Xiao committed
912
913
914
915
916
917
918
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

919
920
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
921
        if(args.size() < 6)
922
923
924
925
926
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
927
928
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
929
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
930

931
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
932
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
933

Shucai Xiao's avatar
Shucai Xiao committed
934
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
935
936
    }

937
    std::vector<instruction_ref>
938
939
940
941
942
943
944
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
945
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
946
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
947
948
949
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
950
951
952
953
954
955
956
957
958
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

959
        op::rnn_direction dirct = op::rnn_direction::forward;
960
961
        if(direction == "bidirectional")
        {
962
            dirct = op::rnn_direction::bidirectional;
963
964
965
        }
        else if(direction == "reverse")
        {
966
            dirct = op::rnn_direction::reverse;
967
968
        }

969
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
970
971
        if(contains(attributes, "activations"))
        {
972
            auto names = attributes.at("activations").strings();
973
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
974
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
975
976
977
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
978
979
        }

980
        // need 4 activation functions
981
        if(dirct == op::rnn_direction::bidirectional)
982
        {
Shucai Xiao's avatar
Shucai Xiao committed
983
            // 4 activation functions are used in the bidirectional
984
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
985
986
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
987
988
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
989
990
991
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
992
            if(vec_names.size() == 1)
993
            {
994
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
995
            }
996
            else if(vec_names.size() == 2)
997
            {
998
999
1000
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1001
            }
1002
            else if(vec_names.size() == 3)
1003
            {
1004
                vec_names.push_back(vec_names.at(2));
1005
1006
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1007
        else
1008
        {
1009
            if(vec_names.size() == 1)
1010
            {
1011
                vec_names.push_back(vec_names.at(0));
1012
1013
1014
            }
        }

1015
1016
1017
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1018
        if(name_it != vec_names.end())
1019
1020
1021
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1022

Shucai Xiao's avatar
Shucai Xiao committed
1023
1024
1025
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
1026
        });
1027
1028
1029
1030
1031
1032
1033
1034

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1035
        if(contains(attributes, "linear_before_reset"))
1036
1037
1038
1039
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1040
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1041
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1042
1043
1044
1045
1046
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1047
1048
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1049
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1050
            std::move(args));
1051
1052

        // second output for last gru output
1053
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1054

Shucai Xiao's avatar
Shucai Xiao committed
1055
        return {hidden_states, last_output};
1056
1057
    }

Shucai Xiao's avatar
Shucai Xiao committed
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1080
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1081
1082
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1083
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1084
1085
1086
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1087
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1088
        }
Shucai Xiao's avatar
Shucai Xiao committed
1089
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1090
        {
Shucai Xiao's avatar
Shucai Xiao committed
1091
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1092
1093
1094
1095
1096
1097
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1098
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1099
1100
1101
1102
1103
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1104
1105
1106
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1107
1108
1109
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1110
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1111
1112
1113
1114
1115
1116
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1117
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1118
1119
1120
1121
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1122
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1123
1124
1125
1126
1127
1128
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1129
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1130
1131
1132

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1133
1134
1135
1136
1137
1138
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1139
1140
1141
1142
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1143
1144
1145
1146
1147
1148
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1149
1150
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1151
1152
1153
1154
1155
1156
1157
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1158
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1159

Shucai Xiao's avatar
Shucai Xiao committed
1160
1161
1162
1163
1164
1165
1166
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1167
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1168

Shucai Xiao's avatar
Shucai Xiao committed
1169
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1170
1171
1172
1173
1174
1175
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1176
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1177
1178
1179

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1180
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1181
1182
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1183
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1184
1185
1186
            }
        }

1187
1188
1189
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1190
        if(name_it != vec_names.end())
1191
1192
1193
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1216
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1217
1218
1219
1220
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1221
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1222
1223

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1224
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1225
1226
1227
1228
1229
1230
1231

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }

Paul's avatar
Paul committed
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1244
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1245
1246
1247
1248
1249
1250
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1251
1252
1253
1254
1255
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1256
1257
1258
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1271
        }
Paul's avatar
Paul committed
1272
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1273
        {
Paul's avatar
Paul committed
1274
            this->parse_node(output.name());
Paul's avatar
Paul committed
1275
1276
1277
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1278
    void parse_undefined(const std::string& name)
1279
    {
Shucai Xiao's avatar
Shucai Xiao committed
1280
        auto ins           = prog.add_instruction(op::undefined{});
1281
1282
1283
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1284
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1285
    {
Paul's avatar
Paul committed
1286
        if(name.empty())
Paul's avatar
Paul committed
1287
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1288
1289
1290
1291
1292
1293
1294
1295
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1296
1297
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1298
                }
Shucai Xiao's avatar
Shucai Xiao committed
1299
                else if(input.empty())
Paul's avatar
Paul committed
1300
                {
1301
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1302
                }
1303
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1304
            }
Paul's avatar
Paul committed
1305
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1306
1307
            if(ops.count(node.op_type()) == 0)
            {
1308
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1309
1310
1311
            }
            else
            {
Paul's avatar
Paul committed
1312
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1313
            }
Paul's avatar
Paul committed
1314
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1315
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1316
1317
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1318
1319
1320
            }
            else
            {
Paul's avatar
Paul committed
1321
1322
1323
1324
1325
1326
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1344
        std::size_t n = 0;
Paul's avatar
Paul committed
1345
1346
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1347
            if(node.output().empty())
Paul's avatar
Paul committed
1348
            {
Paul's avatar
Paul committed
1349
                if(node.name().empty())
Paul's avatar
Paul committed
1350
1351
1352
1353
1354
1355
1356
1357
1358
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1384
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1385
1386
1387
1388
1389
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1390
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1391
1392
1393
1394
1395
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1396
1397
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1398
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1399
1400
1401
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
1402
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1403
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
1404
            case onnx::TensorProto::INT8: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1405
1406
            case onnx::TensorProto::UINT16:
                return create_literal(shape::int32_type, dims, s.data());
1407
1408
1409
            case onnx::TensorProto::INT16: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1410
            case onnx::TensorProto::STRING: throw std::runtime_error("");
1411
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1412
1413
1414
1415
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1416
1417
1418
1419
1420
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1421
            MIGRAPHX_THROW("Invalid tensor type");
1422
        }
Paul's avatar
Paul committed
1423
1424
1425
1426
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Khalique's avatar
Khalique committed
1427
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1428
1429
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Khalique's avatar
Khalique committed
1430
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1431
        case onnx::TensorProto::UINT16:
Khalique's avatar
Khalique committed
1432
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1433
        case onnx::TensorProto::INT16:
Khalique's avatar
Khalique committed
1434
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1435
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
1436
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1437
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1438
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1439
1440
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1441
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1442
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1443
        {
Khalique's avatar
Khalique committed
1444
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1445
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1446
1447
1448
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1449
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1450
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1451
        }
Paul's avatar
Paul committed
1452
        case onnx::TensorProto::DOUBLE:
Khalique's avatar
Khalique committed
1453
            return create_literal(shape::double_type, dims, t.double_data());
Paul's avatar
Paul committed
1454
1455
1456
1457
1458
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1459
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1460
1461
    }

Khalique's avatar
Khalique committed
1462
    static literal
1463
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1464
    {
Khalique's avatar
Khalique committed
1465
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1466
        if(dims.empty())
1467
            return literal{{shape_type}, data};
1468
1469
1470
        return literal{{shape_type, dims}, data};
    }

1471
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1472
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1473
1474
    {
        if(dims.empty())
1475
            return literal{{shape_type}, data.begin(), data.end()};
1476
        return literal{{shape_type, dims}, data.begin(), data.end()};
1477
1478
    }

Paul's avatar
Paul committed
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1498
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1499
1500
1501
1502
1503
1504
1505
1506
1507
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1508
        auto&& tensor_dims = t.tensor_type().shape().dim();
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1520
1521
        return {shape_type, dims};
    }
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1567
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1568
} // namespace migraphx