onnx.cpp 30.4 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
18
19
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>

namespace migraphx {
Paul's avatar
Paul committed
20
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
struct unknown
{
    std::string op;
    std::string name() const { return "unknown:" + op; }
    shape compute_shape(std::vector<shape> input) const
    {
        if(input.empty())
            return {};
        else
            return input.front();
    }
    friend std::ostream& operator<<(std::ostream& os, const unknown& x)
    {
        os << x.name();
        return os;
    }
};

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
43
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
44
45
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
46
    program prog    = program();
47
    bool is_pytorch = false;
Paul's avatar
Paul committed
48
49
50
51
52

    std::unordered_map<std::string, op_func> ops;

    onnx_parser()
    {
Shucai Xiao's avatar
Shucai Xiao committed
53
        add_generic_op("MatMul", op::dot{});
Khalique's avatar
Khalique committed
54
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
55
56
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
57
58
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
59
60
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
61
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
62
63
64
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
65
66
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
67
        add_generic_op("Tanh", op::tanh{});
68
69
70
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
71

Khalique's avatar
Khalique committed
72
73
74
75
76
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
77
78
79
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
80

Khalique's avatar
Khalique committed
81
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
82
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
83
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
84
85
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
86
87
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
88
89
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
90
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
91
92
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
93
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
94
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
95
96
97
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
98
        add_mem_op("Concat", &onnx_parser::parse_concat);
Khalique's avatar
Khalique committed
99
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Paul's avatar
Paul committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    }

    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
115

116
    template <class T>
Khalique's avatar
Khalique committed
117
    void add_binary_op(std::string name, T x)
118
119
    {
        ops.emplace(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
120
            if(args.size() != 2)
Paul's avatar
Paul committed
121
                MIGRAPHX_THROW("binary operators should have 2 operands");
122
123
124
125
126
127
128
129
130
131
132
133
            if(contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
                    return prog.add_instruction(x, args[0], l);
                }
134
                return prog.add_instruction(x, args);
135
            }
Khalique's avatar
Khalique committed
136
            else
137
            {
Khalique's avatar
Khalique committed
138
139
140
141
142
143
144
145
146
147
                return add_broadcastable_binary_op(args[0], args[1], x);
            }
        });
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
        if(arg0->get_shape() != arg1->get_shape())
        {
Khalique's avatar
Khalique committed
148
149
150
151
152
153
154
155
156
157
158
159
160
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
Khalique's avatar
Khalique committed
161
162
163
164
165
166
167
168
169
170
171
            // Get lengths for both arguments
            const std::vector<std::size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<std::size_t>* s1 = &arg1->get_shape().lens();

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

            std::vector<std::size_t> output_lens(s1->size());
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
Khalique's avatar
Khalique committed
172
173
174
175
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });
Khalique's avatar
Khalique committed
176
177
178
179
180
181
182
183
184

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
185
186
    }

Paul's avatar
Paul committed
187
    template <class T>
Paul's avatar
Paul committed
188
189
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
190
        ops.emplace(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
191
192
193
194
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
195
    template <class T>
Khalique's avatar
Khalique committed
196
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
197
    {
Khalique's avatar
Khalique committed
198
199
        ops.emplace(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
200
201
202
203
204
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
205
        });
Khalique's avatar
Khalique committed
206
207
    }

Paul's avatar
Paul committed
208
    instruction_ref
Paul's avatar
Paul committed
209
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
210
211
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
212
213
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
214
215
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
216
217
    }

Paul's avatar
Paul committed
218
    instruction_ref
Paul's avatar
Paul committed
219
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
220
    {
221
        op::convolution op;
Paul's avatar
Paul committed
222
223
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
224
            if(contains(attributes, "auto_pad"))
225
            {
Paul's avatar
Paul committed
226
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
227
228
229
            }
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
230
            if(padding.size() != 4)
231
            {
Paul's avatar
Paul committed
232
                MIGRAPHX_THROW("padding should have 4 values");
233
            }
Scott Thornton's avatar
Scott Thornton committed
234
            if(padding[0] != padding[2] || padding[1] != padding[3])
235
            {
Paul's avatar
Paul committed
236
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
237
238
239
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
240
        }
Paul's avatar
Paul committed
241
242
243
244
245
246
247
248
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
249
        if(contains(attributes, "auto_pad"))
250
251
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
252
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
253
            {
Paul's avatar
Paul committed
254
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
255
256
            }

wsttiger's avatar
fixes  
wsttiger committed
257
            if(s.find("SAME") != std::string::npos)
258
259
260
261
            {
                op.padding_mode = op::convolution::same;
            }
        }
Paul's avatar
Paul committed
262
263
264
265
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
266
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
267
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
268
        }
Paul's avatar
Paul committed
269
270
        return prog.add_instruction(op, args);
    }
Paul's avatar
Paul committed
271

Paul's avatar
Paul committed
272
273
274
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
275
    {
Khalique's avatar
Khalique committed
276
277
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
        if(starts_with(name, "Global"))
278
        {
Khalique's avatar
Khalique committed
279
280
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
281
        }
Paul's avatar
Paul committed
282
283
        if(contains(attributes, "pads"))
        {
284
285
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
286
            if(padding.size() != 4)
287
            {
Paul's avatar
Paul committed
288
                MIGRAPHX_THROW("padding should have 4 values");
289
            }
Scott Thornton's avatar
Scott Thornton committed
290
            if(padding[0] != padding[2] || padding[1] != padding[3])
291
            {
Paul's avatar
Paul committed
292
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
293
294
295
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
296
297
298
299
300
301
302
303
304
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
305
        if(contains(attributes, "auto_pad"))
306
307
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
308
            if(to_upper(s) != "NOTSET")
309
            {
Paul's avatar
Paul committed
310
                MIGRAPHX_THROW("auto_pad is not supported for pooling");
311
312
313
            }
        }

Paul's avatar
Paul committed
314
        return prog.add_instruction(op, std::move(args));
Paul's avatar
Paul committed
315
316
    }

Paul's avatar
Paul committed
317
    instruction_ref
Paul's avatar
Paul committed
318
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
319
    {
320
        op::reshape op;
Paul's avatar
Paul committed
321
322
323
324
325
326
327
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
328
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
329
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
330
        }
Paul's avatar
Paul committed
331
332
333
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
334
    instruction_ref
Paul's avatar
Paul committed
335
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
336
337
    {
        uint64_t axis = 0;
Paul's avatar
Paul committed
338
339
340
341
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
342
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
343
344
    }

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
363
364
365
366
367
368
369
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
391
392
393
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
394
395
396
397
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
398

Paul's avatar
Paul committed
399
    instruction_ref
Paul's avatar
Paul committed
400
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
401
402
403
404
405
406
407
408
409
410
411
    {
        float alpha = 1.0f;
        float beta  = 0.0f;
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
412
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
413
414
415
416
417
418
419
420
421
422
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
423
424
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
425
426
        if(args.size() == 3)
        {
Khalique's avatar
Khalique committed
427
            if(beta != 0.f)
428
429
430
431
432
433
434
            {
                auto l3       = prog.add_instruction(op::dot{alpha}, l1, l2);
                auto beta_val = prog.add_literal(beta);
                auto l4       = prog.add_instruction(op::scalar{args[2]->get_shape()}, beta_val);
                auto l5       = prog.add_instruction(op::mul{}, args[2], l4);
                return add_broadcastable_binary_op(l3, l5, op::add{});
            }
Paul's avatar
Paul committed
435
        }
Shucai Xiao's avatar
Shucai Xiao committed
436
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
437
438
    }

439
    instruction_ref
Paul's avatar
Paul committed
440
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
441
    {
Scott Thornton's avatar
Scott Thornton committed
442
443
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
444
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
445
        bool is_test                                      = false;
446
447
448
449
450
451
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
452
            momentum = parse_value(attributes.at("momentum")).at<float>();
453
454
455
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
456
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
457
458
459
        }
        if(contains(attributes, "spatial"))
        {
460
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
461
462
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
463
        }
Paul's avatar
Paul committed
464
        (void)is_test;
Paul's avatar
Paul committed
465
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
466
        return prog.add_instruction(op, std::move(args));
467
468
    }

469
470
471
472
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
473
        float alpha = 0.01; // default alpha val for leaky relu
474
475
476
477
478
479
480
481
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
482
483
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
484
485
486
487
488
489
490
491
492
493
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
        auto input_shape = args.front()->get_shape();
Khalique's avatar
Khalique committed
511

Khalique's avatar
Khalique committed
512
513
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
514
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
515

Paul's avatar
Paul committed
516
517
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_shape}, scale_val);
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Paul's avatar
Paul committed
518
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_shape}, bias_vals);
Paul's avatar
Paul committed
519
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
520
    }
Khalique's avatar
Khalique committed
521

Khalique's avatar
Khalique committed
522
523
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
524
525
526
527
528
529
530
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
531
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
532
533
    }

Paul's avatar
Paul committed
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            throw std::runtime_error("Failed reading");
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
553
554
555
556
557
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
558
559
560
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
561
562
563
564
565
566
567
568
569
570
571
572
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
573
574
575
        }
        for(auto&& p : nodes)
        {
576
            this->parse_node(get_name(p.second));
Paul's avatar
Paul committed
577
578
579
        }
    }

Paul's avatar
Paul committed
580
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
581
    {
Paul's avatar
Paul committed
582
        if(name.empty())
Paul's avatar
Paul committed
583
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
584
585
586
587
588
589
590
591
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
592
                    auto&& iname = get_name(nodes.at(input));
Paul's avatar
Paul committed
593
                    assert(name != iname);
Paul's avatar
Paul committed
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op_type()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op_type()}, args);
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

623
624
625
626
    static std::string get_name(const onnx::NodeProto& node)
    {
        if(node.name().empty())
        {
Paul's avatar
Paul committed
627
            std::string generated = "migraphx_unnamed_node";
Paul's avatar
Paul committed
628
629
630
631
            return std::accumulate(node.output().begin(),
                                   node.output().end(),
                                   generated,
                                   [](auto x, auto y) { return x + "_" + y; });
632
633
634
635
        }
        return node.name();
    }

Paul's avatar
Paul committed
636
637
638
639
640
    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
        for(auto&& node : graph.node())
        {
641
            result[get_name(node)] = node;
Paul's avatar
Paul committed
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
667
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
668
669
670
671
672
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
673
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
674
675
676
677
678
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
Khalique's avatar
Khalique committed
679
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
680
        if(dims.empty())
Khalique's avatar
Khalique committed
681
682
683
        {
            dims = {1};
        }
684
685
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
686
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
687
688
689
690
691
692
693
694
695
696
697
698
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
Paul's avatar
Paul committed
699
            case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
Scott Thornton's avatar
Scott Thornton committed
700
701
702
703
704
705
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
706
            MIGRAPHX_THROW("Invalid tensor type");
707
        }
Paul's avatar
Paul committed
708
709
710
711
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
712
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
713
714
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
715
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
716
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
717
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
718
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
719
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
720
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
721
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
722
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
723
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
724
725
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
726
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
727
728
        case onnx::TensorProto::FLOAT16:
            return literal{{shape::half_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
729
730
731
732
733
734
735
736
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
737
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
759
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
760
761
762
763
764
765
766
767
768
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
769
        auto&& tensor_dims = t.tensor_type().shape().dim();
770
771
772
773
774
775
776
777
778
779
780
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
        return {shape_type, dims};
    }
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
806
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
807
} // namespace migraphx