onnx.cpp 59.4 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
43
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
44
45
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
46
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
47
48
49
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
50
51
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
52
        add_generic_op("Tanh", op::tanh{});
53
54
55
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
56

Khalique's avatar
Khalique committed
57
58
59
60
61
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
62
63
64
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
65

66
67
        add_mem_op("ArgMax", &onnx_parser::parse_argmax);
        add_mem_op("ArgMin", &onnx_parser::parse_argmin);
Khalique's avatar
Khalique committed
68
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
69
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
70
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
71
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
72
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
73
74
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
75
76
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
77
78
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
79
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
80
81
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
82
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
83
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
84
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
85
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
86
87
88
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
89
        add_mem_op("Concat", &onnx_parser::parse_concat);
90
91
92
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
93
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
94
        add_mem_op("RNN", &onnx_parser::parse_rnn);
95
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
96
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
97
        add_mem_op("Pad", &onnx_parser::parse_pad);
98
99
100
101
102
103
104

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
105
106
107
108
109
110
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
111
112
113
114
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
115
116
117
118
119
120
121
122
123
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
124
125
126
127
128
129
130
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
131
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
132
133
134
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
135

136
    template <class T>
Khalique's avatar
Khalique committed
137
    void add_binary_op(std::string name, T x)
138
    {
Paul's avatar
Paul committed
139
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
140
            if(args.size() != 2)
Paul's avatar
Paul committed
141
                MIGRAPHX_THROW("binary operators should have 2 operands");
142
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
143
144
145
146
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
147
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
148
149
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
150
151
                    return prog.add_instruction(x, args[0], l);
                }
152
                return prog.add_instruction(x, args);
153
            }
Paul's avatar
Paul committed
154
            else
155
            {
Khalique's avatar
Khalique committed
156
                return add_broadcastable_binary_op(args[0], args[1], x);
157
158
159
160
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
161
162
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
163
164
165
166
167
168
169
170
171
172
173
174
175
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
176
        if(s0.size() > s1.size())
177
178
179
180
181
182
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
183
184
185
186
187
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
                       [](auto a, auto b) { return std::max(a, b); });
188
189
190
191

        return out_lens;
    }

Khalique's avatar
Khalique committed
192
193
194
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
195
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
196
197
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
198
199
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
200
            auto out_lens = compute_broadcasted_lens(s0, s1);
Shucai Xiao's avatar
Shucai Xiao committed
201
202
            auto l0       = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1       = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
203
204
205
206
207
208
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
209
210
    }

Paul's avatar
Paul committed
211
    template <class T>
Paul's avatar
Paul committed
212
213
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
214
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
215
216
217
218
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
219
    template <class T>
Khalique's avatar
Khalique committed
220
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
221
    {
Paul's avatar
Paul committed
222
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
223
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
224
225
226
227
228
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
229
        });
Khalique's avatar
Khalique committed
230
231
    }

Khalique's avatar
Khalique committed
232
233
234
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
235
236
237
238
239
240
241
242
243
244
245
246
247
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Paul's avatar
Paul committed
248
    instruction_ref
Paul's avatar
Paul committed
249
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
250
251
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
252
253
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
254
255
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
256
257
    }

Shucai Xiao's avatar
Shucai Xiao committed
258
259
260
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
261
262
263
264
265
266
267
268
269
270
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

271
    instruction_ref parse_argmax(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
272
273
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
274
275
276
277
278
279
280
    {
        int axis = 0;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
281
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
282
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
283
284
285
286
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

287
288
289
290
291
292
293
294
295
        if (keep_dims == 0)
        {
            auto ins = prog.add_instruction(op::argmax{axis}, std::move(args));
            return prog.add_instruction(op::squeeze{{static_cast<int64_t>(axis)}}, ins);
        }
        else
        {
            return prog.add_instruction(op::argmax{axis}, std::move(args));
        }
296
297
298
    }

    instruction_ref parse_argmin(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
299
300
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
301
302
303
304
305
306
307
    {
        int axis = 0;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
308
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
309
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
310
311
312
313
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

314
315
316
317
318
319
320
321
322
        if (keep_dims == 0)
        {
            auto ins = prog.add_instruction(op::argmin{axis}, std::move(args));
            return prog.add_instruction(op::squeeze{{static_cast<int64_t>(axis)}}, ins);
        }
        else
        {
            return prog.add_instruction(op::argmin{axis}, std::move(args));
        }
323
324
    }

Paul's avatar
Paul committed
325
    instruction_ref
Paul's avatar
Paul committed
326
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
327
    {
328
        op::convolution op;
329
        auto l0 = args[0];
Paul's avatar
Paul committed
330
331
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
332
            if(contains(attributes, "auto_pad"))
333
            {
Paul's avatar
Paul committed
334
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
335
            }
336
337
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
338
            if(padding.size() != 4)
339
            {
Paul's avatar
Paul committed
340
                MIGRAPHX_THROW("padding should have 4 values");
341
            }
Scott Thornton's avatar
Scott Thornton committed
342
            if(padding[0] != padding[2] || padding[1] != padding[3])
343
            {
344
345
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
346
                l0      = prog.add_instruction(op::pad{padding}, l0);
347
            }
348
349
350
351
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
352
            }
Paul's avatar
Paul committed
353
        }
Paul's avatar
Paul committed
354
355
356
357
358
359
360
361
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
362
        if(contains(attributes, "auto_pad"))
363
364
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
365
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
366
            {
Paul's avatar
Paul committed
367
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
368
369
            }

wsttiger's avatar
fixes  
wsttiger committed
370
            if(s.find("SAME") != std::string::npos)
371
            {
372
                op.padding_mode = op::padding_mode_t::same;
373
374
            }
        }
Khalique's avatar
Khalique committed
375
376
377
378
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
379
380
381
382
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
383
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
384
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
385
        }
386
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
387
    }
Paul's avatar
Paul committed
388

Paul's avatar
Paul committed
389
390
391
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
392
    {
Khalique's avatar
Khalique committed
393
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
394
        auto l0 = args[0];
Khalique's avatar
Khalique committed
395
        if(starts_with(name, "Global"))
396
        {
Khalique's avatar
Khalique committed
397
398
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
399
        }
Paul's avatar
Paul committed
400
401
        if(contains(attributes, "pads"))
        {
402
403
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
404
            if(padding.size() != 4)
405
            {
Paul's avatar
Paul committed
406
                MIGRAPHX_THROW("padding should have 4 values");
407
            }
Scott Thornton's avatar
Scott Thornton committed
408
            if(padding[0] != padding[2] || padding[1] != padding[3])
409
            {
410
411
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
412
413
                l0 = prog.add_instruction(op::pad{padding, std::numeric_limits<float>::lowest()},
                                          l0);
414
415
416
417
418
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
419
            }
Paul's avatar
Paul committed
420
421
422
423
424
425
426
427
428
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
429
        if(contains(attributes, "auto_pad"))
430
431
        {
            auto s = attributes["auto_pad"].s();
432
            if(s.find("SAME_UPPER") == std::string::npos)
433
            {
434
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
435
            }
436
            op.padding_mode = op::padding_mode_t::same;
437
438
        }

439
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
440
441
    }

Paul's avatar
Paul committed
442
    instruction_ref
Paul's avatar
Paul committed
443
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
444
    {
445
        op::reshape op;
Paul's avatar
Paul committed
446
447
448
449
450
451
452
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
453
            auto s = args[1]->eval();
Paul's avatar
Paul committed
454
            if(s.empty())
Paul's avatar
Paul committed
455
                MIGRAPHX_THROW("Dynamic shape is not supported.");
Paul's avatar
Paul committed
456
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
457
        }
Paul's avatar
Paul committed
458
459
460
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
461
    instruction_ref
Paul's avatar
Paul committed
462
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
463
    {
464
        uint64_t axis = 1;
Paul's avatar
Paul committed
465
466
467
468
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
469
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
470
471
    }

472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
490
491
492
493
494
495
496
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
497

498
499
500
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
501
        int axis = 0;
502
503
504
505
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
506
        op::gather op{axis};
507
508
509
        return prog.add_instruction(op, std::move(args));
    }

510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
530
531
532
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
533
    {
Shucai Xiao's avatar
Shucai Xiao committed
534
        literal v     = parse_value(attributes.at("value"));
535
536
537
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
538
        {
539
            migraphx::shape scalar_shape{v.get_shape().type()};
540
541
542
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
543
544
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
545

Paul's avatar
Paul committed
546
    instruction_ref
Paul's avatar
Paul committed
547
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
548
549
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
550
        float beta  = 1.0f;
Paul's avatar
Paul committed
551
552
553
554
555
556
557
558
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
559
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
560
561
562
563
564
565
566
567
568
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
569
570
571
572
573
574

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

575
576
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
577
578
        if(args.size() == 3)
        {
579
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
580
            {
Shucai Xiao's avatar
Shucai Xiao committed
581
                auto out_lens   = l1->get_shape().lens();
582
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
583
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
584
585
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
586
                {
587
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
588
                }
589
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
590
            }
Paul's avatar
Paul committed
591
        }
592
593

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
594
595
    }

596
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
597
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
598
    {
Shucai Xiao's avatar
Shucai Xiao committed
599
600
        auto l0      = args[0];
        auto l1      = args[1];
601
602
603
604
605
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
606
        if(l0_lens.size() == 1)
607
608
609
610
611
612
613
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
614
        if(l1_lens.size() == 1)
615
616
617
618
619
620
621
622
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
623
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
624
625
626
627
628
629
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
630
            l0_broadcasted_lens = output_lens;
631
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
632
            l1_broadcasted_lens = output_lens;
633
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
634
            if(l0_lens != l0_broadcasted_lens)
635
636
637
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
638
            if(l1_lens != l1_broadcasted_lens)
639
640
641
642
643
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
644
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
645
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
646
        if(is_a_prepended)
647
648
649
650
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
651
        if(is_b_appended)
652
653
654
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
655

656
657
658
        return dot_res;
    }

659
    instruction_ref
Paul's avatar
Paul committed
660
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
661
    {
Scott Thornton's avatar
Scott Thornton committed
662
663
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
664
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
665
        bool is_test                                      = false;
666
667
668
669
670
671
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
672
            momentum = parse_value(attributes.at("momentum")).at<float>();
673
674
675
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
676
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
677
678
679
        }
        if(contains(attributes, "spatial"))
        {
680
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
681
682
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
683
        }
Paul's avatar
Paul committed
684
        (void)is_test;
Paul's avatar
Paul committed
685
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
686
        return prog.add_instruction(op, std::move(args));
687
688
    }

689
690
691
692
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
693
        float alpha = 0.01; // default alpha val for leaky relu
694
695
696
697
698
699
700
701
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
702
703
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
704
705
706
707
708
709
710
711
712
713
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
714
715
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
716
717
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
718
719
720
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
721
722
723
724
725
726
727
728
729
730
731
732
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
749
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
750

Khalique's avatar
Khalique committed
751
752
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
753
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
754

755
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
756
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
757
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
758
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
759
    }
Khalique's avatar
Khalique committed
760

Khalique's avatar
Khalique committed
761
762
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
763
764
765
766
767
768
769
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
770
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
771
772
    }

Khalique's avatar
Khalique committed
773
774
775
776
777
778
779
780
781
782
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
783
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
784
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
785
786
787
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
788
789
790
791
792
793
794
795
796
797
798
799
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
800
801
802
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
803
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
804
805
    {
        if(args.size() != 1)
806
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
843
844
        if(contains(attributes, "extra_shape"))
        {
845
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
846
847
        }

848
849
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
850
            if(args.size() != 1)
851
            {
852
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
853
854
            }

Shucai Xiao's avatar
Shucai Xiao committed
855
856
            if(contains(attributes, "shape"))
            {
857
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
858
                               "at the same time");
859
860
            }

861
862
863
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
864
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
865
            }
866

867
868
869
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
870
871
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
872
873
874
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
875
876
            if(!contains(attributes, "shape"))
            {
877
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
878
879
880
            }

            literal ls = parse_value(attributes.at("shape"));
881
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
882
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
883
            migraphx::shape s{type, dims};
884
885
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
886
887
888
        }
        else
        {
889
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
890
891
892
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
893
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
894
895
896
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
897
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
898
899
900

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
901
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
902
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
903
904
905
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
906
907
908
909
910
911
912
913
914
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

915
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
916
917
        if(direction == "bidirectional")
        {
918
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
919
920
921
        }
        else if(direction == "reverse")
        {
922
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
923
924
        }

925
        std::vector<std::string> vec_names{"tanh"};
926
927
928
929
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
930
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
931
932
933
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
934
935
        }

936
937
938
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
939
        if(name_it != vec_names.end())
940
941
942
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
943

Shucai Xiao's avatar
Shucai Xiao committed
944
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
945
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
946
        // if only one actv function is provided, we use it in both
947
        // forward and reverse direction
948
        if(dirct == op::rnn_direction::bidirectional)
949
        {
Shucai Xiao's avatar
Shucai Xiao committed
950
            if(vec_names.size() == 1)
951
952
953
954
955
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
956
957
958
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
959
        });
Shucai Xiao's avatar
Shucai Xiao committed
960

Shucai Xiao's avatar
Shucai Xiao committed
961
962
963
964
965
966
967
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

968
969
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
970
        if(args.size() < 6)
971
972
973
974
975
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
976
977
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
978
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
979

980
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
981
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
982

Shucai Xiao's avatar
Shucai Xiao committed
983
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
984
985
    }

986
    std::vector<instruction_ref>
987
988
989
990
991
992
993
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
994
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
995
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
996
997
998
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
999
1000
1001
1002
1003
1004
1005
1006
1007
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1008
        op::rnn_direction dirct = op::rnn_direction::forward;
1009
1010
        if(direction == "bidirectional")
        {
1011
            dirct = op::rnn_direction::bidirectional;
1012
1013
1014
        }
        else if(direction == "reverse")
        {
1015
            dirct = op::rnn_direction::reverse;
1016
1017
        }

1018
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1019
1020
        if(contains(attributes, "activations"))
        {
1021
            auto names = attributes.at("activations").strings();
1022
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1023
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1024
1025
1026
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1027
1028
        }

1029
        // need 4 activation functions
1030
        if(dirct == op::rnn_direction::bidirectional)
1031
        {
Shucai Xiao's avatar
Shucai Xiao committed
1032
            // 4 activation functions are used in the bidirectional
1033
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1034
1035
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1036
1037
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1038
1039
1040
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1041
            if(vec_names.size() == 1)
1042
            {
1043
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1044
            }
1045
            else if(vec_names.size() == 2)
1046
            {
1047
1048
1049
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1050
            }
1051
            else if(vec_names.size() == 3)
1052
            {
1053
                vec_names.push_back(vec_names.at(2));
1054
1055
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1056
        else
1057
        {
1058
            if(vec_names.size() == 1)
1059
            {
1060
                vec_names.push_back(vec_names.at(0));
1061
1062
1063
            }
        }

1064
1065
1066
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1067
        if(name_it != vec_names.end())
1068
1069
1070
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1071

Shucai Xiao's avatar
Shucai Xiao committed
1072
1073
1074
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
1075
        });
1076
1077
1078
1079
1080
1081
1082
1083

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1084
        if(contains(attributes, "linear_before_reset"))
1085
1086
1087
1088
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1089
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1090
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1091
1092
1093
1094
1095
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1096
1097
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1098
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1099
            std::move(args));
1100
1101

        // second output for last gru output
1102
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1103

Shucai Xiao's avatar
Shucai Xiao committed
1104
        return {hidden_states, last_output};
1105
1106
    }

Shucai Xiao's avatar
Shucai Xiao committed
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1129
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1130
1131
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1132
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1133
1134
1135
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1136
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1137
        }
Shucai Xiao's avatar
Shucai Xiao committed
1138
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1139
        {
Shucai Xiao's avatar
Shucai Xiao committed
1140
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1141
1142
1143
1144
1145
1146
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1147
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1148
1149
1150
1151
1152
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1153
1154
1155
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1156
1157
1158
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1159
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1160
1161
1162
1163
1164
1165
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1166
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1167
1168
1169
1170
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1171
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1172
1173
1174
1175
1176
1177
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1178
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1179
1180
1181

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1182
1183
1184
1185
1186
1187
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1188
1189
1190
1191
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1192
1193
1194
1195
1196
1197
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1198
1199
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1200
1201
1202
1203
1204
1205
1206
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1207
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1208

Shucai Xiao's avatar
Shucai Xiao committed
1209
1210
1211
1212
1213
1214
1215
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1216
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1217

Shucai Xiao's avatar
Shucai Xiao committed
1218
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1219
1220
1221
1222
1223
1224
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1225
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1226
1227
1228

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1229
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1230
1231
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1232
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1233
1234
1235
            }
        }

1236
1237
1238
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1239
        if(name_it != vec_names.end())
1240
1241
1242
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1265
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1266
1267
1268
1269
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1270
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1271
1272

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1273
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1274
1275
1276
1277
1278
1279
1280

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }

Paul's avatar
Paul committed
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1293
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1294
1295
1296
1297
1298
1299
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1300
1301
1302
1303
1304
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1305
1306
1307
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1320
        }
Paul's avatar
Paul committed
1321
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1322
        {
Paul's avatar
Paul committed
1323
            this->parse_node(output.name());
Paul's avatar
Paul committed
1324
1325
1326
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1327
    void parse_undefined(const std::string& name)
1328
    {
Shucai Xiao's avatar
Shucai Xiao committed
1329
        auto ins           = prog.add_instruction(op::undefined{});
1330
1331
1332
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1333
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1334
    {
Paul's avatar
Paul committed
1335
        if(name.empty())
Paul's avatar
Paul committed
1336
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1337
1338
1339
1340
1341
1342
1343
1344
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1345
1346
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1347
                }
Shucai Xiao's avatar
Shucai Xiao committed
1348
                else if(input.empty())
Paul's avatar
Paul committed
1349
                {
1350
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1351
                }
1352
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1353
            }
Paul's avatar
Paul committed
1354
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1355
1356
            if(ops.count(node.op_type()) == 0)
            {
1357
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1358
1359
1360
            }
            else
            {
Paul's avatar
Paul committed
1361
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1362
            }
Paul's avatar
Paul committed
1363
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1364
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1365
1366
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1367
1368
1369
            }
            else
            {
Paul's avatar
Paul committed
1370
1371
1372
1373
1374
1375
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1393
        std::size_t n = 0;
Paul's avatar
Paul committed
1394
1395
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1396
            if(node.output().empty())
Paul's avatar
Paul committed
1397
            {
Paul's avatar
Paul committed
1398
                if(node.name().empty())
Paul's avatar
Paul committed
1399
1400
1401
1402
1403
1404
1405
1406
1407
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1433
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1434
1435
1436
1437
1438
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1439
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1440
1441
1442
1443
1444
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1445
1446
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1447
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1448
1449
1450
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
1451
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1452
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
1453
            case onnx::TensorProto::INT8: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1454
1455
            case onnx::TensorProto::UINT16:
                return create_literal(shape::int32_type, dims, s.data());
1456
1457
1458
            case onnx::TensorProto::INT16: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1459
            case onnx::TensorProto::STRING: throw std::runtime_error("");
1460
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1461
1462
1463
1464
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1465
1466
1467
1468
1469
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1470
            MIGRAPHX_THROW("Invalid tensor type");
1471
        }
Paul's avatar
Paul committed
1472
1473
1474
1475
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Khalique's avatar
Khalique committed
1476
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1477
1478
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Khalique's avatar
Khalique committed
1479
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1480
        case onnx::TensorProto::UINT16:
Khalique's avatar
Khalique committed
1481
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1482
        case onnx::TensorProto::INT16:
Khalique's avatar
Khalique committed
1483
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1484
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
1485
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1486
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1487
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1488
1489
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1490
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1491
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1492
        {
Khalique's avatar
Khalique committed
1493
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1494
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1495
1496
1497
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1498
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1499
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1500
        }
Paul's avatar
Paul committed
1501
        case onnx::TensorProto::DOUBLE:
Khalique's avatar
Khalique committed
1502
            return create_literal(shape::double_type, dims, t.double_data());
Paul's avatar
Paul committed
1503
1504
1505
1506
1507
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1508
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1509
1510
    }

Khalique's avatar
Khalique committed
1511
    static literal
1512
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1513
    {
Khalique's avatar
Khalique committed
1514
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1515
        if(dims.empty())
1516
            return literal{{shape_type}, data};
1517
1518
1519
        return literal{{shape_type, dims}, data};
    }

1520
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1521
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1522
1523
    {
        if(dims.empty())
1524
            return literal{{shape_type}, data.begin(), data.end()};
1525
        return literal{{shape_type, dims}, data.begin(), data.end()};
1526
1527
    }

Paul's avatar
Paul committed
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1547
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1548
1549
1550
1551
1552
1553
1554
1555
1556
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1557
        auto&& tensor_dims = t.tensor_type().shape().dim();
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1569
1570
        return {shape_type, dims};
    }
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1616
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1617
} // namespace migraphx